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ABSTRACT

The time delays between the multiple images of a strong lens system, together with
a model of the lens mass distribution, allow a one-step measurement of a cosmological
distance, namely, the “time-delay distance” of the lens (D∆t) that encodes cosmo-
logical information. The time-delay distance depends sensitively on the radial profile
slope of the lens mass distribution; consequently, the lens slope must be accurately
constrained for cosmological studies. We show that the slope cannot be constrained
in two-image systems with single-component compact sources, whereas it can be con-
strained in systems with two-component sources provided the separation between the
image components can be measured with milliarcsecond precisions, which is not feasi-
ble in most systems. In contrast, we demonstrate that spatially extended images of the
source galaxy in two-image systems break the radial slope degeneracy and allow D∆t

to be measured with uncertainties of a few percent. Deep and high-resolution imaging
of the lens systems are needed to reveal the extended arcs, and stable point spread
functions are required for our lens modelling technique. Two-image systems, no longer
plagued by the radial profile slope degeneracy, would augment the sample of useful
time-delay lenses by a factor of ∼6, providing substantial advances for cosmological
studies.
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1 INTRODUCTION

Since the discovery of the accelerated expansion of the Uni-
verse (Perlmutter et al. 1999; Riess et al. 1998), one of the
key puzzles in cosmology has been the nature of dark en-
ergy which was proposed to explain the accelerated expan-
sion. Recent studies based on various cosmological probes
including the cosmic microwave background (CMB), super-
novae, baryon acoustic oscillations, galaxy clusters, weak
lensing, and gravitational lens time delays have shown
that the Universe is consistent with dark energy being de-
scribed by a cosmological constant Λ (e.g., Komatsu et al.
2011; Conley et al. 2011; Suzuki et al. 2011; Reid et al.
2010; Blake et al. 2011; Mantz et al. 2010; Sehgal et al.
2011; Schrabback et al. 2010; Suyu et al. 2010). Nonethe-
less, Linder (2010) showed that current data provide little
constraints on the properties and time evolution of dark en-
ergy when one relaxes the assumption that the dark energy
equation of state, w, is constant (where w = −1 corresponds
to the cosmological constant). To understand the nature of
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dark energy, a synergy of future observations of independent
cosmological probes (to overcome the systematic effects in
each approach), coupled with theoretical investigations of
dark energy models, is needed.

In this paper, we focus on a particular cosmological
probe: gravitational time delays in strong lens systems. By
measuring the time delay(s) between the multiple images
and modelling the mass distribution of the lens galaxy, one
can infer the “time-delay distance”, D∆t, to the lens sys-
tem. This distance, which is a combination of angular diam-
eter distances, is primarily sensitive to the Hubble constant
(D∆t ∝ H−1

0 ) but also depends on other cosmological pa-
rameters such as w. An accurate measurement of the Hubble
constant with uncertainties better than a few percent pro-
vides the single most useful complement to results of the
CMB for dark energy studies (e.g., Hu 2005; Riess et al.
2009, 2011). Furthermore, time-delay lenses are also highly
complementary to supernovae for determining the dark en-
ergy equation of state (Linder 2011).

Suyu et al. (2010) showed that high-quality data of a
four-image system allowed accurate lens mass modelling
which yielded competitive cosmological constraints. On the
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other hand, analyses of two-image systems, which have sig-
nificantly fewer time-delay and positional constraints on the
mass model than four-image systems, are often plagued by
model degeneracies and thus require model assumptions
that may not be fully justified (e.g., Burud et al. 2002;
Jakobsson et al. 2005; Paraficz et al. 2009). Ameliorating
the shortcomings of two-image systems would provide sig-
nificant advances to time-delay cosmography since there are
currently more two-image systems than four-image systems
(e.g., Oguri 2007) and future large-scale surveys expect to
discover about 6 times more two-image systems than four-
image systems (e.g., Oguri & Marshall 2010).

One of the main lens model limitations is due to the
lens radial profile degeneracy: for a power-law mass distri-
bution with three-dimensional density ρ ∝ r−γ′

, there is
a strong degeneracy between the radial slope γ′ and D∆t.
While studies of large strong lens samples from the Sloan
Lens ACS Survey (SLACS) indicate that lenses are well de-
scribed by a power law with γ′ ∼ 2.1 (e.g., Koopmans et al.
2009; Auger et al. 2010; Barnabè et al. 2011), there is an in-
trinsic scatter in the slope of ∼ 0.15. Furthermore, studies of
higher redshift lens galaxies in the Strong Lensing Legacy
Survey (SL2S) and the BOSS Emission-Line Lens Survey
(BELLS) find an evolution in the lens profile slope where
galaxies at higher redshift have shallower slopes (Ruff et al.
2011; Bolton et al. 2012). Both the intrinsic scatter and the
evolution in the slope impact the D∆t measurement.

Witt et al. (2000) considered the time delays of power-
law lens models with arbitrary angular structure, and
showed that for non-isothermal mass distributions (γ′ 6= 2),
the time delay depends in general on D∆t, the image po-
sitions, γ′ and the source position (or the lens potential).
Wucknitz (2002) investigated further the power-law lens
potentials with an additional external shear, and derived

D∆t ∝ 3−γ′

γ′−1
for fixed external shear (where we have con-

verted the notation from β ≡ 3−γ′ and H0). This scaling is
exact for power-law models with flexible angular structures
that can fit perfectly to the observables, and is only approx-
imate for elliptical models due to indirect dependencies of
D∆t on γ′ through, for example, the modelled source posi-
tion. Instead of parametrising in terms of mainly the slope of
the lens mass distribution, Kochanek (2002) showed that the
time delays primarily depend on the average surface mass
density in the annulus between the images 〈κ〉, in addition
to D∆t and the image positions. When expressed in terms of
〈κ〉, the correction to the time delays from different values
of γ′ is small. The strong dependence of the time delays on
the slope is incorporated indirectly through 〈κ〉. To highlight
the full (both direct and indirect) dependence of D∆t on γ′

and its impact on cosmography, we consider in the first part
of the paper spherical power-law models. We also illustrate
how one might constrain γ′ with more lensing data than just
the image positions from a single source, such as multiple
compact source components or spatially extended sources.

By using the extended images of the lensed source in
optical or near-infrared (NIR) wavelengths to model both
the lens mass distribution and the source surface brightness
distribution, studies have shown that the slope of the lens
mass distribution can be constrained with uncertainties of
a few percent in the annulus covered by the lensed images
(e.g., Dye & Warren 2005; Dye et al. 2008; Suyu et al. 2010;

Vegetti et al. 2010). However, such studies focus mostly on
four-image systems, and the use of extended two-image sys-
tems for cosmography has not been examined in detail. Fur-
thermore, the lens systems that have been modelled so far
using extended images in the optical/NIR wavelengths have
relatively smooth variations in the image surface brightness.
In contrast, the lensed sources in time-delay lenses typically
have active galactic nuclei (AGNs) that are much brighter
than the AGN host galaxies and thus require new modelling
techniques to account for the large dynamical range in sur-
face brightness.

The paper is organised as follows. In Section 2, we
briefly review the method of gravitational lens time delays
for cosmography. In Section 3, we consider a spherical power-
law model to illustrate the degeneracy between D∆t and γ′

and how one would break the degeneracy in principle. We
simulate observations of two-image lens systems with spa-
tially extended source galaxies in Section 4, and model these
systems to test the recovery of D∆t in Section 5. Conclusions
of our results are in Section 6.

2 COSMOGRAPHY FROM GRAVITATIONAL

LENS TIME DELAYS

In this section, we give a brief overview of using strong lens
systems with measured time delays between the multiple
images to study cosmology. More details on the subject can
be found in, e.g., Schneider et al. (2006) and Treu (2010).
Readers familiar with time-delay lenses may wish to proceed
directly to Section 3.

According to Fermat’s principle, the multiple images in
a strong lens system appear at locations where the travel
times of the light paths are extrema or saddles. The excess
time delay of an image at angular position θ = (θ1, θ2) with
corresponding source position β = (β1, β2) relative to the
case of no lensing is

t(θ,β) =
D∆t

c

[

(θ − β)2

2
− ψ(θ)

]

, (1)

where c is the speed of light, and D∆t is the so-called time-
delay distance that is a combination of the angular diameter
distance to the lens/deflector (Dd) at redshift zd, to the
source (Ds), and between the lens and the source (Dds):

D∆t ≡ (1 + zd)
DdDs

Dds

. (2)

The lens potential ψ(θ) is related to the dimensionless sur-
face mass density of the lens, κ(θ), via

∇2ψ(θ) = 2κ(θ). (3)

For systems which have sources with intensities that
vary in time such as active galactic nuclei (AGNs), one can
monitor the intensities of the lensed images over time and
measure the time delay, ∆tij , between the images at posi-
tions θi and θj :

∆tij ≡ t(θi,β)− t(θj ,β)

=
D∆t

c

[

(θi − β)2

2
− ψ(θi)−

(θj − β)2

2
+ ψ(θj)

]

.(4)

By using the image configuration and morphology, one
can model the mass distribution of the lens to determine
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the lens potential ψ(θ) and the unlensed source position β.
Lens systems with time delays can therefore be used to mea-
sure D∆t via equation (4) and constrain cosmological mod-
els (e.g., Refsdal 1964, 1966; Fadely et al. 2010; Suyu et al.
2010). Since lens and source redshifts typically span between
zd ∼ 0.1−1 and zs ∼ 1−3, respectively, an advantage of us-
ing the time-delay lenses for cosmography is that the method
provides a one-step physical measurement of a cosmological
distance D∆t independent of distance ladders.

3 SPHERICAL POWER-LAW LENS:

ILLUSTRATION OF THE RADIAL PROFILE

SLOPE DEGENERACY

Previous studies of gravitational lenses show that power-
law mass distributions provide adequate descriptions for
lens galaxies (e.g., Koopmans et al. 2009; Suyu et al. 2009;
Auger et al. 2010; Ruff et al. 2011; Barnabè et al. 2011). In
this section, we explore the properties of a simple model: a
spherical power-law mass distribution. Despite its simplic-
ity, it clearly illustrates important parameter degeneracies,
particularly between the time-delay distance and the radial
slope.

3.1 Surface mass density, lens potential and

deflection angle

A spherical power-law mass density distribution is of the
form

ρ(r) = ρ0r
−γ′

, (5)

where ρ0 is the normalisation, γ′ is the radial profile slope,
r =

√

x2 + y2 + z2 =
√
R2 + z2 is the three-dimensional

radius, R is the two-dimensional projected radius, and the z-
axis is chosen to be the line-of-sight direction. An isothermal
mass distribution has γ′ = 2. The projected surface mass
density along the line of sight is given by

Σ(R) =

∫ +∞

−∞

ρ(
√

R2 + z2) dz (6)

=
ρ0

√
π Γ( γ

′−1

2
)

Γ( γ
′

2
)

1

Rγ′−1
. (7)

The dimensionless surface mass density (also known as
the convergence) for lensing studies is

κ(ϑ) = Σ(ϑDd)/Σcr, (8)

where ϑ = R/Dd and the critical surface mass density is

Σcr =
c2Ds

4πGDdDds

. (9)

For convenience, we rewrite the dimensionless surface mass
density as

κ(ϑ) =
3− γ′

2

[

θE
ϑ

]γ′−1

(10)

by subsuming the normalisation constants into θE, which is
also known as the “Einstein radius”. A point source that
is located on the optic axis (z-axis) extending from the ob-
server through the centre of the lens would be lensed into a
ring with radius θE. This circle marks the tangential critical

β

B

A

θ
X

Β

θΑ

θ

Figure 1. Two-image lens system from a circularly symmetric
lens mass distribution. The source (open circle) and images (filled
circles) are collinear and are in the direction denoted by θ̂. The
source position is at β and the corresponding image positions are
at θA and θB.

curve of the lens system, and the mass enclosed within the
Einstein ring is

MEin = ΣcrD
2
d

(

2π

∫ θE

0

κ(ϑ)ϑdϑ

)

(11)

= ΣcrD
2
dπθ

2
E. (12)

Note that the mass enclosed is directly dependent only on
θE and not on γ′.

The lens potential corresponding to the κ(ϑ) in equation
(10) can be obtained by solving equation (3) and is

ψ(ϑ) =
θ2E

3− γ′

(

θE
ϑ

)γ′−3

. (13)

The scaled deflection angle is α(θ) = ∇ψ(θ). For circu-
larly symmetric surface mass densities (κ(θ) = κ(ϑ) where
θ = ϑ(cos ϕ, sin ϕ) in polar coordinates), the deflection an-
gle becomes

α(θ) = α(ϑ)
θ

ϑ
= α(ϑ)θ̂, (14)

(e.g., Schneider et al. 2006), and for the κ(ϑ) in equation
(10), we have

α(ϑ) = θE

(

θE
ϑ

)γ′−2

. (15)

3.2 Lens systems with single component sources

Sources of time-delay lenses to date are AGNs with time-
varying intensities. For practical purposes, the AGNs can
be treated as point sources. The positions of the images
of a source at position β are obtained by solving the lens
equation for θ:

β = θ −α(θ). (16)

In the case where the lens mass distribution is spherically
symmetric, the lens equation simplifies to

β = θ − α(ϑ)
θ

ϑ
, (17)

where β and θ are measured from the lens centre and
are collinear. Note the distinction between θ and ϑ, where
ϑ = |θ|. For the deflection angle in equation (15), there
are at most two non-central images of the source that ap-
pear when β . θE. Figure 1 is an illustration of such generic
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Table 1. Two-image toy systems

System θA (θ0) θB (θ0)

I 1.0 −1.0
II 1.2 −0.8
III 1.2 −0.7
IV 1.4 −0.7
V 1.5 −0.3
VI 1.8 −0.2

Notes. Configuration of the six toy two-image lens systems.
Columns 2 and 3 are the positions of images A and B in units of
θ0.

two-image systems from the spherical power-law model. The
cross marks the location of the lens centre, and the two im-
ages are labelled by A and B. The unit vector θ̂ indicate
the direction of line where the source (open circle) and the
corresponding images (filled circles) lie. The source position
is at β, and the image positions are at θA and θB, where the
lens centre is chosen to be the origin of the coordinates.

Given a two-image lens system as shown in Figure 1,
we can use the image positions θA and θB to constrain the
mass distribution of the lens system. In principle, the flux
ratios of the images can also be used, but in practise, the
time variability and delay between the images, substructure,
microlensing and dust extinction affect the flux ratio signif-
icantly, leading to large uncertainties in the flux ratios1. For
simplicity, we consider only the image positions to probe the
overall smooth component of lens mass distribution.

Assuming that the lens mass centre can be determined
based on its light distribution, then the two image positions
lead to the following set of constraint equations:










βs = θA − α(ϑA)
θA
ϑA

= θA − θE
θA
ϑA

(

θE
ϑA

)γ′−2

βs = θB − α(ϑB)
θB
ϑB

= θB − θE
θB
ϑB

(

θE
ϑB

)γ′−2
(18)

where we have substituted in equation (15). With three
model parameters (βs, θE and γ′) and two constraints, the
system of equations is underdetermined. The paucity of con-
straints from two-image systems explains why assumptions
in the lens mass distributions such as mass following light,
spherical symmetry and isothermality (γ′ = 2) were often
necessary in modelling two-image systems in the past (e.g.,
Vuissoz et al. 2007; Paraficz et al. 2009). Here, we explore
the dependence of the model parameters and cosmological
inferences on the slope γ′ in the range of 1.5 to 2.5, which re-
flect the spread in the lens slopes from the SLACS, SL2S and
BELLS samples (e.g., Koopmans et al. 2009; Auger et al.
2010; Barnabè et al. 2011; Ruff et al. 2011; Bolton et al.
2012). Since equations (18) cannot be solved analytically
for generic values of γ′, we consider six toy lens systems
(I–VI) listed in Table 1 with different image configurations.
The image positions are expressed in units of θ0 that sets
the overall size of the lens system. We assume that ϑA > ϑB

and θA > 0 (i.e., θB < 0) without loss of generality.

1 This is especially true in optical wavelengths, whereas in radio
wavelengths, flux ratios are generally not affected by microlensing
or extinction.
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Figure 2. The Einstein radius (θE) and source position (βs) pa-
rameters for each of the six toy lens systems. For systems with
images that are nearly symmetric with respect to the lens centre
(i.e., ϑA/ϑB . 2), θE is quite insensitive to lens profile slope γ′.

We show in Figure 2 values of θE and βs that solve
equations (18) for the range of slope values. For systems I to
IV with nearly symmetric image configuration (ϑA/ϑB . 2),
the value of θE is quite insensitive to γ′. This implies that the
mass enclosed within θE (which only has direct dependence
on θE, as indicated in equation (12)) from strong lensing is
accurate to within ∼5% for these systems. For the case with
perfect symmetry (ϑA = ϑB) that has the source lensed into
a ring, θE is completely independent of γ′ and the source is
perfectly aligned with the lens (βs = 0).

3.3 Degeneracy between lens profile slope and D∆t

The time delay between images B and A for circularly sym-
metric surface mass density follows from equation (4),

∆tBA =
D∆t

c

[

(θB − βs)
2

2
− ψ(ϑB)−

(θA − βs)
2

2
+ ψ(ϑA)

]

.(19)

For the power-law profile, the following property holds

ϑα(ϑ) = (3− γ′)ψ(ϑ). (20)

Using equations (18) and (20) in equation (19), we obtain
the following relation between the time-delay distance and
model parameters
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D∆t

c∆tBA

=
2(3− γ′)

γ′ − 1

[

θ2A − θ2B +
2(2− γ′)

γ′ − 1
βs(ϑA + ϑB)

]−1

.(21)

This is consistent with equation (22) of Wucknitz
(2002). We see in equation (21) that D∆t does not scale

only as 3−γ′

γ′−1
for the spherical power-law model due to the

dependence of the quantities in the square brackets on γ′

(both indirectly via βs and directly). In Figure 3, we show
the time-delay distance scaled by θ20/c∆tBA as a function
of γ′ for Systems II to VI. System I is not shown since the
source is lensed into a ring in this case so that the time delay
between A and B is zero which provides no constraint on the
D∆t. In the bottom panel, we show the time-delay distance
scaled relative to the isothermal case (γ′ = 2). Lens systems
with different image configurations lead to very similar rela-
tive time-delay distance. Furthermore, the relative D∆t de-
pends sensitively on γ′. Studies of the SLACS lens galaxies
find a mean slope of γ′ ∼ 2.07 with an intrinsic 1σ scatter
of ∼0.15 (Auger et al. 2010; Barnabè et al. 2011). A change
of ∼0.15 in γ′ corresponds to a rescaling of D∆t by ∼15%.
Therefore, the isothermal assumption that was frequently
imposed in previous studies of two-image lenses would eas-
ily lead to a biased D∆t determination at the 10% − 20%
level. For precision cosmology, one must therefore measure
accurately the slope of the lens mass profile. As seen ear-
lier, systems with single-component sources cannot be used
to constrain the slope via image positions alone (equations
(18) are underdetermined). In the next section, we consider
sources with two components.

3.4 Lens systems with two-component sources

In this section, we explore the constraints on the lens profile
slope in systems where the source has two compact compo-
nents. We label the image positions as θA1 and θB1 for the
source component at position βs1, and as θA2 and θB2 for the
source component at position βs2. Note that the two source
components need not be collinear (in projection) with the
lens centre. The four image positions lead to four constraint
equations






































βs1 = θA1 − θE
θA1

ϑA1

(

θE
ϑA1

)γ′−2

βs1 = θB1 − θE
θB1

ϑB1

(

θE
ϑB1

)γ′−2

βs2 = θA2 − θE
θA2

ϑA2

(

θE
ϑA2

)γ′−2

βs2 = θB2 − θE
θB2

ϑB2

(

θE
ϑB2

)γ′−2

(22)

With four equations and four unknowns (βs1, βs2, θE and γ′),
the value of γ′ can in principle be solved in the above system
of equations (except for the special case where the two source
components are located equidistant from the lens centre, so
that the first two equations and the last two equations in
(22) are equivalent up to a sign change).

We now explore the precision in which the image posi-
tions need to be measured in order to determine γ′ of the
lens to a few percent precision for cosmography. For illus-
trative purposes, we focus on lens system II in Table 1 and
consider a range of possible image positions for the second
component in the source that we assume to lie in the same
direction from the lens centre as the first source component.

0

1

2

3

4

5

1.6 1.8 2 2.2 2.4

D
∆

t
θ

2 0
/

(c
∆

t B
A

)

γ′

θA = 1.2θ0, θB = −0.8θ0
θA = 1.2θ0, θB = −0.7θ0
θA = 1.4θ0, θB = −0.7θ0
θA = 1.5θ0, θB = −0.3θ0
θA = 1.8θ0, θB = −0.2θ0

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1.6 1.8 2 2.2 2.4

D
∆

t
/

(D
∆

t|
γ
′
=

2)

γ′

Figure 3. The time-delay distance as a function of the lens profile
slope for systems with different image configurations. Top panel
is the scaled time-delay distance, and the bottom panel is the
time-delay distance relative to the isothermal (γ′ = 2) case. The
relative time-delay distance is very similar for all image config-

urations. An uncertainty in the slope of 0.15, which is roughly
the 1-σ scatter in profile slopes of SLACS lenses, translates to an
uncertainty of ∼15% on D∆t, hindering cosmological studies.

In particular, we consider a range of values for θA2 − θA1

spanning from −0.4θ0 to 0.2θ0.
The top panel in Figure 4 quantifies the asymmetry in

the image configurations relative to the lens galaxy for each
of the θA2 − θA1 values. The closer the ratio of the aver-
age image position (for the two-component images) is to 1,
the more symmetric is the image configuration. For the case
where θA2 − θA1 = −0.4θ0, there is perfect symmetry with
θA1 = −θB2 and θA2 = −θB1 so that |θB1+θB2|

|θA1+θA2|
= 1 for all γ′.

In the bottom panel of Figure 4, we plot the relative image
separation between the two image components as a function
of γ′. Apart from the case with θA2 − θA1 = −0.4θ0 (red
dot-dashed lines), the derivative of the curves with respect
to γ′ is negative. Therefore, by measuring the relative sep-
aration between the images of different source components,
one can measure γ′ of the lens galaxy. The system with
θA2 − θA1 = −0.4θ0 provides no information on γ′ because
in this perfectly symmetric image configuration, the second
source component is on the opposite side and equidistant
from the lens centre as the first source component, yielding
effectively only a single component source in terms of con-
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Figure 4. Configurations of images with 2-component sources.
Top panel: asymmetry in the images, as defined by the ratio of
the average image position of the two components. The ratio is 1
for perfect symmetry and is smaller for more asymmetric systems.
Bottom panel: ratio of the separations between the images of the
two components. For systems that are not perfectly symmetric,
the curves are strictly monotonic, indicating that the slope can
be determined in principle by measuring the image separations of
the components.

straints (which is insufficient for determining γ′, as shown
in Section 3.2).

In Figure 5, we show the derivative of θB2−θB1 with re-
spect to γ′. For typical systems with |θB1+θB2|

|θA1+θA2|
& 0.7 that are

not perfectly symmetric, the derivative is ∼0.04θ0. Systems
that are highly asymmetric ( |θB1+θB2|

|θA1+θA2|
. 0.7) can have larger

magnitudes of ∼0.1θ0 for the derivatives. In order to mea-
sure ∆γ′ to within 0.03 (which translates to ∼3% in D∆t),
one would need to measure θB2 − θB1 with accuracies better
than ∼0.1θ0 · 0.03 = 0.003θ0. For typical galaxy-scale lenses
with θ0 ∼ 1′′, this requires .3milliarcsecond (mas) preci-
sion measurements on the separation between image com-
ponents. Therefore, even though lenses with two-component
sources can in principle be used to constrain the slope of the
lens profile, in practise it would be difficult to measure the
image separation between the components with mas preci-
sion to constrain D∆t with a few percent precision. Image
positions of AGNs can be measured with mas precisions us-
ing radio telescopes, but usually the second source compo-
nents (if any) are spatially extended radio jets whose posi-
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Figure 5. The derivative of the image separation between the
two components (θB2 − θB1) with respect to the slope γ′. Highly
asymmetric systems have larger magnitudes for the derivatives.
To measure γ′ to within ∼0.03 for precision cosmology, mas preci-
sion measurements in the relative image separation are required.

tions are typically measured with precisions of several mas
at best. There are, however, radio jets with compact knots
that provide mas astrometries (e.g., Patnaik et al. 1995).

We have so far considered a power-law profile to de-
scribe the lens mass distribution. However, mass structures
along the line of sight from us to the source typically induces
shear on the system, which is characterised by a strength and
an angle. Determining the external shear strength and angle
in addition to the two power-law parameters (θE and γ′) and
the two source positions (βs1 and βs2) is not possible since
the images from the two-component sources provide only
four constraints. Nonetheless, for typical two-image systems
where the images lie on opposite sides with a small angu-
lar offset (i.e., no longer collinear with the lens galaxy) due
to the presence of a general quadrupole (including external
shear), the time delay depends weakly on the structure of
the quadrupole (Kochanek 2002). Therefore, the dependence
of D∆t on γ′ remains roughly the same in the presence of
shear, but γ′ becomes much more difficult to determine.

Systems with even more source components would pro-
vide additional constraints on the lens mass distribution
(e.g., γ′ and the external shear), but most systems do not
have multiple compact source components with mas as-
trometries. Nonetheless, source galaxies (i.e., the hosts of
the AGNs) are typically spatially extended, which can be
thought of as many point sources with different intensities.
The lensed images of the spatially extended sources form
arcs, and the relative thickness of the arcs at various loca-
tions helps to constrain γ′, just like the relative separation
between θB2 − θB1 and θA2 − θA1, if measured accurately,
constrains γ′. While the arc thickness cannot be measured
with mas precisions at a particular location even on current
high-resolution imagings, the arc thickness can be measured
at many angular positions. In the next sections we explore
two-image lens systems with extended sources for cosmolog-
ical studies.
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4 SIMULATIONS

We simulate deep and high-resolution imaging of two-image
lens systems that reveals the lensed arcs of the extended
source galaxy. In particular, we simulate data that mimic the
system HE1104−1805 (Wisotzki et al. 1993) with a lens red-
shift of 0.729 (Lidman et al. 2000) and a source redshift of
2.319 (Wisotzki et al. 1993; Smette et al. 1995). The corre-
sponding time-delay distance for the lens isD∆t = 4829Mpc
assuming a flat ΛCDM universe with H0 = 70 kms−1 Mpc−1

and ΩΛ = 0.72. The time delay between the images is 162±6
days (Morgan et al. 2008).

4.1 Input lens mass profile and source light profile

To create simulated images and time delays for the mock
systems, we use an elliptical power-law profile for the lens
mass distribution with a constant external shear. The form
of the elliptical power-law surface mass density that we em-
ploy is

κepl(θ1, θ2) =
3− γ′

1 + qd

(

θE
√

θ21 + θ22/q
2
d

)γ′−1

, (23)

where qd is the axis ratio of the elliptical isodensity contours,
and θE is the Einstein radius for the spherical-equivalent
case (in the limit where qd = 1, the above κepl distribution
reduces to equation (10)). The deflection angle and lens po-
tential can be computed following Barkana (1998). The dis-
tribution is suitably translated to the position of the lens
galaxy (θc) and rotated by the position angle (φd) of the
lens galaxy (where φd is measured counterclockwise from
θ1).

We use the following form for the lens potential of the
constant external shear in polar coordinates ϑ and ϕ:

ψext(ϑ, ϕ) =
1

2
γextϑ

2 cos 2(ϕ− φext), (24)

where γext is the shear strength and φext is the shear an-
gle. The shear centre is arbitrary since it corresponds to
an unobservable constant shift in the source plane. Note
that κext = 1

2
∇2ψext is zero. The shear position angle of

φext = 0◦ corresponds to a shearing along the θ1-direction
whereas φext = 90◦ corresponds to a shearing in the θ2 di-
rection.

For the surface brightness distribution of the AGN host
galaxy in the source plane, we use Sérsic profiles with Sérsic
index of 1 (corresponding to exponential profiles). Further-
more, we add a point source at the centre of the Sérsic profile
to simulate the AGN.

4.2 Simulated WFC3 observations and Time

Delays

We simulate Hubble Space Telescope (HST ) imaging using
the Wide Field Camera 3 (WFC3) in the infrared (IR) chan-
nel since the source galaxy is typically brighter in the in-
frared, providing better contrast with the AGN. The simu-
lated image pixel size is 0.09′′, which can be dithered from
images with the native pixel size of 0.13′′.

The steps for creating the simulated image are (1) gen-
erate an extended source intensity distribution with a cen-
tral point source, (2) lens the source through the power-law

and external shear profiles (described in Section 4.1) with
parameters tuned to produce a high-resolution lensed im-
age mimicking HE1104−1805, (3) convolve the lensed im-
age with a subsampled point spread function (PSF) that is
generated using the TinyTim software (Krist et al. 2011),
(4) bin the convolved image to obtain an image pixel size
of 0.09′′, and (5) add uniform Gaussian noise for the back-
ground (with σ2

bkgd = 1500 counts, comparable to the level
from a few orbits of HST observations) and Poisson noise
for the source.

We consider three input values for the slope: γ′ = 1.8,
γ′ = 1.9 and γ′ = 2.2, and label them as Simulation #1, #2
and #3, respectively. For each input value, the other lens pa-
rameters and the point source position (of the AGN) are ad-
justed to create systems with the astrometry and time delay
of HE1104−1805. For Simulations #1 and #2, we adopt a
time-delay distance of 4829Mpc (corresponding to the fidu-
cial ΛCDM model) and can simulate time delays that are
close to the observed delay in HE1104−1805. On the other
hand, simulating a similar time delay with a much steeper
slope of γ′ = 2.2 requires a lower D∆t (as illustrated in
Figure 3); consequently, we adopt D∆t = 3263Mpc for Sim-
ulation #3. In addition, Simulation #3 with a steeper mass
profile has a lower lensing magnification in comparison to
the other two simulations. Therefore, the intrinsic bright-
ness and the size of the extended source in Simulation #3
are higher than those in the other two simulations so that
the lensed images from the three simulations are similar in
terms of arc thickness and signal-to-noise ratio. The posi-
tion angle of the source is arbitrarily chosen to be either 0◦

or 90◦; based on Section 3.4, we suspect this quantity to
be of little importance provided that the source is of suffi-
cient spatial extent (for measuring the relative thickness of
the lensing arcs). Table 2 summarises the crucial parameters
and simulation outputs.

For each simulation of the slope, we also consider three
different noise realisations. Specifically, we use different ran-
dom number seed to generate the uniform Gaussian noise
for the background and Poisson noise for the source. In Fig-
ure 6, we show the source and the WFC3 image of the first
realisation of Simulation #1 in the right panels (top and
bottom, respectively). The AGN is typically much brighter
than the source/host galaxy, so only the AGN is conspicuous
in these panels. We show in the left panels the source galaxy
and the corresponding lensed image without the AGN to dis-
play the underlying extended arc features of the lensed AGN
host galaxy (purely for illustration purposes without noise
added). We model the simulated WFC3 image (bottom-right
panel) in Section 5. For the lensed AGN, we adopt a typ-
ical uncertainty of 4mas for the image positions and use
162± 6 days for the time delay ∆tAB.

5 BREAKING THE D∆t-SLOPE

DEGENERACY

In this section, we model the simulated images from the pre-
vious section with the aim to recover the time-delay distance
for cosmography.
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Table 2. Simulation of Systems Resembling HE1104−1805

Parameter Simulation #1 Simulation #2 Simulation #3

θc (arcsec) (−0.955,−0.495) (−0.960,−0.497) (−0.955,−0.494)
θE (arcsec) 1.406 1.333 1.462
qd 0.825 0.805 0.794
φd (◦) 160 25 123
γ′ 1.8 1.9 2.2

MAGN 19.5 19.5 19.5
Mhost 23 23 22.5
reff (arcsec) 0.2 0.2 0.4
qs 0.8 0.8 0.8
φs (◦) 0 90 90

θA (arcsec) (0.000,−0.010) (0.000,−0.010) (0.000,−0.010)
θB (arcsec) (−2.910,−1.330) (−2.910,−1.330) (−2.910,−1.330)
D∆t (Mpc) 4829 4829 3263
∆tAB (days) 164 165 166

Notes. Input Lens and source parameters, and the simulated AGN positions and time-delays. The first five rows are the centroid (θc),
strength (θE), axis ratio (qd), position angle (φd) and radial slope (γ′) of the power-law mass distribution for the lens. The next five
rows are the magnitude of the AGN (MAGN), the magnitude of the source host (Mhost), the effective radius (reff ), axis ratio (qs) and
position angle (φs) of the Sérsic host. The next four rows are the two lensed image positions of the AGN (θA and θB), the time-delay
distance (D∆t), and the time delay between the images (∆tAB).
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Figure 6. Simulated HST WFC3 image of Simulation #1. The
left panels show the source galaxy (top) and the lensed im-
age without noise (bottom) in the absence of the AGN in the
source/host galaxy. The lensed image clearly exhibit the spatially

extended arcs of the lensed AGN host galaxy. The right panels
show the source and the lensed image in the presence of the AGN,
which is typically much brighter than its host galaxy. We model
the simulated WFC3 image with the AGN (bottom-right panel)
in Section 5.

5.1 Lens and source model

To predict the image surface brightness and the time delays,
we need to simultaneously model the lens mass distribution
and the source surface brightness distribution. For the lens
mass distribution, we use the same power law and external

shear profiles as in equations (23) and (24). For notational
simplicity, we collectively denote as η the 6 power-law pa-
rameters (θc, θE, qd, φd, γ

′) and the 2 external shear param-
eters (γext, φext). For the source surface brightness, we model
the AGN light separately from the host to accommodate the
large difference in size and brightness scales. We choose to
model the lensed AGN as individual points on the image
plane instead of a single point on the source plane. In the
latter case, one can in principle solve for the predicted image
positions and the image fluxes of a point source on the source
plane for given values of the lens mass parameters (via equa-
tion (16) and the magnification dictated by the lens mass
model). However, the observed image positions and espe-
cially the image fluxes of the point source could deviate from
the macro (smooth power-law) model predictions due to
substructure, microlensing, time delay and dust extinction;
these effects could not be easily captured by a model that
has the AGN as a point in the source plane. Since AGN im-
age fluxes are typically anomalous (e.g., Dalal & Kochanek
2002; Kochanek & Dalal 2004), we model the fluxes of the
lensed AGN images independently, but require that the im-
age positions of the AGN are consistent with the macro
model up to perturbations caused by, for example, substruc-
tures in the lens mass distribution (e.g., Chen et al. 2007).
With the lensed AGN treated as individual points (before
telescope blurring) and a model for the PSF, we have three
parameters to describe each AGN image: position in θ1 and
θ2 and an amplitude. We collectively denote the parameters
for AGN light as ν. For the spatially extended host of the
AGN, we model its surface brightness on a grid of pixels
(Suyu et al. 2006).

We express the predicted image of the lensed source as
a vector of pixel intensities,

d
P = BL(η)s+

NAGN
∑

i=1

ai(ν), (25)
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where B is the blurring operator to account for the PSF,
L(η) is the lensing operator that maps source intensity to
the image plane, s is the vector of source pixel intensities
(see, e.g., Suyu et al. 2006, 2009, for details), NAGN is the
number of AGN images, and ai(ν) is the vector of image
pixel intensities for image i of the AGN. This description
assumes that the PSF is known a prior and is fixed. This
is true in practise for HST images which have stable PSFs
that can be modelled with sufficient accuracy based on in-
strumental setups and field stars.

To construct the likelihood function for the lens model
using the pixel intensities, we also require an estimate of
the intensity uncertainty at each pixel. Both the background
(including sky and read noise) and the astrophysical source
contribute to the noise in the intensity pixels. We have there-
fore two terms to describe the variance of the intensity at
pixel i,

σ2
pix,i = σ2

bkgd + fdi, (26)

where σbkgd is the background uncertainty, f is a scaling fac-
tor, and di is the image intensity in counts. In the modelling,
we adopt σ2

bkgd = 1500 counts (input to the simulation)
which can in practise be measured from a blank region in
the image without astrophysical sources. The second term in
equation (26), fdi, corresponds to a scaled version of Pois-
son noise (with f = 1 as the usual Poisson noise). The value
of f is chosen so that the reduced χ2 is ∼1 for the lensed
image reconstruction (see, e.g., Suyu et al. 2006, for details
on the computation of the reduced χ2). For a model where
the PSF and the mass distribution are known perfectly, the
usual Poisson noise with f = 1 typically leads to a reduced
χ2 ∼ 1. In practise, models are often simplified versions of
reality so there could be residual features in the image re-
construction with a corresponding reduced χ2 that is & 1.
These residuals are frequently most prominent at locations
where the intensities are high, such as at the positions of the
AGN images. In this case, the model would try to reduce the
high residual at a few localised locations (i.e., the AGN po-
sitions) instead of fitting to the overall structure of the data
(i.e., the lensing arcs), which could lead to biased estimates
of model parameters that are designed to characterise the
global features. Increasing f has the effect of downweighting
these localised pixels with high di and allowing the model
to fit to the overall structure of the data. Furthermore, the
increased f value with an associated reduced χ2 ∼ 1 avoids
underestimating the parameter uncertainty in simple mod-
els that are meant to characterise the large-scale features
and not necessarily the small-scale features in the data (e.g.,
Brewer et al. 2012).

In sum, the parameters for our model are η, s and ν,
and for simplicity, we fix the PSF to the input TinyTim
PSF. Given a set of values for η and ν, the determination
of the source surface brightness of the AGN host is a lin-
ear inversion (e.g., Warren & Dye 2003; Suyu et al. 2006;
Vegetti & Koopmans 2009). Therefore, s are known as lin-
ear parameters, and η and ν are the nonlinear parameters.

5.2 Parameter Sampling and Priors

We model the simulated images and time delay with Glee
2

that has been enhanced to incorporate AGN modelling.
Since the AGN dominates the flux in the images, we first op-
timised for its position and amplitude while fixing the host
flux to be zero. We then sample the posterior probability
distribution function (PDF) of nonlinear parameters η and
ν with Markov chain Monte Carlo (MCMC) methods. We
follow Dunkley et al. (2005) for efficient MCMC sampling
and for assessing chain convergence.

Bayes’ Theorem states that the posterior PDF is

P (η,ν|d,∆t) ∝ P (d,∆t|η,ν)P (η,ν). (27)

Since the imaging and time-delay data sets are independent,
the likelihood separates:

P (d,∆t|η,ν) = P (d|η, ν)P (∆t|η,ν). (28)

The likelihood of the simulated WFC3 data, P (d|η,ν), is
obtained by reconstructing the AGN host surface brightness
distribution given values of η and ν, and marginalising over
the source parameters s (see, e.g., Suyu & Halkola 2010, for
details). Since the AGN images are modelled as indepen-
dent points based on their surface brightness, we include
an additional term to the likelihood to ensure that the lens
model can reproduce the image positions. In particular, we
multiply the original likelihood P (d|η,ν) by
NAGN
∏

i

1√
2πσi

exp

[

−|θi − θP
i (η)|2

2σ2
i

]

, (29)

where θi is the measured image position, σi is the positional
uncertainty that we adopt as 4mas, and θP

i is the predicted
image position given the lens parameters. The likelihood for
the time delay is given by

P (∆t|η, ν) = 1√
2πσ∆t

exp

[

− (∆t−∆tP(η,ν))2

2σ2
∆t

]

, (30)

where ∆t is the measured time delay with uncertainty σ∆t

and ∆tP is the predicted time delay computed via equation
(4).

For the prior PDF P (η,ν), we assume uniform priors
for η and ν within physical ranges (e.g., axis ratio is uniform
between 0 and 1) except for the centroid of the lens where
we assume a Gaussian prior with width of 0.01′′ centred on
the input values (which in practise would be obtained from
the lens light distribution). For the pixelated source surface
brightness distribution of the host, we consider both the
curvature and gradient forms of regularisation/prior (see,
e.g., Appendix A of Suyu et al. 2006).

5.3 Recovery of slope and D∆t

We model the time delay and the simulated WFC3 image
for each of the three realisations of the three simulations. To
explore the effects of the different forms of regularisations
for the source surface brightness, we adopt the curvature
form for Simulations #1 and #2, and the gradient form
for Simulation #3. In Figure 7, we show the source and

2 a lens modelling software developed by S. H. Suyu and
A. Halkola (Suyu & Halkola 2010; Suyu et al. 2011)
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Figure 7. Image and source reconstruction of the first realisa-
tion in Simulation #1. Panels from top left in clockwise direc-
tion: image with AGN point images subtracted, modelled image,
normalised image residual (in units of the uncertainty for each
pixel), and the reconstructed AGN host galaxy.

image reconstruction of the AGN host surface brightness
for the most probable lens and AGN parameters in the first
realisation of Simulation #1. The noise level near the core of
the lensed images is high due to the Poisson noise from the
AGN. The modelled source resembles the input source in
Figure 6 and reproduces the corresponding simulated lensed
image.

In Figure 8, we show the joint PDF for γ′ and D∆t

after marginalising over all other parameters (source pixel
intensities, AGN positions and amplitudes, power-law mass
parameters and external shear) in each of the simula-
tions/realisations. The cross indicates the input parameter
value. The shapes and sizes of the credible regions are similar
for the different realisations in each simulation. The orien-
tations of the credible regions follow the degeneracy curves
in Figure 3, and become more horizontal for simulations
with higher γ′. We recover the true γ′ and D∆t values in
Table 2 within the 99.7% (3σ) credible region for all cases,
and within the 68.3% (1σ) credible region for approximately
2/3 of the cases as expected. By using the extended surface
brightness of the host, we break the D∆t-γ

′ degeneracy and
recover D∆t to within 5%. Therefore, even though the width
of the lensing arc cannot be measured to mas accuracy at
any particular location given the image pixel size of 0.09′′,
the thousands of image pixels collectively determine the rel-
ative thickness of the lensing arcs to sufficient accuracy for
cosmography.

5.4 Discussions

Our simulations demonstrate that two-image systems with
detectable extended images of the AGN host provide ac-
curate constraints on the time-delay distance, overcom-

ing the radial profile slope degeneracy that has under-
mined this cosmological probe in the past. Only four-
image lens systems or two-image lens systems with multi-
component source structures (which have more observa-
tional constraints) have so far been shown to yield cos-
mological measurements that are not obviously dominated
by systematic effects (e.g., Courbin et al. 2011; Suyu et al.
2010; Fadely et al. 2010; Wucknitz et al. 2004). Nonethe-
less, the majority of currently known time-delay lenses are
two-image systems without multi-component sources (e.g.,
Oguri 2007; Paraficz & Hjorth 2010). Furthermore, future
telescopes will find∼6 times more two-image time-delay sys-
tems than four-image systems, and the Large Synoptic Sur-
vey Telescope (LSST) will discover thousands of two-image
time-delay lenses (Oguri & Marshall 2010). Therefore, ef-
fectively tapping into the abundant reservoir of two-image
lenses will provide significant advances to time-delay cos-
mography.

The profile slope of interest for cosmography is actually
the slope in the annulus between the images since the time
delay primarily depends on the average surface mass den-
sity between the images (Kochanek 2002). Therefore, even
if the true lens mass distribution is not a global power law,
it is well approximated by a local power law at the positions
of the images. Other methods have probed the mass distri-
bution in regions outside of the image annulus; for example,
stellar kinematics of lens galaxies further constrain the mass
distribution inside the effective radius of the lens galaxy
(e.g., Koopmans & Treu 2003; Treu & Koopmans 2004;
Koopmans et al. 2009; Barnabè et al. 2009; Auger et al.
2010; Barnabè et al. 2011; Sonnenfeld et al. 2011). In fact,
stellar kinematics also help break the so-called “mass-
sheet degeneracy” (Falco et al. 1985) in lensing (e.g.,
Grogin & Narayan 1996; Koopmans et al. 2003; Suyu et al.
2010). Mass structures along the line of sight between the
observer and the source (such as individual galaxies or
groups/clusters of galaxies) contribute an external conver-
gence, κext, to the lens mass distribution, and this exter-
nal convergence is degenerate with D∆t. Specifically, there
is a mathematical transformation to the lens mass distri-
bution, κ → (1 − κext)κ + κext, which leaves the lensing
observables (e.g., image positions/morphology, relative im-
age fluxes and time delays) invariant but rescales D∆t. A
model that does not account for an existing κext would
underpredict or overpredict the value of D∆t for an over-
dense or underdense line of sight, respectively (by a factor
of (1− κext)). Qualitatively, having a nonzero external con-
vergence is analogous to adding an extra lens to the system
which changes the focal length of the system, and hence
the distance measurement. Both the radial profile slope de-
generacy and the mass-sheet degeneracy are known to be
the dominant sources of systematic uncertainties in measur-
ing D∆t. We have tackled and eliminated the radial pro-
file slope degeneracy in this paper. Lens environment stud-
ies (e.g., Keeton & Zabludoff 2004; Fassnacht et al. 2006;
Momcheva et al. 2006; Fassnacht et al. 2011) in conjunction
with stellar kinematics are effective in breaking the mass-
sheet degeneracy (Suyu et al. 2010).

Our modelling of the lensed images requires a good
knowledge of the PSF that is stable. Space-based imaging
is ideal, but existing HST archival images of two-image lens
systems that are not in cluster environments (which make
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Figure 8. Marginalised PDF of γ′ and D∆t for the three simulations (columns) with three realisations (rows) each. The three shaded
areas show the 68.3%, 95.4% and 99.7% credible regions. The crosses mark the input values. By using the extended surface brightness
of the AGN host, we break the degeneracy between D∆t and γ′ and recover the input D∆t value within the uncertainties. Two-image
lens systems with imaging that reveals the AGN host provide a robust cosmological distance probe.

κext hard to control) do not have sufficient signal-to-noise
ratio in the extended images of the AGN host galaxy for ac-
curate modelling. Furthermore, most lens systems have been
imaged with the Near Infrared Camera and Multi-Object
Spectrometer (NICMOS) that have non-linear count rates;
modelling these images, which have intensities of the ex-
tended AGN host galaxy that are severely contaminated by
the bright AGNs, is prone to systematic effects. In contrast,
WFC3 is a more sensitive and stable detector with a wider
field of view (hence more field stars for PSF models) that
would currently be the optimal instrument on HST to follow
up the two-image lens systems for cosmography.

We have assumed in the model that the PSF is known
perfectly, which is not true in practise. To explore the effect

of imperfect PSF knowledge, we have also generated another
TinyTimWFC3 PSF, located at approximately 45′′ from the
original PSF, and used this offset PSF in the modelling step
instead of the original PSF. This corresponds to the scenario
where a star in the field is used to approximate the PSF at
the location of the lens, which has been shown to work well
for lens systems without bright AGNs in the spatially ex-
tended sources (e.g., Marshall et al. 2007; Suyu et al. 2009).
In our case where the source AGN is bright, the PSF mis-
match leads to imperfect AGN image modelling and conse-
quently significant images residuals near the positions of the
bright AGNs. As a result, the scaling factor f in equation
(26) is ∼8 for the offset PSF (whereas f = 1 for the perfect
PSF) to obtain a reduced image χ2 of ∼1 by downweighting
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Figure 9. The effect of the PSF. Marginalised PDF of γ′ and
D∆t for Simulation #3 Realisation #3 modelled using the input
TinyTim PSF (shaded) and a TinyTim PSF that is offset by
∼45′′ from the input PSF (dashed). The three areas show the
68.3%, 95.4% and 99.7% credible regions. The cross marks the
input values. With the imperfect (offset) PSF and the scaled pixel
uncertainty in equation (26), the precision of the recovered D∆t

is slightly degraded due to misfits near the bright AGN images.

these bright pixels with residuals that could otherwise cause
biases in parameter estimations. Figure 9 shows the result-
ing constraints on D∆t and γ′ (dashed) by using the offset
PSF with the scaled pixel uncertainty in equation (26). The
input D∆t and γ′ are recovered without significant biases.
In comparison to the case with a perfect PSF (shaded), the
recovery of D∆t is degraded in precision from ∼5% to ∼6%
(1σ, after marginalising over other parameters) due to the
downweighting of high-residual pixels and the consequent
loss of information in these pixels.

For the simulated WFC3-IR images, we find that sub-
sampling is necessary to avoid biases in the recovered pa-
rameters due to the large image pixel sizes. In other words,
the predicted lensed image first need to be created and con-
volved on a finer resolution, then binned to the observed
image resolution for calculating the likelihood. A subsam-
pling factor of ∼ 3 was sufficient to characterise both the
PSF and the source intensity variation in the simulations.

In modelling the simulated images, a positional uncer-
tainty of 4mas was adopted for the AGN images and a
Gaussian prior with width of 0.01′′ was imposed on the lens
galaxy centroid. We consider the impact of relaxing these
constraints individually to 0.09′′ (1 pixel) for observations
where the positions cannot be easily measured (e.g., the lens
galaxy is faint). We find that the credible regions in Figure
8 remain nearly the same if either the positional uncertainty
of the AGN images or the prior on the lens galaxy centroid
is relaxed to 0.09′′. This shows that the spatially extended
arcs are providing most of the constraints on the mass dis-
tribution and the time-delay distance.

We have considered two types of source regularisations
for the simulations (curvature for Simulations #1 and #2,

and gradient for Simulation #3), and showed that the input
D∆t and γ′ are recovered irrespective of the choice in regu-
larisation (Figure 8). For a given simulation, the two forms
of regularisations lead to similar shapes and sizes of credi-
ble regions with slight shifts that are small compared to the
size of the regions. Therefore, both forms of regularisations
are viable options in modelling the extended arcs for typi-
cal AGN host galaxies that have smooth surface brightness
distributions.

We have kept our simulations simple by excluding the
light from the lens galaxy. In practise, the observed image
would also contain lens light, which would affect the arc light
and would need to be modelled as well. One way is to use
Sérsic profiles to describe the lens light, and add another
term to the right-hand side of equation (25) for the vec-
tor that describe the lens light intensities. The parameters
for the Sérsic profiles are also nonlinear (like η and ν) and
need to be sampled as well. A self-consistent model would
simultaneously determine the lens light, the lens mass dis-
tribution, the AGN contribution, and the AGN host source
surface brightness distribution. This is a high-dimensional
nonlinear problem that is beyond the scope of this paper,
and will be presented in a future study.

6 CONCLUSIONS

We have used the spherical power-law model to show that
the time-delay distance depends sensitively on the slope,
which cannot be constrained with a single-component com-
pact source. A change in the slope of ∆γ′ ∼ 0.15, which is
the typical scatter in lens galaxy slopes, leads to a ∼ 15%
change in D∆t, undermining the use of two-image sys-
tems for accurate cosmological studies. Systems with two-
component sources can be used to constrain the slope and
derive useful cosmological constraints, but the relative sepa-
ration between the images of the two components need to be
measured with mas precision, which is difficult in practise.
We use simulated HST images to test the usefulness of two-
image systems with spatially extended arcs of the lensed
AGN host galaxy. By simultaneously modelling the AGN
light contribution, the lens mass profile, and the extended
AGN host surface brightness distribution, we find that the
relative thickness of the arcs accurately constrains the lens
mass distribution and results in robust recovery of D∆t to a
few percent. By establishing that two-image systems are no
longer hindered by the radial profile slope degeneracy, the
sample of useful time-delay lenses is enlarged by a factor of
∼6 which will provide substantial advances for cosmological
studies.
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