Recent $C P$ Violation Studies from BABAR

R.M. White
Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA

Abstract

In this proceeding, results of searches for $C P$ violation in charm decays using the full BABAR dataset are discussed. The parameter $A_{C P}$ in the decay $D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$is determined to be $(-0.39 \pm 0.13 \pm 0.10) \%$. Meaurements of $C P$ violation using T-odd correlations in the four-body decays $D^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$and $D_{s}^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$ are $\left(-12.0 \pm 10.0_{(\text {stat })} \pm 4.6_{(\text {syst })}\right) \times 10^{-3}$ and $\left(-13.6 \pm 7.7_{(\text {stat })} \pm 3.4_{(\text {syst })}\right) \times 10^{-3}$, respectively.

1. Introduction

In the Standard Model (SM), $C P$ violation ($C P V$) arises from the complex phase of the CKM quark-mixing matrix [1]. Measurements of the $C P V$ asymmetries in the K and B meson systems are consistent with expectations based on the SM and, together with theoretical inputs, lead to the determination of the parameters of the CKM matrix. CPV has not yet been observed in the charm sector, where the theoretical predictions based on the SM for $C P V$ asymmetries are at the level of 10^{-3} or below [2]. An observation of $C P$ asymmetries at the level of one percent or greater would be a clear indication of new physics.

2. Search for $C P$ Violation in the decay $D^{+} \rightarrow K_{S}^{0} \pi^{+}$[3]

BABAR searched for $C P V$ in the decay $D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$by measuring the parameter $A_{C P}$ defined as:

$$
\begin{equation*}
A_{C P}=\frac{\Gamma\left(D^{+} \rightarrow K_{S}^{0} \pi^{+}\right)-\Gamma\left(D^{-} \rightarrow K_{S}^{0} \pi^{-}\right)}{\Gamma\left(D^{+} \rightarrow K_{S}^{0} \pi^{+}\right)+\Gamma\left(D^{-} \rightarrow K_{S}^{0} \pi^{-}\right)}, \tag{1}
\end{equation*}
$$

where Γ is the partial decay width for this decay. This decay mode has been chosen because of its clean experimental signature. Although direct $C P$ violation due to interference between Cabibbo-allowed and doubly Cabibbo-suppressed amplitudes is predicted to be negligible within the SM [4, $K^{0}-\bar{K}^{0}$ mixing induces a time-integrated $C P$ violating asymmetry of $(-0.332 \pm 0.006) \%$ [8. Contributions from non-SM processes may reduce the value of the measured $A_{C P}$ or enhance it up to the level of one percent (4) 5. Therefore, a significant deviation of the $A_{C P}$ measurement from pure $K^{0}-\bar{K}^{0}$ mixing effects would be evidence for the presence of new physics beyond the SM. Due to the smallness of the expected value, this measurement requires a large data sample and precise control of the systematic uncertainties. Previous measurements of $A_{C P}$ have been reported by the CLEO-c $((-0.6 \pm 1.0$ (stat) ± 0.3 (syst)) \% [6]) and Belle collaborations ($(-0.71 \pm 0.19$ (stat) ± 0.20 (syst)) \% [7]).
We select $D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$decays by combining a K_{S}^{0} candidate reconstructed in the decay mode $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$ with a charged pion candidate. A K_{s}^{0} candidate is reconstructed from two oppositely charged tracks with an invariant mass within $\pm 10 \mathrm{MeV} / c^{2}$ of the nominal K_{S}^{0} mass [8 . To obtain the final candidate events, a Boosted Decision Tree (BDT) algorithm 99 is constructed from seven discriminating variables for each $D^{ \pm}$candidate: the measured proper decay time $\tau\left(D^{ \pm}\right)$, the decay distance in the transverse plane $L_{x y}\left(D^{ \pm}\right)$, the CM momentum magnitude $p^{*}\left(D^{ \pm}\right)$, the momentum magnitudes and transverse components with respect to the beam axis for both the K_{S}^{0} and pion candidates.

A binned maximum likelihood (ML) fit to the $m\left(K_{S}^{0} \pi^{ \pm}\right)$distribution for the retained $D^{ \pm}$candidates is used to extract the signal yield. The total probability distribution function (PDF) is the sum of signal and background components. The signal PDF is modeled as a sum of three Gaussian functions, the first two of them with common mean. The background PDF is taken as a sum of two components: a background from $D_{s}^{ \pm} \rightarrow K_{s}^{0} K^{ \pm}$, where the $K^{ \pm}$is misidentified as $\pi^{ \pm}$, and a combinatorial background from other sources. The data and the fit are shown in Fig. \ddagger. All of the fit parameters are extracted from the fit to the data sample apart from the normalization of the background due to $D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$, which is fixed to the value predicted by the MC simulation. We determine $A_{C P}$ by measuring the signal yield asymmetry A defined as:

$$
\begin{equation*}
A=\frac{N_{D^{+}}-N_{D^{-}}}{N_{D^{+}}+N_{D^{-}}}, \tag{2}
\end{equation*}
$$

where $N_{D^{+}}\left(N_{D^{-}}\right)$is the number of fitted $D^{+} \rightarrow K_{S}^{0} \pi^{+}\left(D^{-} \rightarrow K_{S}^{0} \pi^{-}\right)$decays. The quantity A is the result of two other contributions in addition to $A_{C P}$. There is a physics component due to the forward-backward (FB)

Figure 1: Invariant mass distribution for $K_{S}^{0} \pi^{ \pm}$candidates in the data (black points). The solid curve shows the fit to the data. The dashed line is the sum of all backgrounds, while the dotted line is combinatorial background only. The vertical scale of the plot is logarithmic.
asymmetry $\left(A_{F B}\right)$ in $e^{+} e^{-} \rightarrow c \bar{c}$, arising from $\gamma^{*}-Z^{0}$ interference and high order QED processes in $e^{+} e^{-} \rightarrow c \bar{c}$. This asymmetry will create a difference in the number of reconstructed D^{+}and D^{-}decays due to the FB detection asymmetries arising from the boost of the center-of-mass (CM) system relative to the laboratory frame. There is also a detector-induced component due to the difference in the reconstruction efficiencies of $D^{+} \rightarrow K_{s}^{0} \pi^{+}$and $D^{-} \rightarrow K_{s}^{0} \pi^{-}$generated by differences in the track reconstruction and identification efficiencies for π^{+}and π^{-}. While $A_{F B}$ is measured together with $A_{C P}$ using the selected dataset, we correct the dataset itself for the reconstruction and identification effects using control data sets. BABAR developed a data-driven method to determine the charge asymmetry in track reconstruction as a function of the magnitude of the track momentum and its polar angle which is shown along with the associated errors in Fig. 2]

Neglecting the second-order terms that contain the product of $A_{C P}$ and $A_{F B}$, the resulting asymmetry can be expressed simply as the sum of the two. The parameter $A_{C P}$ is independent of kinematic variables, while $A_{F B}$ is an odd function of $\cos \theta_{D}^{*}$, where θ_{D}^{*} is the polar angle of the $D^{ \pm}$candidate momentum in the $e^{+} e^{-} \mathrm{CM}$ frame. If we compute $A\left(+\left|\cos \theta_{D}^{*}\right|\right)$ for the $D^{ \pm}$candidates in a positive $\cos \theta_{D}^{*}$ bin and $A\left(-\left|\cos \theta_{D}^{*}\right|\right)$ for the candidates in its negative counterpart, the contribution to the two asymmetries from $A_{C P}$ is the same, while the contribution from $A_{F B}$ has the same magnitude but opposite sign. Therefore $A_{C P}$ and $A_{F B}$ can be written as a function of $\left|\cos \theta_{D}^{*}\right|$ as follows:

$$
\begin{equation*}
A_{F B}\left(\left|\cos \theta_{D}^{*}\right|\right)=\frac{A\left(+\left|\cos \theta_{D}^{*}\right|\right)-A\left(-\left|\cos \theta_{D}^{*}\right|\right)}{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{C P}\left(\left|\cos \theta_{D}^{*}\right|\right)=\frac{A\left(+\left|\cos \theta_{D}^{*}\right|\right)+A\left(-\left|\cos \theta_{D}^{*}\right|\right)}{2} \tag{4}
\end{equation*}
$$

The selected sample is divided into ten subsamples corresponding to ten $\cos \theta_{D}^{*}$ bins of equal width and a simultaneous binned ML fit is performed on the invariant mass distributions of D^{+}and D^{-}candidates for each subsample to extract the signal yield asymmetries. Using the asymmetry measurements in five positive and in five negative $\cos \theta_{D}^{*}$ bins, we obtain five $A_{F B}$ and five $A_{C P}$ values. As $A_{C P}$ does not depend upon $\cos \theta_{D}^{*}$, we compute a central value of this parameter using a χ^{2} minimization to a constant. The $A_{C P}$ and $A_{F B}$ values are shown in Fig. 3, together with the central value and $\pm 1 \sigma$ confidence interval for $A_{C P}$. We determine $A_{C P}$ to be:

$$
\begin{equation*}
A_{C P}=(-0.39 \pm 0.13 \pm 0.10) \% \tag{5}
\end{equation*}
$$

where the first error is statistical and the second systematic.

Figure 2: Map of the ratio between detection efficiency for π^{+}and π^{-}(top) plus the corresponding statistical errors (bottom). The map is produced using the numbers of π^{-}and π^{+}tracks in the selected control sample.

Figure 3: $A_{C P}$ (top) and $A_{F B}$ (bottom) asymmetries for $D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$candidates as a function of $\left|\cos \theta_{D}^{*}\right|$ in the data sample. The solid line represents the central value of $A_{C P}$ and the hatched region is the $\pm 1 \sigma$ interval, both obtained from a χ^{2} minimization assuming no dependence on $\left|\cos \theta_{D}^{*}\right|$.

3. Search for $C P$ Violation using T-Odd Correlations in $D_{(s)}^{+} \rightarrow K_{S}^{0} K^{+} \pi^{+} \pi^{+}$[10]

A search for $C P$ violation in the decays $D^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$and $D_{s}^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$using T-odd correlations is described here. We define a kinematic triple product that is odd under time reversal using the vector momenta of the final state particles in the $D_{(s)}^{+}$rest frame as

$$
\begin{equation*}
C_{T} \equiv \vec{p}_{K^{+}} \cdot\left(\vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}}\right) \tag{6}
\end{equation*}
$$

Under the assumption of $C P T$ invariance, T violation is equivalent to $C P$ violation.

Figure 4: The $K^{+} K_{S}^{0} \pi^{+} \pi^{-}$mass spectrum a) in the D^{+}, and b) in the D_{s}^{+}mass region. The curves result from the fits described in the text. The distributions of the Pull values are also shown.

We study the T-odd correlations by measuring the observable expressed in Eq. (6) and then evaluating the asymmetry

$$
\begin{equation*}
A_{T} \equiv \frac{\Gamma\left(C_{T}>0\right)-\Gamma\left(C_{T}<0\right)}{\Gamma\left(C_{T}>0\right)+\Gamma\left(C_{T}<0\right)} \tag{7}
\end{equation*}
$$

where Γ is the decay rate for the process under study. The observable defined in Eq. (7) can have a non-zero value due to final state interactions even if the weak phases are zero [11]. The T-odd asymmetry measured in the $C P$-conjugate decay process, \bar{A}_{T}, is defined as:

$$
\begin{equation*}
\bar{A}_{T} \equiv \frac{\Gamma\left(-\bar{C}_{T}>0\right)-\Gamma\left(-\bar{C}_{T}<0\right)}{\Gamma\left(-\bar{C}_{T}>0\right)+\Gamma\left(-\bar{C}_{T}<0\right)} \tag{8}
\end{equation*}
$$

where $\bar{C}_{T} \equiv \vec{p}_{K^{-}} \cdot\left(\vec{p}_{\pi^{-}} \times \vec{p}_{\pi^{+}}\right)$. We can then construct:

$$
\begin{equation*}
\mathcal{A}_{T} \equiv \frac{1}{2}\left(A_{T}-\bar{A}_{T}\right) \tag{9}
\end{equation*}
$$

which is an asymmetry that characterizes T violation in the weak decay process [12-14].
At least four different particles are required in the final state so that the triple product may be defined using momentum vectors only [15]. The D meson decays suitable for this analysis method are $D^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$, $D_{s}^{+} \rightarrow K^{+} K_{s}^{0} \pi^{+} \pi^{-}$and $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$. The search for $C P$ violation using T-odd correlations in $D^{0} \rightarrow$ $K^{+} K^{-} \pi^{+} \pi^{-}$has recently been carried out by the BABAR Collaboration, and no evidence of $C P$ violation has been observed 16].

The D^{+}and D_{s}^{+}meson decay candidates are reconstructed in the production and decay sequence:

$$
\begin{equation*}
e^{+} e^{-} \rightarrow X D_{(s)}^{+} ; D_{(s)}^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-} ; K_{S}^{0} \rightarrow \pi^{+} \pi^{-} \tag{10}
\end{equation*}
$$

using the events with at least five charged particles. To obtain the final set of signal candidates, the p^{*}, the difference in vertex probabilities that the parent meson originates from a common vertex and the primary vertex, and the signed transverse decay length are combined in a likelihood-ratio test. Fig. 4 shows the resulting $K^{+} K_{S}^{0} \pi^{+} \pi^{-}$mass spectra in the D^{+}and D_{s}^{+}regions. For each region, the signal is described by the superposition of two Gaussian functions with a common mean value. The background is parametrized by a first-order polynomial in the D^{+}region, and by a second-order polynomial in the D_{s}^{+}region. We extract the integrated yields $N\left(D^{+}\right)=21210 \pm 392$ and $N\left(D_{s}^{+}\right)=29791 \pm 337$ from the fits, where the uncertainties are statistical only.

We next divide the data sample into four sub-samples depending on $D_{(s)}$ charge and whether $C_{T}\left(\bar{C}_{T}\right)$ is greater or less than zero, and fit the corresponding mass spectra simultaneously to extract the yields and the values of the asymmetry parameters A_{T} and \bar{A}_{T}. The triple product asymmetries for Cabibbo-suppressed decays
$D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{+}$[16],$D^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$and Cabibbo-favored decays $D_{s}^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$are summarized in Tab. IT The average of the triple product asymmetries is also included in the table

$$
\begin{equation*}
\Sigma_{T}=\frac{1}{2}\left(A_{T}+\bar{A}_{T}\right) \tag{11}
\end{equation*}
$$

which is not a CP violating parameter but may provide more information on the final-state interactions in these decays.

Table I: Triple-product asymmetries $A_{T}, \bar{A}_{T}, \mathcal{A}_{T}$, and Σ_{T} for the Cabibbo-suppressed decays $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} 16$, $D^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$[10] and the Cabibbo-favored decays $D_{s}^{+} \rightarrow K^{+} K_{S}^{0} \pi^{+} \pi^{-}$[10]. The values quoted in units 10^{-3}.

Asymmetry	D^{0} / \bar{D}^{0}	D^{+} / D^{-}	D_{s}^{+} / D_{s}^{-}
A_{T}	$-68.5 \pm 7.3 \pm 5.8$	$11.2 \pm 14.1 \pm 5.7$	$-99.2 \pm 10.7 \pm 8.3$
\bar{A}_{T}	$-70.5 \pm 7.3 \pm 3.9$	$35.1 \pm 14.3 \pm 7.2$	$-72.1 \pm 10.9 \pm 10.7$
\mathcal{A}_{T}	$1.0 \pm 5.1 \pm 4.4$	$-12.0 \pm 10.0 \pm 4.6$	$-13.6 \pm 7.7 \pm 3.4$
Σ_{T}	-69.5 ± 6.2	23.1 ± 11.0	85.6 ± 10.2

The final measurements for \mathcal{A}_{T} in all decays are consistent with zero, however, the values for the T-odd asymmetries are considerably larger in D^{0} and D_{s}^{+}decays. The differences in these values for the various decays may indicate a difference in the final-state interactions. The final-state interactions may be responsible for the hierarchy of lifetimes and branching fractions [17].

4. Conclusion

Measurements with the final $B A B A R$ dataset achieve the precision at the SM prediction for $C P$ violation in charm decays. The systematic uncertainties are at the level of the statistical uncertainties. Current and future measurements from $\mathrm{LHCb}, \mathrm{Belle}$, and SuperB will face the challenge of reducing these systematic uncertainties.

References

1 N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

2 F. Buccella et al., Phys. Rev. D 51, 3478 (1995).
3 P. del Amo Sanchex et al. [BABAR Collaboration], Phys. Rev. D 83071103 (2011).
4 H. J. Lipkin and Z. Xing, Phys. Lett. B 450, 405 (1999).
5 I. I. Bigi and H. Yamamoto, Phys. Lett. B 349, 363 (1995).
6 S. Dobbs et al. (CLEO Collaboration), Phys. Rev. D 76, 112001 (2007).
7 B. R. Ko et al. (Belle collaboration), Phys. Rev. Lett. 104, 181602 (2010).
8 K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
9 P. Speckmayer, A. Hocker, J. Stelzer and H. Voss, J. Phys. Conf. Ser. 219, 032057 (2010).
10 P. del Amo Sanchez et al. (BABAR Collaboration), hep-ex/1105.4410 (2011).
11 I. I. Bigi and H.-B. Li, Int. J. Mod. Phys. A 24S1, 657 (2009).
12 W. Bensalem, A. Datta, D. London, Phys. Rev. D 66, 094004 (2002).
13 W. Bensalem, A. Datta, D. London, Phys. Lett. B 538, 309 (2002).
14 W. Bensalem and D. London, Phys. Rev. D 64, 116003 (2001).
15 E. Golowich and G. Valencia, Phys. Rev. D 40, 112 (1989).
16 P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 81, 111103 (2010).
17 M. Gronau and J. Rosner, hep-ph/1107.1232v2 (2011).

