Unveiling the nature of the unidentified gamma-ray sources II: radio, infrared and optical counterparts of the gamma-ray blazar candidates

F. Massaro ${ }^{1}$, R. D'Abrusco ${ }^{2}$, A. Paggi ${ }^{2}$, N. Masetti ${ }^{3}$, M. Giroletti ${ }^{4}$, G. Tosti ${ }^{5,6}$, Howard A. Smith ${ }^{2}$, \& S. Funk ${ }^{1}$.

Abstract

A significant fraction ($\sim 30 \%$) of the high-energy gamma-ray sources listed in the second Fermi LAT catalog (2FGL) are still of unknown origin, being not yet associated with counterparts at low energies. We recently developed a new association method to identify if there is a γ-ray blazar candidate within the positional uncertainty region of a generic 2FGL source. This method is entirely based on the discovery that blazars have distinct infrared colors with respect to other extragalactic sources found thanks, to the Wide-field Infrared Survey Explorer (WISE) all-sky observations. Several improvements have been also performed to increase the efficiency of our method in recognizing γ-ray blazar candidates. In this paper we applied our method to two different samples, the first constituted by the unidentified γ-ray sources (UGSs) while the second by the active galaxies of uncertain type (AGUs), both listed in the 2FGL. We present a catalog of IR counterparts for $\sim 20 \%$ of the UGSs investigated. Then, we also compare our results on the associated sources with those present in literature. In addition, we illustrate the extensive archival research carried out to identify

[^0]the radio, infrared, optical and X-ray counterparts of the WISE selected, γ-ray blazar candidates. Finally, we discuss the future developments of our method based on ground-based follow-up observations.

Subject headings: galaxies: active - galaxies: BL Lacertae objects - radiation mechanisms: non-thermal

1. Introduction

Unveiling the nature of the Unidentified Gamma-ray Sources (UGSs) (e.g., Abdo et al. 2009) is one of the biggest challenges in contemporary gamma-ray astronomy. Since the era of the Compton Gamma-ray Observatory many γ-ray objects have not been conclusively associated with counterparts at other frequencies (Hartman et al. 1999), although various classes have been investigated to understand whether they are likely to be detected at γ-ray energies or not (e.g., Thompson 2008).

According to the Second Fermi Large Area Telescope (LAT) catalog (2FGL; Nolan et al. 2012), $\sim 1 / 3$ of the γ-ray detected sources are still unassociated with their low energy counterparts. Moreover a large fraction of the UGSs are likely to be of blazars, the rarest class of radio loud active galactic nuclei, because their emission dominates the γ-ray sky (e.g., Mukherjee et al. 1997; Abdo et al. 2010). However, due to the incompleteness of the current radio and X-ray surveys on the basis of the usual γ-ray association method is not always possible to find the blazar-like counterpart of an UGS. Additional attempts have also been recently developed to associate or to characterize the UGSs using either pointed Swift observations (e.g., Mirabal 2009; Mirabal \& Halpern 2009) or statistical approaches (e.g. Mirabal et al. 2010; Ackermann et al. 2012).

Blazar emission is characterized by high and variable polarization, apparent superluminal motions, and high luminosities, generally combined with a flat radio spectrum that steepens toward the infrared-optical bands and together with rapid flux variability from the radio to γ-rays (e.g., Urry \& Padovani 1995). Their spectral energy distributions show two main broad components: a low-energy one peaking in the range from the IR to the X-ray band, and a high-energy component peaking from MeV to TeV energies (e.g., Giommi et al. 2005).

Blazars are divided in two main classes: the low luminosity class constituted by the BL Lac objects and characterized by featureless optical spectra, and the second class composed of flat-spectrum radio quasars that show optical emission lines, typical of quasar spectra (Stickel et al. 1991; Stoke et al. 1991). In the following we label the BL Lac objects as BZBs and the flat-spectrum radio quasars as BZQs, following the nomenclature of the Multifre-
quency Catalogue of Blazars (ROMA-BZCAT, Massaro et al. 2009; Massaro et al. 2010; Massaro et al. 2011a).

On the basis of the preliminary data release of the Wide-field Infrared Survey Explorer (WISE, see Wright et al. 2010, for more details) ${ }^{1}$, we discovered that in the 3 -dimensional IR color space γ-ray emitting blazars lie in a distinct region, well separated from other extragalactic sources whose IR emission is dominated by thermal radiation (e.g., Massaro et al. 2011b; D'Abrusco et al. 2012).

According to D'Abrusco et al. (2013) we refer to the 3-dimensional region occupied by γ-ray emitting blazars as the locus, to its 2-dimensional projection in the [3.4]-[4.6][12] $\mu \mathrm{m}$ color-color diagram as the WISE Gamma-ray Strip.

This WISE analysis led to the development of a new association method to recognize γ ray blazar candidates for the unidentified γ-ray sources listed in the 2FGL (Massaro et al. 2012a; Massaro et al. 2012b), as well as in the $4^{\text {th }}$ INTEGRAL catalog (Massaro et al. 2012c).

In the present paper we adopt several improvements recently made on the association procedure and we use a more conservative approach (see D'Abrusco et al. 2013, for more details), mostly based on the WISE full archive ${ }^{2}$, available since March 2012 (see also Cutri et al. 2012). We successfully tested the association procedure on all the blazars listed in the Second Fermi LAT Catalog of active galactic nuclei (2LAC; Ackermann et al. 2011) and in the 2FGL catalogs, to estimate its efficiency and its completeness.

In this paper we apply this method to the UGSs and to sample of the active galactic nuclei of uncertain type (AGUs) that have still unclear classification (see 2FGL and also Section 2.2 for specific definition of the class), both listed in the 2FGL. We also performed an extensive literature search looking for multifrequency information on the γ-ray blazar candidates selected on the basis of their WISE colors to confirm their nature. As we show below this research is crucial to determine whether or not there are classes of Galactic and extragalactic sources that, having IR colors similar to those of blazars, could be a contaminants of the association method.

The paper is organized as follows: in Section 2 we describe the sample selected. In Section 3 we illustrate the basic details of the association procedure and highlight the improvements with respect to the previous version. In Section 4 we describe the results obtained. Section 5 is dedicated to the correlating our results with several databases

[^1]at radio, infrared, optical and X-ray frequencies to characterize the multifrequency behavior of the γ-ray blazar candidates. We then compare our results on the associated sources with those based on statistical methods developed by Ackermann et al. (2012) in Section 6. Finally, Section 7 is devoted to our conclusions.

The most frequent acronyms used in the paper are listed in Table 1.

2. Sample selection

2.1. The unidentified gamma-ray sources

Our primary sample of UGSs consists of all the sources for which no counterpart was assigned at low energies in the 2FGL or in the 2LAC (Nolan et al. 2012; Ackermann et al. 2011, respectively), for a total of 590γ-ray objects.

We considered and analyzed independently two subsamples of UGSs, distinguishing the 299 Fermi sources without any γ-ray analysis flags from the other 291 objects that have a warning in their γ-ray detection. This distinction has been performed because future releases of the Fermi catalogs based on improvements of the Fermi response matrices and revised analyses, could make their detection more reliable, as occurred for a handful of sources flagged in the first Fermi LAT catalog (1FGL, Abdo et al. 2010; Nolan et al. 2012).

2.2. The active galaxies of uncertain type

According to the definition of the 2LAC and 2FGL catalogs, active galaxies of uncertain type (AGUs) are γ-ray emitting sources with at least one of the following criteria:

1. they do not have a good optical spectrum available or with an uncertain classification, as for example, sources classified as blazars of uncertain type (BZU) in the ROMABZCAT;
2. they have been selected as candidate counterparts on the basis of the $\log N-\log S$ and the Likelihood Ratio methods described in the 2LAC and applied to several radio catalogs: including the AT20G (Murphy et al. 2010), CRATES (Healey et al. 2007), or CLASS (Falco et al. 1998) (see Ackermann et al. 2011, for details);
3. they are coincident with a radio and a X-ray source selected by the Likelihood Ratio
method.

The number of AGUs in the 2FGL, that have been analyzed is 210; excluding γ-ray sources with analysis flags (defined according to both the 2FGL or the 2LAC descriptions).

3. The Association Procedure

The complete description of our association procedure together with the estimates of its efficiency and its completeness can be found in D'Abrusco et al. (2013) where we discuss a new and improved version of the association method based on a 3-dimensional parametrization of the locus occupied by γ-ray emitting blazars with WISE counterparts. Here we provide only an overview. We note that the results of the improved method are in agreement with those of the previous parametrization, thus superseding the previous procedure (Massaro et al. 2011b; Massaro et al. 2012a; Massaro et al. 2012b).

The new association procedure was built to improve the efficiency of recognizing γ-ray blazar candidates, to decrease the number of possible contaminants and, at the same time, to determine if a selected γ-ray blazar counterpart is more likely to be a BZB or a BZQ. The main differences between the two association methods reside in the parameter space where the locus has been defined (IR color space for the old version and principal component space for the new one) and in the assignment criteria of the classes for the γ-ray blazar candidates (see D'Abrusco et al. 2013). The new method also takes into account of the correction for Galactic extinction for all the WISE magnitudes ${ }^{3}$ according to the Draine (2003) relation. As shown in D'Abrusco et al. (2013), this correction affects only marginally the [3.4]-[4.6] color, in particular at low Galactic latitudes (i.e., $|b|<15 \mathrm{deg}$).

The principal component analysis is designed to reduce the dimensionality of a dataset consisting of usually large number of correlated variables while retaining as much as possible of the variance present in the data in the smallest possible number of orthogonal parameters. This is achieved by transforming the observed parameter into a new set of variables, the principal components. They are ordered so that the first accounts the largest possible variance of the original dataset and the others in turn have the highest variance possible under the constraint of being orthogonal to the preceding ones (e.g., Pearson 1901; Jolliffe 2002). Thus our new parametrization of the locus in the PC space, where

[^2]the maximum variance is contained along only one axis, is simpler than any other possible representation in the IR color space.

For each γ-ray source we defined a search region: a circular region of radius θ_{95} equal to the semi-major axis of the ellipse corresponding to the positional uncertainty region of the Fermi source at 95% level of confidence and centered at the 2FGL position of the γ-ray source (e.g., Nolan et al. 2012). We selected and calculated the IR colors for the WISE sources within the search region detected in all four bands.

To compare the infrared colors of generic infrared sources that lie in the search region with those of the γ-ray emitting ones, we developed a 3 -dimensional parametrization of the locus in the parameter space of its principal components. The locus was described as a cylinder in the space of the principal components. This choice simplifies and improves the previous description built using irregular quadrilaterals on all the color-color diagrams (Massaro et al. 2012a). Moreover, the cylinder axis is aligned along the first PC axis, which accounts for the larger fraction possible of the variance of the dataset in the IR color space, is the simplest parametrization available.

We then assign to each source score value s that is a proxy of the distance between the locus surface and the source location in the 3 -dimensional parameter space of the principal components. The values of s allow to to evaluate if the IR colors of a generic source are consistent with those of the known γ-ray emitting blazars. They were weighted taking into account of all the color errors and they are also normalized between 0 and 1 . We define three classes (i.e., A, B, C) of reliability for the γ-ray blazar candidates. A generic source is assigned to class A, class B or class C when its score his higher than the threshold values defined by the $90 \%, 60 \%$ and 30% percentiles of the score distributions of all the γ-ray blazars that constitute the locus, respectively. We consider reliable γ-ray blazar candidates only those having the score higher than 70% of their distributions. Thus sources with high values of the score (e.g., >0.8) are very likely to be blazars and belong to class A, while sources with score values ~ 0.5 belong to class C and are less probable γ-ray blazars. IR sources that having score values null or extremely low (e.g., ~ 0.1) were marked as outliers and were not considered as γ-ray blazar candidates (see D'Abrusco et al. 2013, for an extensive explanation on the class definitions).

The locus was divided in subregions on the basis of the space density of BZBs and BZQs in the parameter space of its principal components, thereby permitting us to determine if a selected γ-ray blazar candidate is more likely to be a BZB or a BZQ.

Finally, we ranked all the WISE sources within each search region and selected as best candidate counterpart for the UGS the one with the highest class; when
more than one candidate of the same class was present, we chose the one closest to the γ-ray position as best one.

4. Results

4.1. The unidentified gamma-ray sources

For the UGSs without γ-ray analysis flags we found 75γ-ray blazar candidates out of the 299 objects analyzed: 8 sources have 2 candidates, 1 source has 3 , and 1 source has 4 candidates, while 52 associations are unique. We found 2γ-ray blazar candidates of class A, 12 of class B and 61 of class C, respectively, in the whole sample of 75 sources; 32 of them are classified as BZB type, 29 as BZQ type and the remaining 14 are still uncertain (see D'Abrusco et al. 2013, for more details). All our γ-ray blazar candidates have a signal-to-noise ratio systematically larger than 10.9 in the WISE band centered at $12 \mu \mathrm{~m}$ and larger than ~ 20 for the $3.4 \mu \mathrm{~m}$ and $4.6 \mu \mathrm{~m}$ nominal bands. For all these 75 sources we performed a cross correlation with the major radio, infrared, optical, and X-ray surveys (see Section 5).

In the sample of UGSs with γ-ray analysis flags we found 71γ-ray blazar candidates out of the 291 objects investigated: 6 sources have 2 candidates, 4 sources have 3 candidates, 2 sources have 4 and 6 candidates, respectively, while 35 associations are unique. We found 8γ-ray blazar candidates of class A, 20 of class B and 43 of class C, respectively, in the whole sample of 71 sources; 36 of them are classified as BZB type, 22 as BZQ type and the remaining 13 are still uncertain (see D'Abrusco et al. 2013). We also performed the cross correlation with the major radio, infrared, optical, and X-ray databes for these 71 UGSs listed in the Section 5.

4.2. The active galaxies of uncertain type

For the AGU sample we found 125γ-ray blazar candidates out of the 210 sources analyzed: 10 sources have 2 candidates within their search region, while the remaining 105 candidates have unique associations. There are 10γ-ray blazar candidates of class A, 39 of class B and 76 of class C, respectively, in the whole sample of 125 sources; 52 out of 125 are classified as BZB type on the basis of the IR colors of blazars of similar type, 39 as BZQ type and the remaining 34 are still uncertain (see D'Abrusco et al. 2013, for more details). Eighty-seven sources out of 125 associations correspond to those reported in the 2 LAC or in the 2 FGL. All our γ-ray blazar candidates have a signal-to-noise ratio
systematically larger than 10.9 in the WISE band centered at $12 \mu \mathrm{~m}$ and larger than ~ 20 for the $3.4 \mu \mathrm{~m}$ and $4.6 \mu \mathrm{~m}$ nominal bands. In these case we did not provide any additional radio or X-ray information since it is already present in both the 2LAC and the 2FGL, while a multifrequency investigation has been performed for the remaining 38 . Additional IR information for all the AGUs associated will be discussed in Section 5.2.

4.3. Comparison with previous associations

The fraction of sources for which we have been able to find a γ-ray blazar counterpart is about $\sim \mathbf{1 5 - 2 0} \%$ lower than presented in previous analyses of UGSs (Massaro et al. 2012b) and AGUs (Massaro et al. 2012a), respectively. This difference occurs because a more conservative approach has been adopted in the new parametrization of the locus. We not limit blazar candidates to those having the scores higher than 30% of the entire distribution of γ-ray emitting blazars (D'Abrusco et al. 2013), rather than 10% as in the previous analysis. These choices made our association method more efficient, so decreasing the number of WISE sources with IR colors similar to those of the γ-ray blazar population. In addition, we now use a search region of radius θ_{95} instead of that at 99.9% level of confidence, to be consistent with the associations of the 2FGL and the 2LAC catalogs. All the sources listed in this work as γ-ray blazar candidates were also selected in our previous analysis based on WISE Preliminary data analysis (Massaro et al. 2012b).

We note that only three IR WISE sources have the "contamination and confusion" flag that might indicate a WISE spurious detection of an artifact in all bands (e.g., Cutri et al. 2012). It occurs for WISE J085238.73-575529.4 within the AGUs, WISE J084121.63-355505.9 in the UGS sample, and WISE J125357.07-583322.3 among the UGS with γ-ray analysis flags. The large majority (i.e., $\sim 90 \%$) of the WISE sources considered do not show any WISE analysis flags, with 10% clean in at least two IR bands.

Finally, we remark that several γ-ray pulsars have been identified since the release of the 2FGL where they were listed as UGSs. However, we tested these UGSs and we did not find any WISE blazar-like counterpart associable to them. Thus, in agreement with other gamma-ray pulsars listed in the the Public List of LAT-Detected Gamma-Ray Pulsars ${ }^{4}$.

[^3]
5. Correlation with existing databases

We searched in the following major radio,infrared, optical and X-ray surveys as well as in the NASA Extragalactic Database (NED) ${ }^{5}$ for possible counterparts within $3^{\prime \prime} .3$ of our γ-ray blazar candidates, selected with the WISE association method, to see if additional information could confirm their blazar-like nature. The angular separation of $3^{\prime \prime} .3$ from the WISE position was chosen on the basis of the statistical analysis previously performed to assign a WISE counterpart to each ROMA-BZCAT source (D'Abrusco et al. 2013) developed following the approach described in Maselli et al. (2012a, 2012b). In particular, we found that for all radii larger than $3^{\prime \prime} .3$ the increase in the number of IR sources positionally associated with ROMA-BZCAT blazars becomes systematically lower than the increase in number of random associations. This choice of radius results in zero multiple matches.

For the radio counterparts we used the NRAO VLA Sky Survey (NVSS; Condon et al. 1998, - N), the VLA Faint Images of the Radio Sky at Twenty-Centimeters (FIRST; Becker et al. 1995; White et al. 1997, - F), the Sydney University Molonglo Sky Survey (SUMSS; Mauch et al. 2003, - S) and the Australia Telescope 20 GHz Survey (AT20G; Murphy et al. 2010, - A); for the infrared we used the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006, - M) since each WISE source is already associated with the closest 2MASS source by the default catalog (see Cutri et al. 2012, for more details). We also marked sources that are variable when having the variability flag higher than 5 in at least one band as in the WISE all-sky catalog (Cutri et al. 2012). Then, we also searched for optical counterparts, with possible spectra available, in the Sloan Digital Sky Survey (SDSS; e.g. Adelman-McCarthy et al. 2008; Paris et al. 2012, - s), in the Six-degree-Field Galaxy Redshift Survey (6dFGS; Jones et al. 2004; Jones et al. 2009, - 6); while for the high energy we looked in the soft X-rays using the ROSAT all-sky survey (RASS; Voges et al. 1999, - X). A deeper X-ray analysis based on the pointed observations present in the XMM-Newton, Chandra, Swift and Suzaku archives will be performed in a forthcoming paper (Paggi et al. 2013). We also considered NED for additional information.

We also searched in the USNO-B Catalog (Monet et al. 2003) for the optical counterparts of our γ-ray blazar candidates within $3^{\prime \prime} .3$; this cross correlation will be useful to prepare future follow up observations and the complete list of sources together with their optical magnitudes is reported in Appendix.

In Table 2 we summarize all the multifrequency information for the UGS samples,

[^4]without and with the γ-ray analysis flags, respectively, while all the details are given in in Table 3 and Table 4. In Table 5 and Table 6 we report our findings the AGUs. In each table we report the 2 FGL source name, together with that of the WISE associated counterpart and a generic one from the surveys cited above. We also report the IR WISE colors, the type and the class of each candidate derived by our association procedure, the notes regarding the multifrequency archival analysis, as the optical classification, and, if known, the redshift. In Table 5 and Table 6, we also indicate if the selected source is the same associated by the 2FGL and the 2LAC. Figure 1 shows the 3 -dimensional color plot comparing the IR colors of the selected γ-ray blazar candidates with the blazar population that constitutes the locus.

Fig. 1.- The 3D representation of the locus (known γ-ray blazars are indicated in yellow) in comparison with the selected γ-ray blazar candidates: UGSs (red) and AGUs (black).

5.1. Radio counterparts

In the UGS sample of sources without γ-ray analysis flags, 19 have a counterpart in the NVSS; 7 in the SUMSS and 6 only in the FIRST (5 in common with the previous 19 in the NVSS). In the list of UGSs with γ-ray analysis flags, we found only 4 sources having a radio counterpart in the NVSS, one also detected in the FIRST, but none in the SUMSS

Table 1: List of most frequent acronyms.

Name	Acronym
Multifrequency Catalog of blazars	ROMA-BZCAT
First Fermi Large Area Telescope catalog	1FGL
Second Fermi Large Area Telescope Catalog	2FGL
Second Fermi LAT Catalog of Active Galaxies	2LAC
BL Lac object	BZB
Flat Spectrum Radio Quasar	BZQ
Blazar of Uncertain type	BZU
Unidentified Gamma-ray Source	UGS
Active Galactic nucleus of Uncertain type	AGUs

Table 2: Number of counterparts in the radio, infrared, optical and X-rays surveys for the unidentified gamma-ray sources.

survey	band	counterparts/total UGS (no γ-flags)	counterparts/total UGSs $(\gamma$-flags $)$
NVSS	radio	$19 / 75$	$4 / 71$
FIRST	radio	$6 / 75$	$1 / 71$
SUMSS	radio	$7 / 75$	$0 / 71$
2MASS	infrared	$43 / 75$	$47 / 71$
6dFGS	optical	$1 / 75$	$1 / 71$
SDSS	optical	$13 / 75$	$1 / 71$
ROSAT	X-ray	$3 / 75$	$1 / 71$

or in the AT20G catalogs. In Figure 2 we show the archival NVSS radio image of WISE J134706.89-295842.3, the candidate low-energy counterpart of 2FGLJ1347.0-2956.

Within the AGU sample, 12 sources out the 38 new associations proposed have unique counterparts in one of the considered radio survey. Two of them: BZUJ1239+0730 and BZUJ1351-2912, were also classified as Blazars of uncertain type in the ROMA-BZCAT (e.g., Massaro et al. 2011a), while the remaining one are divided as 6 in the NVSS, 1 in the FIRST, 2 in the SUMSS and 1 in the AT20G.

5.2. Infrared counterparts

In the UGS sample of sources without γ-ray analysis flags, there are 43 WISE candidates with counterparts in the 2MASS catalog: 10 out of 75 are variable infrared sources according to the same criterion previously described.

The large majority (47 out of 71) of the UGSs, in the sample with γ-ray analysis flags, have counterparts in the 2MASS catalog and 15 out of 71 are variable according to the WISE all-sky catalog.

Of the 125 WISE candidates counterparts of the AGUs, 59 are detected in 2MASS, as generally expected for blazars (e.g., Chen et al. 2005). In addition, 25γ-ray blazar candidates out of 125 have the variability flag in the WISE catalog with a value higher than 5 in at least one band, suggesting that their IR emission is not likely arising from dust.

5.3. Optical counterparts

In the sample of UGSs without γ-ray analysis flags, 13 sources have been found with a counterpart in the SDSS, 4 with spectroscopic information (Table 3). Among these 4 sources, two are broad line quasars, promising to be blazar-like sources of BZQ type. One is a Seyfert galaxy: SDSS J015910.05+010514.5 is a contaminant of our association procedure (although our method suggests a better candidate, for 2FGLJ0158.4+0107). The remaining one, NVSS J161543+471126 shows the optical spectrum similar to that of an X-ray Bright, Optically Normal Galaxy (XBONG Comastri et al. 2002). The source SDSS J015836.23+010632.0, another candidate counterpart of 2FGLJ0158.4+0107 is described as a quasar at redshift 0.723 in Schneider et al. (2007) and Hu et al. (2008). In addition to these 4 sources, spectroscopic information is also available for WISE J230010.16-360159.9 a possible low-energy counterpart of 2FGLJ2300.0-3553, classified as quasar according to Jones et al. (2009). A quasar-like spectrum is then available for SDSS J161434.67+470420.0 candidate counterpart

Fig. 2.- The archival NVSS radio observations (15^{\prime} radius) of the γ-ray blazars candidates: WISE J084121.63-355505.9 (left) and WISE J134042.02-041006.8 (right), associated with the Fermi sources 2FGLJ0841.3-3556 and 2FGLJ1340.5-0412, respectively. The black crosses point to the radio counterpart of the γ-ray blazar candidates selected according to our association procedure. They are a clear examples of core dominated radio sources similar to blazars in the radio band also at 1.4 GHz . Contour levels are labeled together with the NVSS peak flux in Jy/beam.
of 2FGLJ1614.8+4703.
The search for the optical counterparts for UGSs with γ-ray analysis flags was less successful. Only one source has an optical, counterpart: WISE J131552.98-073301.9, associated with 2FGLJ1315.6-0730. This source has a counterpart in both the NVSS and in the FIRST radio survey. According to Bauer et al. (2009), this source is also variable in the optical and it was therefore selected as a blazar candidate. In Figure 3 we show the archival SDSS spectrum of the WISE J161434.67+470420.1 candidate as the low energy counterpart of 2FGLJ1614.8 +4703 .

Fig. 3.- The archival SDSS spectroscopic observation of the γ-ray blazars candidate WISE J161434.67+470420.1 associated with the Fermi source 2FGLJ1614.8+4703. This optical spectrum indicates toward a BZQ classification of WISE J161434.67+470420.1.

We found only 1γ-ray blazar candidate in the AGU sample with a counterpart in the SDSS, while 4 of them have a 6 dFGS source lying $3^{\prime \prime} .3$ from their WISE position. In the case of WISE J033200.72-111456.1 associated with 2FGLJ0332.5-1118, we also found that its 6dFGS optical spectrum appear to be featureless suggesting a BL Lac classification (Jones et al. 2009). The same information has been found for WISE J001920.58-815251.3 associated with 2FGLJ0018.8-8154, for which the noisy, featureless 6dFGS optical spectrum points to a BL Lac classification (Jones et al. 2009). 2FGLJ0823.0+4041 and 2FGLJ0858.11952 appear to be associated, both by the 2FGL catalog and our method to broad line quasars. WISE J085805.36-195036.8 associated with 2FGLJ0858.1-1952 is also classified as a quasar at redshift 0.6597 by White et al. (1988). The archival 6 dFGS spectrum of WISE J001920.58-815251.3 the candidate low energy counterpart of 2FGLJ0018.8-8154 is available on NED; the absence of features allows us to classify the source as a BZB.

5.4. X-ray counterparts

In the UGS sample without γ-ray analysis flags, only 3 objects have X-ray counterparts in the ROSAT all-sky catalog: the Seyfert 1 galaxy SDSS J015910.05+010514.5, the quasar SDSS J161434.67+470420.0 (both described in Section 5.3) and WISE J164619.95+435631.0 associated with 2 FGLJ1647.0+4351. In addition, SDSS J161434.67+470420.0 is also detected in the Chandra source catalog: CXO J161434.7+470419 as occurs NVSS J161543+471126, alias CXO J161541.2+471111 (Evans et al. 2010).

In the UGS list of sources with γ-ray analysis flags, there is only a single object detected in the ROSAT all-sky survey, namely WISE J043947.48+260140.5 uniquely associated with the Fermi source 2FGLJ0440.5+2554c and with a X-ray counterpart also in the Chandra source catalog CXO J043947.5+260140 (Evans et al. 2010). In addition, WISE J060659.94061641.5 the unique counterpart of 2FGLJ0607.5-0618c, has the Chandra counterpart CXO J060700.1-061641 (Evans et al. 2010).

Finally, in the AGU sample of 38 new γ-ray blazar candidates we found only 1 source in the ROSAT catalog, namely WISE J181037.99+533501.5, associated with the X-ray object 1RXS J181038.5 +533458 and having a radio counterpart in the NVSS. According to NED, WISE J182352.33+431452.5, associated with 2FGLJ1823.8+4312, is also detected in the X-rays by Chandra: CXO J182352.2+431452 (Massaro et al. 2012d).

6. Comparison with other methods

Among the whole sample of 590 UGSs analyzed, 299 without and 291 with γ-ray analysis flag there are 28 sources having at least one γ-ray blazar candidate that were also unidentified in the First Fermi γ-ray LAT catalog (1FGL; Abdo et al. 2010) and they were analyzed using two different statistical approaches: the Classification Tree and the Logistic regression analyses (see Ackermann et al. 2012, and references therein). For these 28 UGSs, analyzed on the basis of the above statistical approaches, we performed a comparison with our results to verify if the 2FGL sources that we associated with a γ-ray blazar candidates have been also classified as AGNs.

By comparing the results of our association method with those in Ackermann et al. (2012), we found that 23 out of 28 UGSs that we associate with γ-ray blazar candidates are classified as AGNs, all of them with a probability higher than 66% and 12 of them higher than 80\% (see Ackermann et al. 2012). Among the remaining 5 sources, 4 have been classified as pulsars, with a very low probability with respect to the whole sample, systematically lower than 56%. In addition, there is one with an ambiguous classification. Consequently, we

Table 3: Unidentified Gamma-ray Sources without γ-ray analysis flags.

$\begin{aligned} & \hline \text { 2FGL } \\ & \text { name } \end{aligned}$	$\begin{aligned} & \text { WISE } \\ & \text { name } \end{aligned}$	other name	$\begin{gathered} {[3.4]-[4.6]} \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} {[4.6]-[12]} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} {[12]-[22]} \\ \mathrm{mag} \end{gathered}$	type	class	notes	z
J0039.1+4331	J003858.27+432947.0		0.98(0.04)	2.36(0.05)	2.30 (0.15)	BZB	C	M	?
J0116.6-6153	J011619.59-615343.5	SUMSS J011619-615343	0.85(0.04)	2.34(0.06)	1.85(0.25)	BZB	C	S	?
J0133.4-4408	J013321.36-441319.4		1.12(0.05)	3.20 (0.06)	2.62(0.15)	BZQ	C		?
	J013306.35-441421.3	SUMSS J013306-441422	0.83(0.03)	$2.25(0.05)$	1.92(0.22)	BZB	C	S	?
J0143.6-5844	J014347.39-584551.3	SUMSS J014347-584550	0.68(0.03)	1.93(0.06)	1.89(0.29)	BZB	C	S, M	?
J0158.4+0107	J015836.25+010632.1	SDSS J015836.23+010632.0	$1.05(0.03)$	2.50 (0.05)	2.33(0.11)	UND	C	M,s, QSO	$0.723 ?$
	J015757.45+011547.8		1.06(0.04)	2.52(0.06)	2.18(0.18)	UND	C		?
	J015910.05+010514.7	SDSS J015910.05+010514.5	0.91(0.03)	2.47(0.03)	2.48(0.05)	UND	C	M,s,X,Sy1	0.217
J0158.6+8558	J015550.16+854745.1		1.12(0.04)	2.50(0.06)	2.23(0.18)	UND	C		?
	J014935.30+860115.3		0.68(0.03)	2.32(0.05)	2.00(0.17)	BZB	C	M	?
J0227.7+2249	J022744.35+224834.3	NVSS J022744+224834	0.93(0.03)	2.58(0.03)	2.09(0.08)	BZB	B	N, M, v	?
J0316.1-6434	J031614.31-643731.4	SUMSS J031614-643732	0.74(0.03)	2.09(0.06)	1.84(0.26)	BZB	C	S, M	?
J0332.1+6309	J033153.90+630814.1	NVSS J033153+630814	0.77(0.03)	2.38(0.04)	1.96(0.11)	BZB	B	N, M	?
J0409.8-0357	J040946.57-040003.4	NVSS J040946-040003	0.88(0.03)	2.36(0.04)	1.94(0.12)	BZB	B	N, M	?
J0414.9-0855	J041457.01-085652.0	APMUKS 041232.66-090420.3	$1.00(0.04)$	2.63(0.08)	2.31(0.23)	UND	C		
J0416.0-4355	J041605.81-435514.6	SUMSS J041605-435516	1.11(0.03)	2.89(0.04)	2.44(0.08)	BZQ	B	S, M	?
J0431.5+3622	J043103.34+362158.7		1.14(0.06)	2.72(0.11)	2.44(0.26)	BZQ	C		?
J0555.9-4348	J055531.59-435030.7		1.36(0.05)	3.14(0.06)	2.39(0.18)	BZQ	C		?
	J055618.74-435146.1	SUMSS J055618-435146	0.90(0.03)	2.49(0.04)	2.14(0.13)	BZB	B	S,M	?
J0602.7-4011	J060237.10-401453.2		0.96(0.03)	2.47(0.03)	2.35(0.06)	UND	B	M	?
J0644.6+6034	J064459.38+603131.7		0.97(0.04)	2.59(0.06)	2.50(0.15)	UND	C	M	?
J0713.5-0952	J071223.28-094536.3		1.16(0.04)	3.12(0.05)	2.27 (0.08)	BZQ	C	M	?
J0723.9+2901	J072354.83+285929.9	NVSS J072354+285930	1.14(0.05)	2.89(0.05)	2.40(0.11)	BZQ	C	N,F	?
J0744.1-2523	J074401.10-252205.9		$1.09(0.04)$	$2.57(0.03)$	2.69(0.05)	BZQ	C		?
	J074402.19-252146.0		1.00(0.03)	2.00(0.03)	2.16(0.03)	BZB	B	M	?
J0746.0-0222	J074627.03-022549.3	NVSS J074627-022549	0.67(0.04)	2.09(0.07)	1.99(0.30)	BZB	C	N, M	?
J0756.3-6433	J075624.60-643030.6		0.87(0.03)	2.21(0.06)	2.11(0.18)	BZB	C	M, v	?
J0807.0-6511	J080729.66-650910.3		1.12(0.05)	3.08(0.07)	2.46(0.17)	BZQ	C		?
J0838.8-2828	J083842.77-282830.9		1.03(0.05)	2.73(0.09)	2.24(0.27)	UND	C		?
J0841.3-3556	J084121.63-355505.9	NVSS J084121-355506	0.79(0.03)	2.23(0.03)	1.77(0.11)	BZB	B	N, M	?
J0844.9+6214	J084406.81+621458.6	SDSS J084406.83+621458.5	0.68(0.03)	2.07(0.05)	2.23(0.14)	BZB	C	M, s	?
J0855.4-4625	J085548.43-462244.3		1.19(0.03)	2.32(0.03)	2.16(0.04)	UND	C		?
J0858.3-4333	J085839.22-432642.7		$0.74(0.03)$	1.82(0.03)	$2.29(0.04)$	BZB	C	M	?
J0900.9+6736	J090121.65+673955.8		0.94(0.05)	2.84(0.08)	2.16(0.26)	UND	C	M	?
J0955.0-3949	J095458.30-394655.0		0.77(0.04)	2.28(0.05)	2.03(0.18)	BZB	C	M	?
J1013.6+3434	J101256.54+343648.8	SDSS J101256.54+343648.7	$0.89(0.04)$	2.62(0.07)	2.09(0.26)	BZB	C	M,s	?
J1016.1+5600	J101544.44+555100.7	NVSS J101544+555100	$1.05(0.06)$	3.08(0.09)	$2.57(0.25)$	BZQ	C	N,F,s	?
J1029.5-2022	J102946.66-201812.6		1.26(0.06)	2.88(0.10)	2.59(0.26)	BZQ	C	M	?
J1032.9-8401	J103015.35-840308.7	SUMSS J103014-840307	0.96(0.04)	$2.59(0.05)$	2.07(0.15)	BZB	C	S,v	?
J1038.2-2423	J103754.92-242544.5		1.22(0.04)	3.26(0.04)	2.58(0.10)	BZQ	C	M	?
J1207.3-5055	J120750.50-510314.9		$1.05(0.05)$	2.97(0.08)	2.55(0.19)	BZQ	C		?
	J120746.43-505948.6		1.14(0.05)	2.87(0.07)	2.53(0.15)	BZQ	C		?
J1254.2-2203	J125422.47-220413.6	NVSS J125422-220413	0.66(0.04)	2.31(0.08)	1.77 (0.36)	BZB	C	N, M, v	?
J1259.8-3749	J125949.80-374858.1	NVSS J125949-374856	0.70(0.04)	2.10 (0.08)	1.99 (0.33)	BZB	C	N,S,M,v	?
J1340.5-0412	J134042.02-041006.8	NVSS J134042-041006	0.71(0.04)	2.11(0.08)	1.85(0.41)	BZB	C	N, v	?
J1346.0-2605	J134621.08-255642.3		1.14(0.06)	2.94(0.10)	2.58(0.26)	BZQ	C		?
J1347.0-2956	J134706.89-295842.3	NVSS J134706-295840	0.78(0.03)	2.10 (0.06)	1.91(0.23)	BZB	C	N,S,M, v	?
J1404.0-5244	J140313.11-524839.5		1.22(0.05)	2.97(0.07)	2.63(0.15)	BZQ	C		?
J1517.2+3645	J151649.26+365022.9	NVSS J151649+365023	0.95(0.03)	2.63(0.04)	2.07(0.12)	BZB	C	N,F,s, v	?
J1612.0+1403	J161118.10+140328.9	SDSS J161118.10+140328.7	1.06(0.06)	3.15(0.09)	2.55(0.22)	BZQ	C	s	?
J1614.8+4703	J161450.96+465953.7	SDSS J161450.91+465953.6	1.20 (0.04)	2.78(0.06)	2.54(0.16)	BZQ	C	s	?
	J161513.04+471355.2	SDSS J161513.04+471355.4	1.17(0.05)	2.86(0.10)	2.61(0.24)	BZQ	C	s	?
	J161434.67+470420.1	SDSS J161434.67+470420.0	1.08(0.03)	3.12(0.03)	2.19(0.04)	BZQ	C	F,M,s, $\mathrm{X}, \mathrm{x}, \mathrm{QSO}$	1.86
	J161541.22+471111.8	NVSS J161543+471126	0.74(0.03)	2.28(0.04)	2.28(0.09)	BZB	C	$\mathrm{N}, \mathrm{F}, \mathrm{M}, \mathrm{s}, \mathrm{x}, \mathrm{XB}$?	0.199
J1622.8-0314	J162225.35-031439.6		1.10 (0.06)	3.19(0.09)	2.67(0.18)	BZQ	C		?
J1627.8+3219	J162800.40+322414.0	SDSS J162800.39+322413.9	1.13(0.05)	2.83(0.10)	2.62(0.24)	BZQ	C	S	?
J1647.0+4351	J164619.95+435631.0	NVSS J164619+435631	0.77(0.04)	2.09(0.09)	2.11(0.39)	BZB	C	N,F,s,X	?
J1730.6-0353	J173052.86-035247.1		1.16(0.04)	2.92(0.04)	2.28(0.07)	BZQ	B	M	?
J1742.5-3323	J174201.11-332607.9		0.64(0.05)	1.73(0.03)	1.60(0.03)	BZB	B	M	?
J1745.6+0203	J174507.82+015442.5	NVSS J174507+015445	1.26(0.03)	3.40 (0.03)	2.45 (0.03)	BZQ	A	N, M	?
	J174526.95+020532.7		0.94(0.03)	$2.57(0.03)$	2.27(0.07)	UND	B	M	?
J1759.2-3853	J175903.29-384739.5		0.58(0.04)	1.93(0.03)	1.50(0.02)	BZB	A	M	?
J1842.3+2740	J184201.25+274239.2		1.22(0.06)	3.03(0.08)	2.43(0.22)	BZQ	C		?
J1904.8-0705	J190444.57-070740.1		0.91(0.05)	2.79(0.09)	2.45(0.19)	UND	C	M	?
J1924.9-1036	J192501.63-104316.3		1.24(0.05)	$3.25(0.05)$	2.66(0.09)	BZQ	C	M	?
J2004.6+7004	J200503.41+700236.3		1.17(0.05)	2.95(0.07)	2.21(0.24)	BZQ	C		?
	J200506.02+700439.3	NVSS J200506+700440	0.70(0.03)	2.11(0.05)	2.11(0.18)	BZB	C	N, v	?
J2021.5+0632	J202154.66+062908.7		0.96(0.04)	2.67(0.06)	2.47 (0.10)	UND	C	M	?
	J202155.45+062913.7	NVSS J202155+062914	0.80(0.03)	2.09(0.05)	1.78(0.17)	BZB	C	N, M	?
J2114.1+5440	J211508.92+544815.7		1.11(0.03)	2.50 (0.03)	2.52(0.04)	BZQ	B	M	?
J2133.9+6645	J213349.21+664704.3	NVSS J213349+664706	0.67(0.04)	2.12(0.06)	1.86(0.22)	BZB	C	N, v	?
J2134.6-2130	J213430.18-213032.6	NVSS J213430-213032	0.77(0.04)	2.26(0.08)	1.78 (0.42)	BZB	C	N, M	?
J2300.0-3553	J230010.16-360159.9	6dF J2300101-360200	1.17(0.06)	3.36(0.08)	2.43(0.22)	BZQ	C	M, 6, QSO	2.357
J2319.3-3830	J232000.11-383511.4	MRSS 347-103293	1.12(0.05)	3.06(0.07)	2.60(0.16)	BZQ	C		?
J2358.4-1811	J235828.61-181526.6		$1.09(0.04)$	2.60 (0.06)	2.46(0.15)	UND	C	M	?

Col. (1) 2FGL name.
Col. (2) WISE name.
Col. (3) Other name if present in literature and in the following order: ROMA-BZCAT, NVSS, SDSS, AT20G, NED.
Cols. $(4,5,6)$ Infrared colors from the WISE all sky catalog corrected for Galactic extinciton. Values in parentheses are 1σ uncertainties.
Col. (7) Type of candidate according to our method: BZB - BZQ - UND (undetermined).
Col. (8) Class of candidate according to our method.
Col. (9) Notes: $\mathrm{N}=\mathrm{NVSS}, \mathrm{F}=\mathrm{FIRST}, \mathrm{S}=$ SUMSS, $\mathrm{A}=\mathrm{AT} 20 \mathrm{G}, \mathrm{M}=2 \mathrm{MASS}, \mathrm{s}=\mathrm{SDSS}$ dr9, $6=6 \mathrm{dFGS}, \mathrm{x}=$ XMM-Newton or Chandra, $\mathrm{X}=$ ROSAT; QSO $=$ quasar, $\mathrm{Sy}=$ Seyfert, LNR $=$ LINER, BL $=\mathrm{BL}$ Lac, XB $=$ X-ray Bright Optically Inactive Galaxies; $\mathrm{v}=\mathrm{variability} \mathrm{in} \mathrm{WISE}$ (var_flag >5 in at least one band).
Col. (10) Redshift: (?) = unknown, (number?) = uncertain.

Table 4: Unidentified Gamma-ray Sources with γ-ray analysis flags.

Col. (1) 2FGL name.
Col. (2) WISE name
Col. (3) Other name if present in literature and in the following order: ROMA-BZCAT, NVSS, SDSS, AT20G, NED.
Cols. $(4,5,6)$ Infrared colors from the WISE all sky catalog corrected for Galactic extinciton. Values in parentheses are 1σ uncertainties.
Col. (7) Type of candidate according to our method: BZB - BZQ - UND (undetermined).
Col. (8) Class of candidate according to our method.
Col. (9) Notes: $\mathrm{N}=\mathrm{NVSS}, \mathrm{F}=\mathrm{FIRST}, \mathrm{S}=$ SUMSS, A=AT20G, $\mathrm{M}=2 \mathrm{MASS}, \mathrm{s}=\mathrm{SDSS}$ dr9, $6=6 \mathrm{dFGS}$, $\mathrm{x}=$ XMM-Newton or Chandra, $\mathrm{X}=$ ROSAT; $\mathrm{QSO}=$ quasar, $\mathrm{Sy}=\mathrm{Seyfert}, \mathrm{LNR}=\mathrm{LINER}, \mathrm{BL}=\mathrm{BL} \mathrm{Lac} ; \mathrm{v}=$ variability in WISE (var_flag >5 in at least one band).
Col. (10) Redshift: (?) = unknown, (number?) = uncertain.

Table 5: Active Galaxies of Uncertain type ($00 \mathrm{~h}-12 \mathrm{~h}$).

$\begin{aligned} & \text { 2FGL } \\ & \text { name } \end{aligned}$	$\begin{aligned} & \text { WISE } \\ & \text { name } \end{aligned}$	other name	$\begin{gathered} {[3.4]-[4.6]} \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} {[4.6]-[12]} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} {[12]-[22]} \\ \mathrm{mag} \\ \hline \end{gathered}$	type	class	notes	z	$\begin{aligned} & \text { reassoc. } \\ & \text { flag } \end{aligned}$
J0009.1+5030	J000922.76+503028.8	NVSSJ000922+503028	0.72(0.03)	2.19(0.05)	$1.95(0.21)$	BZB	C	M, v	?	yes
J0018.8-8154	J001920.58-815251.3	SUMSSJ001921-815251	0.87(0.03)	2.30 (0.03)	1.98(0.07)	BZB	B	M, BL	?	yes
J0022.2-1853	J002209.25-185334.7	NVSSJ002209-185332	0.87(0.03)	2.27 (0.04)	1.83(0.12)	BZB	B	M	?	yes
J0022.3-5141	J002200.08-514024.2	SUMSSJ002159-514026	0.81(0.03)	2.23(0.04)	1.87(0.14)	BZB	B	M, v	?	yes
J0045.5+1218	J004543.33+121712.0	NVSSJ004543+121710	0.80(0.03)	2.23(0.05)	2.03(0.14)	BZB	B	M	?	yes
J0051.4-6241	J005116.62-624204.3	SUMSSJ005116-624205	0.69(0.04)	2.20(0.06)	1.75(0.32)	BZB	C	M	?	yes
J0059.7-5700	J005846.56-565911.4	SUMSSJ005846-565912	1.03(0.03)	2.92(0.04)	2.64(0.07)	BZQ	B	M	?	yes
J0110.3+6805	J011012.84+680541.1	BZUJ0110+6805	0.67(0.03)	2.12(0.03)	2.02(0.04)	BZB	A	M	?	yes
J0134.4+2636	J013428.19+263843.0	NVSSJ013427+263842	0.80(0.04)	2.00 (0.08)	1.93(0.33)	BZB	C	M, v	?	yes
J0156.4+3909	J015631.40+391430.9	NVSSJ015631+391431	1.13(0.04)	2.76(0.05)	2.47(0.11)	BZQ	C	M, v	?	yes
J0156.5-2419	J015606.46-241754.3		1.21(0.06)	2.93(0.11)	2.63(0.26)	BZQ	C		?	o
J0207.9-6832	J020750.91-683755.1	SUMSSJ020750-683755	1.03(0.04)	2.70 (0.05)	2.28(0.12)	UND	C		?	yes
J0210.7-5102	J021046.19-510101.8	BZUJ0210-5101	1.13(0.03)	2.97(0.03)	2.39(0.04)	BZQ	A	M	1.003	yes
J0238.2-3905	J023749.42-390050.3		0.92(0.03)	2.40 (0.04)	$2.36(0.08)$	BZB	C	M, 6	0.323?	no
	J023800.62-390504.6	NVSSJ023800-390504	0.68(0.04)	2.18(0.07)	1.91(0.27)	BZB	C	M	?	yes
J0248.6+8440	J024948.30+843556.9	NVSSJ024948+843556	0.92(0.03)	2.63(0.04)	2.13(0.09)	BZB	C	M	?	yes
J0253.4+3218	J025333.64+321720.8	NVSSJ025333+321721	1.12(0.04)	2.87(0.06)	2.46(0.16)	BZQ	C	M	?	yes
J0309.3-0743	J030943.23-074427.4	NVSSJ030943-074427	0.70(0.03)	2.15(0.06)	2.01(0.21)	BZB	C	M, v	?	yes
J0332.5-1118	J033200.72-111456.1	6dFJ0332006-111456	1.30 (0.03)	3.05(0.03)	2.63(0.04)	BZQ	A	M,6,BL	?	no
	J033223.25-111950.6	NVSSJ033223-111951	0.96(0.03)	2.58(0.03)	2.23(0.05)	UND	C	M, v	?	yes
J0333.7+2918	J033349.00+291631.6	NVSSJ033349+291631	0.77(0.03)	2.02(0.05)	2.18(0.13)	BZB	C	M	?	yes
J0334.3+6538	J033356.74+653656.0	NVSSJ033356+653656	0.75(0.03)	2.07(0.05)	1.73(0.17)	BZB	C	M	?	yes
J0424.3-5332	J042347.22-533026.6		$1.27(0.04)$	2.86(0.04)	2.30(0.12)	BZQ	C	M	?	no
	J042504.26-533158.3	SUMSSJ042504-533158	0.99(0.03)	2.58(0.03)	2.12(0.04)	BZB	C	M, v	?	yes
J0433.4-6029	J043334.08-603013.7	SUMSSJ043333-603014	1.15(0.04)	3.04(0.04)	2.49(0.07)	BZQ	B	M	?	yes
J0433.9-5726	J043344.12-572613.3		0.90(0.04)	2.23(0.07)	2.20 (0.27)	BZB	C		?	no
J0438.8-4521	J043900.84-452222.6	SUMSSJ043900-452223	1.14(0.04)	3.09(0.04)	2.45(0.08)	BZQ	B		?	yes
J0440.4+1433	J044021.14+143757.0	NVSSJ044021+143757	1.13(0.05)	2.88(0.08)	$2.54(0.20)$	BZQ	C		?	yes
J0456.5+2658	J045617.36+270221.1	NVSSJ045617+270221	0.95(0.04)	2.68(0.07)	2.35(0.17)	UND	C		?	yes
J0505.9+6116	J050558.78+611335.9	NVSSJ050558+611336	0.65(0.04)	1.83(0.08)	1.69(0.45)	BZB	C	M	?	yes
J0506.7-5435	J050657.80-543503.9	SUMSSJ050657-543459	0.74(0.03)	1.89(0.05)	2.02(0.19)	BZB	C	M	?	yes
J0508.1-1936	J050805.75-194721.6		1.11(0.04)	2.79(0.07)	2.72(0.13)	BZQ	C	M	?	o
J0512.9+4040	J051252.53+404143.7	NVSSJ051252+404143	0.90(0.03)	2.50(0.03)	2.13(0.03)	BZB	A	M	?	yes
J0525.5-6011	J052537.74-601732.0		1.11(0.04)	$3.25(0.05)$	2.68(0.12)	BZQ	C		?	no
J0532.0-4826	J053158.61-482736.0	SUMSSJ053158-482737	0.89(0.03)	2.46(0.03)	2.06(0.03)	BZB	A	v	?	yes
J0537.7-5716	J053748.95-571830.2	SUMSSJ053748-571828	0.83(0.03)	2.34(0.04)	2.16(0.09)	BZB	B	M	?	yes
J0609.4-0248	J060915.06-024754.6	NVSSJ060915-024754	0.78(0.04)	1.97(0.08)	1.71(0.37)	BZB	C	M	?	yes
J0621.9+3750	J062157.63+375057.0	NVSSJ062157+375056	1.14(0.05)	2.94(0.07)	2.52(0.17)	BZQ	C		?	yes
J0644.2-6713	J064428.06-671257.3	SUMSSJ064427-671257	1.06(0.03)	2.78(0.02)	2.26(0.03)	UND	A		?	yes
J0647.8-6102	J064740.85-605805.2	SUMSSJ064740-605804	1.10 (0.04)	2.96(0.06)	2.34(0.16)	BZQ	C	v	?	yes
	J064806.55-610507.4		1.38(0.04)	3.03(0.05)	2.48(0.12)	BZQ	C		?	no
J0653.7+2818	J065344.26+281547.5	NVSSJ065343+281546	0.81(0.04)	2.30(0.07)	1.98(0.26)	BZB	C	N, M	?	no
J0700.3+1710	J070001.50+170921.8	NVSSJ070001+170922	1.11(0.04)	2.97(0.04)	2.50(0.07)	BZQ	B		?	yes
	J070046.29+171019.8		1.08(0.04)	2.62(0.08)	2.18(0.24)	UND	C	M	?	no
J0702.7-1951	J070242.90-195122.2	NVSSJ070242-195123	1.02(0.04)	2.70(0.04)	2.15(0.10)	?	B	M	?	yes
J0703.1-3912	J070312.64-391418.9	NVSSJ070312-391418	0.94(0.03)	2.51(0.04)	2.15(0.09)	BZB	B	M	?	yes
J0706.5+7741	J070651.32+774137.0	NVSSJ070651+774137	0.90(0.03)	2.46(0.03)	1.91(0.08)	BZB	B	M	?	yes
J0706.7-4845	J070549.12-483911.4		0.95(0.04)	2.86(0.06)	2.38(0.19)	UND	C	M	?	o
J0709.3-0256	J070945.05-025517.4	NVSSJ070945-025517	1.09(0.03)	2.91(0.03)	2.30 (0.06)	UND	C	v	?	yes
J0726.0-0053	J072550.63-005456.4	BZUJ0725-0054	1.08(0.03)	2.98(0.03)	2.45(0.03)	BZQ	A	M	0.128	yes
J0734.2-7706	J073443.44-771113.4	SUMSSJ073441-771113	1.04(0.04)	3.20 (0.05)	2.48(0.11)	BZQ	C		?	yes
J0746.5-0713	J074627.48-070949.7	NVSSJ074627-070951	1.10 (0.04)	3.04(0.07)	2.33(0.18)	UND	C	M	?	yes
J0746.5-4758	J074642.30-475455.2	SUMSSJ074642-475455	1.15(0.03)	2.91(0.06)	1.89(0.16)	BZB	C	M	?	yes
J0816.7-2420	J081639.46-242635.4		1.13(0.07)	3.20 (0.11)	2.59(0.30)	BZQ	C		?	no
	J081640.41-242106.6	NVSSJ081640-242105	1.10 (0.04)	3.04(0.04)	2.45(0.09)	BZQ	B		?	yes
J0823.0+4041	J082257.55+404149.8	NVSSJ082257+404149	1.15(0.04)	2.91(0.04)	2.32(0.07)	BZQ	C	QSO	0.8657	yes
J0844.8-5459	J084502.47-545808.5	AT20GJ084502-545808	1.02(0.03)	2.82(0.03)	2.31(0.04)	UND	B	M	?	yes
J0849.9-3540	J084945.61-354101.2	NVSSJ084945-354102	1.01(0.03)	2.53(0.04)	2.35(0.08)	UND	B	v	?	yes
J0852.4-5756	J085238.73-575529.4	AT20GJ085238-575530	1.23(0.03)	2.87(0.03)	2.38(0.03)	BZQ	A		?	yes
J0853.1-3659	J085310.50-365823.1	NVSSJ085310-365820	0.77(0.04)	2.32(0.04)	1.98(0.08)	BZB	B	N, M	?	no
J0855.1-0712	J085435.20-071837.5		1.10 (0.03)	3.03(0.03)	2.48(0.05)	BZQ	B	M	?	no
J0856.0+7136	J085654.85+714623.8	NVSSJ085654+714624	1.09(0.04)	2.97(0.04)	2.49(0.07)	BZQ	B	M	?	yes
J0858.1-1952	J085805.36-195036.8	NVSSJ085805-195036	1.16(0.04)	2.80(0.05)	2.25(0.11)	UND	C	M, QSO	0.6597	yes
J0904.8-3513	J090423.42-351203.0		1.24(0.06)	2.82(0.10)	2.37(0.32)	BZQ	C		?	no
J0906.2-0906	J090618.05-090544.9	NVSSJ090618-090544	1.01(0.04)	2.56(0.05)	2.36(0.12)	UND	C	M	?	yes
J0919.3-2203	J092002.74-215835.0		1.01(0.04)	2.76(0.06)	2.21(0.19)	UND	C	M	?	no
J0940.8-6105	J094047.33-610728.5	AT20GJ094047-610726	0.87(0.03)	2.57(0.03)	2.17(0.06)	BZB	B	M, v	?	yes
J0941.9-0755	J094221.46-075953.1	NVSSJ094221-075953	0.95(0.03)	2.50(0.03)	2.21(0.07)	BZB	B	v	?	yes
J0946.9-2541	J094709.52-254100.0	NVSSJ094709-254100	0.72(0.04)	2.16(0.06)	2.06(0.23)	BZB	C	M	?	yes
J1016.2-0638	J101542.96-063055.1		0.93(0.04)	2.91(0.07)	2.48(0.16)	UND	C		?	no
	J101626.98-063625.2	NVSSJ101626-06362	0.91(0.04)	2.88(0.07)	2.38(0.18)	UND	C	N, F	?	no
J1045.5-2931	J104540.62-292726.4	NVSSJ104540-292725	1.09(0.05)	3.13(0.06)	2.33(0.17)	BZQ	C		?	yes
J1103.9-5356	J110352.22-535700.7	AT20GJ110352-535700	0.98(0.03)	2.88(0.03)	2.22(0.03)	?	A	M, v	?	yes
J1106.3-3643	J110624.04-364659.0	NVSSJ110624-364659	1.08(0.04)	2.65(0.06)	2.39(0.16)	?	C		?	yes
J1154.1-3242	J115406.16-324243.0	NVSSJ115406-324242	1.02(0.04)	2.87(0.05)	2.41(0.12)	?	C	M, v	?	yes
J1230.2-5258	J122939.88-530332.1	AT20GJ122939-530332	0.66(0.04)	2.22(0.07)	1.90(0.27)	BZB	C	M	?	no
J1238.1-1953	J123824.40-195913.4	NVSSJ123824-195913	0.88(0.03)	2.46(0.04)	2.13(0.11)	BZB	B	M	?	yes
J1239.5+0728	J123924.58+073017.2	BZUJ1239+0730	1.07(0.03)	2.96(0.04)	2.32(0.07)	?	C	M	0.4	no

Col. (1) 2FGL name.
Col. (2) WISE name.
Col. (3) Other name if present in literature and in the following order: ROMA-BZCAT, NVSS, SDSS, AT20G, NED.
Cols. $(4,5,6)$ Infrared colors from the WISE all sky catalog corrected for Galactic extinciton. Values in parentheses are 1σ uncertainties.
Col. (7) Type of candidate according to our method: BZB - BZQ - UND (undetermined).
Col. (8) Class of candidate according to our method.
Col. (9) Notes: $\mathrm{N}=\mathrm{NVSS}, \mathrm{F}=\mathrm{FIRST}, \mathrm{S}=$ SUMSS, A=AT20G, $\mathrm{M}=2 \mathrm{MASS}, \mathrm{s}=\mathrm{SDSS}$ dr9, $6=6 \mathrm{dFGS}, \mathrm{x}=$ XMM-Newton or Chandra, X $=$
ROSAT; QSO $=$ quasar, $\mathrm{Sy}=\mathrm{Seyfert}, \mathrm{LNR}=\mathrm{LINER}, \mathrm{BL}=\mathrm{BL}$ Lac; v = variability in WISE (var_flag >5 in at least one band).
Col. (10) Redshift: (?) = unknown, (number?) = uncertain. Col. (11) Re-association flag: "yes" if the association of our method corresponds to
the one provided in the 2 FGL , "no" otherwise.

Table 6: Active galaxies of Uncertain type ($12 \mathrm{~h}-24 \mathrm{~h}$).

$\begin{aligned} & \text { 2FGL } \\ & \text { name } \end{aligned}$	$\begin{aligned} & \hline \text { WISE } \\ & \text { name } \end{aligned}$	other name	$\begin{gathered} {[3.4]-[4.6]} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} {[4.6]-[12]} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} {[12]-[22]} \\ \mathrm{mag} \end{gathered}$	type	class	notes	z	reassoc. flag
J1301.6+3331	J130147.03+332236.3	SDSSJ130147.01+332236.4	1.04(0.03)	2.46 (0.04)	2.27(0.08)	UND	B	M,s	?	no
J1303.8-5537	J130349.23-554031.6	AT20GJ130349-554031	1.01(0.03)	2.87(0.03)	$2.35(0.03)$	UND	A	M, v	?	yes
J1304.1-2415	J130416.70-241216.6	NVSSJ130416-24121	0.89(0.03)	2.37(0.05)	2.01(0.15)	BZB	C	N, M	?	no
J1304.3-4353	J130421.01-435310.2	SUMSSJ130420-435308	0.84(0.03)	$2.24(0.03)$	1.93(0.05)	BZB	B	M, v	?	yes
J1307.5-4300	J130737.98-425938.9	SUMSSJ130737-42594	0.73(0.03)	2.04(0.03)	1.90(0.08)	BZB	B	S, M, 6,v	?	no
J1307.6-6704	J130817.51-670705.8	AT20GJ130817-670704	0.77(0.03)	$2.55(0.04)$	2.28(0.06)	BZB	B	M, v	?	yes
J1329.2-5608	J132901.16-560802.5	AT20GJ132901-560802	1.05(0.03)	$2.78(0.03)$	2.22(0.07)	UND	B	M,v	?	yes
J1330.1-7002	J133011.34-700312.7	AT20GJ133010-700313	0.78(0.03)	$2.48(0.03)$	$2.25(0.04)$	BZB	B		?	yes
J1351.3-2909	J135146.85-291217.4	BZUJ1351-2912	1.12(0.03)	2.87(0.03)	2.48(0.05)	BZQ	B	v	1.034?	no
J1406.2-2510	J140609.60-250809.2	NVSSJ140609-250808	0.83(0.04)	2.37(0.07)	2.02(0.25)	BZB	C	M, v	?	yes
J1416.3-2415	J141554.91-241925.8	NVSSJ141554-241924	1.26(0.05)	$3.13(0.08)$	2.51(0.22)	BZQ	C	N	?	no
	J141642.23-241021.2		0.92(0.04)	2.71 (0.08)	2.39(0.23)	UND	C	M	?	no
J1419.4-0835	J141922.56-083831.9	NVSSJ141922-083830	1.01(0.03)	$2.78(0.04)$	$2.15(0.09)$	UND	B	v	?	yes
J1514.6-4751	J151440.03-474829.7	AT20GJ151440-474828	$1.14(0.04)$	$3.07(0.04)$	2.43(0.06)	BZQ	B	M	?	yes
J1518.2-2733	J151803.60-273131.0	NVSSJ151803-273131	0.62(0.03)	$2.14(0.04)$	2.18(0.10)	BZB	C	M	?	yes
J1553.2-2424	J155331.62-242206.0	NVSSJ155331-242206	$1.16(0.04)$	$2.95(0.07)$	2.66(0.14)	BZQ	C		0.332 ?	yes
J1558.3+8513	J160031.76+850949.2	NVSSJ160031+850948	0.82(0.03)	2.18(0.04)	2.02(0.14)	BZB	B	N, M	?	no
J1604.5-4442	J160431.03-444131.9	AT20GJ160431-444131	0.98(0.03)	2.80 (0.03)	2.46(0.05)	UND	B	M	?	yes
J1626.0-7636	J162638.17-763855.4	SUMSSJ162639-763856	0.56(0.03)	$2.21(0.05)$	1.97(0.19)	BZB	C	M, v	?	yes
J1650.1-5044	J165016.63-504448.2	AT20GJ165016-504446	0.95(0.04)	$2.65(0.04)$	2.22(0.09)	UND	B	M,v	?	yes
J1725.1-7714	J172350.86-771350.3	SUMSSJ172350-771350	1.01(0.03)	$2.67(0.04)$	2.33(0.08)	UND	B	M, v	?	yes
J1759.2-4819	J175858.45-482112.4	SUMSSJ175858-482112	0.91(0.03)	2.62(0.03)	2.21(0.05)	UND	C		?	yes
J1811.0+5340	J181037.99+533501.5	NVSSJ181038 + 533501	0.83(0.03)	$2.22(0.05)$	$2.15(0.15)$	BZB	C	N, M, X	?	no
J1815.6-6407	J181425.96-641008.8		$1.27(0.06)$	$3.05(0.08)$	2.67 (0.19)	BZQ	C		?	no
J1816.7-4942	J181655.99-494344.7	SUMSSJ181655-494344	$0.99(0.05)$	2.86(0.07)	2.21(0.19)	UND	C		?	yes
J1818.7+2138	J181905.22+213234.0	NVSSJ181905 + 213235	0.90(0.04)	$2.50(0.05)$	1.99(0.17)	BZB	C	M	?	yes
J1820.6+3625	J182023.61+362914.4		1.04(0.04)	2.61(0.05)	2.36(0.17)	UND	C		?	no
J1823.6-3453	J182338.59-345412.0	NVSSJ182338-345412	0.68(0.04)	$2.05(0.04)$	1.92(0.13)	BZB	B	M	?	yes
J1823.8 +4312	J182352.33+431452.5		$1.12(0.04)$	$2.96(0.05)$	2.50 (0.13)	BZQ	C	x	?	no
J1825.1-5231	J182513.79-523058.1	SUMSSJ182513-523057	$1.65(0.03)$	2.86(0.03)	2.26(0.07)	UND	B	M	?	yes
J1830.0+1325	J183000.76+132414.4	NVSSJ183000 +132414	0.95(0.04)	2.60 (0.04)	2.23(0.11)	UND	C	M	?	yes
J1830.2-4441	J183000.86-444111.4	SUMSSJ183000-444112	1.17(0.04)	3.10 (0.05)	2.37 (0.10)	BZQ	C	M	?	yes
J1844.7+5716	J184450.96+570938.6	NVSSJ184451+570940	0.86(0.03)	2.38(0.04)	2.16(0.10)	BZB	B	M	?	yes
J1936.9+8402	J193930.23+835925.8		1.08(0.04)	$2.97(0.05)$	2.43(0.14)	BZQ	C		?	no
J1940.8-6213	J194121.76-621120.8	SUMSSJ194121-621120	$1.30(0.04)$	$2.88(0.04)$	2.36(0.09)	BZQ	C		?	yes
J1942.8 + 1033	J194247.48+103327.2	NVSSJ194247+103327	0.72(0.03)	2.06(0.03)	1.85(0.07)	BZB	B	M	?	yes
J1959.9-4727	J195945.66-472519.2	SUMSSJ195945-472519	0.80(0.03)	$2.15(0.04)$	1.66(0.17)	BZB	C	M	?	yes
J2040.2-7109	J203931.44-711033.0		$1.12(0.04)$	3.01(0.05)	2.71(0.12)	BZQ	C		?	no
J2049.8+1001	J204932.28+095911.8		$1.23(0.06)$	$3.13(0.10)$	2.68(0.23)	BZQ	C		?	no
J2103.6-6236	J210338.38-623225.8	SUMSSJ210338-623226	0.81(0.03)	$2.30(0.03)$	1.80 (0.12)	BZB	B	M	?	yes
J2250.2-4205	J225014.94-420218.6		1.05(0.04)	2.64(0.07)	$2.39(0.20)$	UND	C		?	no
	J225022.20-420613.2	SUMSSJ225022-420613	0.94(0.03)	2.47 (0.04)	1.88(0.13)	BZB	C	M	0.1187 ?	yes
J2317.3-4534	J231731.97-453359.6	SUMSSJ231731-453400	0.70(0.04)	$2.19(0.08)$	1.92(0.34)	BZB	C	S,M, 6	?	no
J2323.0-4918	J232255.30-491942.0		1.08(0.06)	$3.21(0.10)$	2.34(0.30)	BZQ	C		?	no
J2324.6+0801	J232445.31+080206.3	NVSSJ232445 +080205	0.83(0.04)	$2.30(0.06)$	$2.05(0.21)$	BZB	C	M	?	yes
J2325.4+1650	J232526.62+164941.1		$1.34(0.04)$	$3.04(0.05)$	2.42(0.12)	BZQ	C		?	no
	J232538.11+164642.8	NVSSJ232538 +164641	0.78(0.04)	$2.15(0.10)$	2.27(0.33)	BZB	C	M	?	yes

Col. (1) 2FGL name.
Col. (2) WISE name.
Col. (3) Other name if present in literature and in the following order: ROMA-BZCAT, NVSS, SDSS, AT20G, NED.
Cols. $(4,5,6)$ Infrared colors from the WISE all sky catalog corrected for Galactic extinciton. Values in parentheses are 1σ uncertainties.
Col. (7) Type of candidate according to our method: BZB - BZQ - UND (undetermined).
Col. (8) Class of candidate according to our method.
Col. (9) Notes: $\mathrm{N}=\mathrm{NVSS}, \mathrm{F}=\mathrm{FIRST}, \mathrm{S}=\mathrm{SUMSS}, \mathrm{A}=\mathrm{AT} 20 \mathrm{G}, \mathrm{M}=2 \mathrm{MASS}, \mathrm{s}=\mathrm{SDSS}$ dr9, $6=6 \mathrm{dFGS}$, $\mathrm{x}=$ XMM-Newton or Chandra, X $=$ ROSAT; QSO $=$ quasar, $\mathrm{Sy}=$ Seyfert, LNR $=$ LINER, BL $=$ BL Lac; v $=$ variability in WISE (var_flag >5 in at least one band).
Col. (10) Redshift: (?) = unknown, (number?) = uncertain. Col. (11) Re-association flag: "yes" if the association of our method corresponds to
the one provided in the 2FGL, "no" otherwise.

Table 7: UGSs without γ-ray blazar candidates associated.

2FGLJ0002.7+6220	2FGLJ1115.0-0701	2FGLJ1721.0+0711
2FGLJ0032.7-5521	2FGLJ1117.2-5341	2FGLJ1722.5-0420
2FGLJ0048.8-6347	2FGLJ1120.0-2204	2FGLJ1730.6-2409
2FGLJ0212.1+5318	2FGLJ1129.0-0532	2FGLJ1744.1-7620
2FGLJ0224.0+6204	2FGLJ1208.5-6240	2FGLJ1747.6+0324
2FGLJ0239.5+1324	2FGLJ1221.4-0633	2FGLJ1748.8+3418
2FGLJ0248.5+5131	2FGLJ1231.3-5112	2FGLJ1748.9-3923
2FGLJ0305.0-1602	2FGLJ1240.6-7151	2FGLJ1753.8-4446
2FGLJ0307.4+4915	2FGLJ1306.2-6044	2FGLJ1757.5-6028
2FGLJ0318.0+0255	2FGLJ1312.9-2351	2FGLJ1759.4-2954
2FGLJ0336.0+7504	2FGLJ1335.3-4058	2FGLJ1820.6-3219
2FGLJ0338.2+1306	2FGLJ1353.5-6640	2FGLJ1821.8+0830
2FGLJ0353.2+5653	2FGLJ1400.7-1438	2FGLJ1828.7+3231
2FGLJ0359.5+5410	2FGLJ1410.4+7411	2FGLJ1830.9-3132
2FGLJ0409.5+0509	2FGLJ1417.7-5028	2FGLJ1902.7-7053
2FGLJ0418.9+6636	2FGLJ1423.9-7842	2FGLJ1906.5+0720
2FGLJ0420.9-3743	2FGLJ1424.2-1752	2FGLJ1919.5-7324
2FGLJ0426.7+5434	2FGLJ1458.5-2121	2FGLJ1946.7-1118
2FGLJ0438.0-7331	2FGLJ1507.0-6223	2FGLJ1947.8-0739
2FGLJ0439.8-1858	2FGLJ1513.5-2546	2FGLJ2002.8-2150
2FGLJ0516.7+2634	2FGLJ1513.9-2256	2FGLJ2017.5-1618
2FGLJ0523.3-2530	2FGLJ1518.4-5233	2FGLJ2018.0+3626
2FGLJ0524.1+2843	2FGLJ1536.4-4949	2FGLJ2034.7-4201
2FGLJ0533.9+6759	2FGLJ1539.2-3325	2FGLJ2034.9+3632
2FGLJ0539.3-0323	2FGLJ1544.5-1126	2FGLJ2041.2+4735
2FGLJ0605.3+3758	2FGLJ1548.3+1453	2FGLJ2042.8-7317
2FGLJ0658.4+0633	2FGLJ1601.1-4220	2FGLJ2046.2-4259
2FGLJ0719.2-5000	2FGLJ1617.3-5336	2FGLJ2103.5-1112
2FGLJ0758.8-1448	2FGLJ1617.5-2657	2FGLJ2107.8+3652
2FGLJ0803.2-0339	2FGLJ1622.8-5006	2FGLJ2110.3+3822
2FGLJ0843.6+6715	2FGLJ1624.1-4040	2FGLJ2112.5-3042
2FGLJ0854.7-4501	2FGLJ1626.4-4408	2FGLJ2115.4+1213
2FGLJ0859.4-2532	2FGLJ1631.6-2819	2FGLJ2117.5+3730
2FGLJ0934.0-6231	2FGLJ1646.7-1333	2FGLJ2212.6+0702
2FGLJ0952.7-3717	2FGLJ1649.2-3004	2FGLJ2246.3+1549
2FGLJ1016.4-4244	2FGLJ1704.3+1235	2FGLJ2249.1+5758
2FGLJ1033.5-5032	2FGLJ1704.6-0529	2FGLJ2339.6-0532
2FGLJ1036.1-6722	2FGLJ1709.0-0821	2FGLJ2351.6-7558

emphasize that for the subamples where we overlap our results are in good agreement with the classification suggested by Ackermann et al. (2012), consistent with the γ-ray blazar nature of the WISE candidates proposed in our analysis.

7. Summary and conclusions

A new association method has been recently developed on the basis of the striking discovery that γ-ray emitting blazars occupy a distinct region in the WISE 3-dimensional color space, well separated from that occupied by other extragalactic and galactic sources (Massaro et al. 2011b; D'Abrusco et al. 2012). According to D'Abrusco et al. (2013) the 3 -dimensional region occupied by γ-ray emitting blazars is the locus; its 2 -dimensional projection in the [3.4]-[4.6]-[12] $\mu \mathrm{m}$ parameter space, retains its historical definition of WISE Gamma-ray Strip (Massaro et al. 2011b). Additional improvements, mostly based on the WISE all-sky data release, available since March 2012 (e.g., Cutri et al. 2012), and on a new parametrization of the locus in the parameter space of its principal components have been subsequently developed (D'Abrusco et al. 2013).

In this work we describe the results obtained by applying our new association procedure to the search for new γ-ray blazar candidates in the two samples: the unidentified gammaray sources (UGSs), and the active galaxies of uncertain type (AGUs), as listed in the 2FGL (Nolan et al. 2012).

We present the complete list of γ-ray blazar candidates found using the WISE observations. We also perform an extensive archival search to see if the sources associated with our method, show additional blazar-like characteristics; as for example the presence of a radio counterpart and/or of a spectrum that could be featureless as for BZBs or similar to those of broad-line quasars as generally occurs in BZQs.

We found 62γ-ray blazar candidates for the UGS without any γ-ray analysis flag and 49 for those with γ-ray analysis flag, out of a total of 590 sources investigated. For the AGUs sample, we confirmed the blazar-like nature of 87 out 210 of AGUs analyzed on the basis of their IR colors.

A significant fraction (i.e., $\sim 36 \%$) of the WISE sources associated with our method with UGSs have a radio counterpart, more than 50% are also detected in the 2MASS catalog as generally occurs for blazars, and more than $\sim 10 \%$ appear to be variable according to the WISE analysis flags (Cutri et al. 2012). Notably, all the sources for which an optical spectrum was available in literature clearly show blazar-like features, being either featureless or having broad emission lines typical of quasars, the only exception being SDSS

J015910.05+010514.5, one of the counterparts associated with 2FGLJ0158.4+0107. As generally expected for γ-ray blazars a handful of the selected candidates are also detected in the X-rays. A deeper investigation of their X-ray counterparts will be addressed in a forthcoming paper (Paggi et al. 2013). All the γ-ray blazar candidates selected with our association procedure appear to be extragalactic in nature; moreover our selection seems not to be highly contaminated by any class of non-blazar-like sources, as for example obscured quasars or Seyfert galaxies.

Our results are in good agreement with those based on different statistical approaches like the Classification Tree and the Logistic regression analyses (Ackermann et al. 2012). In particular, 23 out of 28 UGSs that we associate to a γ-ray blazar candidate are also classified as active galaxies by the above methods at high level of confidence.

For UGSs associated with a pulsar in the 2FGL analysis as reported in the Public List of LAT-Detected Gamma-Ray Pulsars (see Section 2.1), we did not find any WISE γ-ray blazar candidate, confirming the reliability of our selection procedure. We provide a list of the UGSs for which we did not find any γ-ray blazar candidates using either the new improved method or the old parametrization (i.e., less conservative), within their positional uncertainty regions at 95% level of confidence. This list of Fermi sources reported in Table 7 could be useful for follow up observations aiming at discover new pulsars or to constrain exotic high-energy physics phenomena such as dark matter signatures, or new classes of sources (e.g., Zechlin et al. 2012; Su \& Finkbeiner 2012).

Finally, we emphasize that additional investigations of different samples of active galactic nuclei, such as Seyfert galaxies, are necessary to study the problem of the contamination of our association method by extragalactic sources with infrared colors similar to those of γ-ray blazars. Moreover extensive ground-based spectroscopic follow up observations in the optical and in the near IR would be ideal to verify the nature of the selected WISE sources and to estimate the fraction of non-blazar objects, similar to the recent studies performed for the unidentified INTEGRAL sources (e.g., Masetti et al. 2008; Masetti et al. 2009; Masetti et al. 2010; Masetti et al. 2012).

We thank the anonymous referee for useful comments that led to improvements in the paper. F. Massaro is grateful to S. Digel and D. Thompson for their helpful discussions and to M. Ajello, E. Ferrara and J. Ballet for their support. The work is supported by the NASA grants NNX12AO97G. R. D'Abrusco gratefully acknowledges the financial support of the US Virtual Astronomical Observatory, which is sponsored by the National Science Foundation and the National Aeronautics and Space Administration. The work by G. Tosti is supported
by the ASI/INAF contract I/005/12/0. H. A. Smith acknowledges partial support from NASA/JPL grant RSA 1369566. TOPCAT ${ }^{6}$ (Taylor 2005) and SAOImage DS9 were used extensively in this work for the preparation and manipulation of the tabular data and the images. Part of this work is based on archival data, software or on-line services provided by the ASI Science Data Center. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center; the SIMBAD database operated at CDS, Strasbourg, France; the NASA/IPAC Extragalactic Database (NED) operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Part of this work is based on the NVSS (NRAO VLA Sky Survey); The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

[^5]
REFERENCES

Abdo, A. A., et al. 2009, Astroparticle Physics, 32, 193
Abdo, A. A. et al. 2010 ApJS 188405
Ackermann, M. et al. 2011 ApJ, 743, 171
Ackermann, M. et al. 2012 ApJ, 753, 83
Adelman-McCarthy, J., Agueros, M.A., Allam, S.S., et al. 2008, ApJS, 175, 297
Becker, R. H., White, R. L., Helfand, D. J. 1995 ApJ, 450, 559
Bauer, A. et al. 2009 ApJ, 705, 46
Chen, P. S., Fu, H. W. \& Gao, Y. F. 2005 NewA, 11, 27
Comastri, A., Mignoli, M., Ciliegi, P., et al. 2002, ApJ, 571, 771
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693

Cutri et al. 2012 wise.rept, 1C
D'Abrusco, R., Massaro, F., Ajello, M., Grindlay, J. E., Smith, Howard A. \& Tosti, G. 2012 ApJ, 748, 68

D’Abrusco, R., Massaro, F., Paggi, A., Masetti, N., Giroletti, M., Tosti, G., Smith, Howard, A. 2013 ApJS submitted

Draine, B. T. 2003, ARA\&A, 41, 241
Evans, I. N. et al. 2010 ApJS, 189, 37
Falco, E. E. et al. 1998 ApJ, 494, 47
Giommi, P. et al. 2005, A\&A, 434, 385
Hartman, R.C. et al., 1999 ApJS 123
Healey, S. E. et al. 2007 ApJS, 171, 61
Hu, C. et al. 2008, 687, 78

Jolliffe I.T. "Principal Component Analysis, Series: Springer Series in Statistics", 2nd ed., Springer, NY, 2002, XXIX, 487, 28

Jones, H. D. et al. 2004 MNRAS, 355, 747
Jones, H. D. et al. 2009 MNRAS, 399, 683
Mirabal, N. 2009 [arxiv.org/abs/0908.1389v2]
Mirabal, N. 2009 ApJ, 701, 129
Mirabal, Nieto, D. \& Pardo, S. 2010 A\&A submitted, [arxiv.org/abs/1007.2644v2]
Maselli, A., Massaro, E., Nesci, R., Sclavi, S., Rossi, C., Giommi, P. 2010 A\&A, 512A, 74
Maselli, A., Cusumano, G., Massaro, E., La Parola, V., Segreto, A., Sbarufatti, B. 2010 A\&A, 520A, 47

Masetti, N. et al. 2008 A\&A, 482, 113
Masetti, N. et al. 2009 A\&A, 495, 121
Masetti, N. et al. 2010 A\&A, 519A, 96
Masetti, N. et al. 2012 A\&A, 538A, 123
Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., Piranomonte, S., Sclavi, S. 2009 A\&A, 495, 691

Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., Piranomonte, S., Sclavi, S. 2010 http://arxiv.org/abs/1006.0922

Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., Piranomonte, S., 2011 "Multifrequency Catalogue of Blazars (3rd Edition)", ARACNE Editrice, Rome, Italy

Massaro, F., D'Abrusco, R., Ajello, M., Grindlay, J. E. \& Smith, H. A. 2011b ApJ, 740L, 48
Massaro, F., D'Abrusco, R., Tosti, G., Ajello, M., Gasparrini, D., Grindlay, J. E. \& Smith, Howard A. 2012a ApJ, 750, 138

Massaro, F., D'Abrusco, R., Tosti, G., Ajello, M., Paggi, A., Gasparrini, 2012b ApJ, 752, 61
Massaro, F., D'Abrusco, R., Paggi, A., Tosti, G., Gasparrini, D. 2012c ApJ, 750L, 35

Massaro, F., Paggi, A., D’Abrusco, R., Tosti, G., Grindlay, J. E., Smith, Howard A., Digel, S. W., Funk, S. 2012d ApJ, 757L, 27

Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynski, B., Robertson, J. G., Sadler, E. M. 2003 MNRAS, 342, 1117

Monet, D. G. et al. 2003 AJ, 125, 984
Murphy, T. et al. 2010 MNRAS, 402, 2403
Mukherjee, R. et al., 1997 ApJ, 490, 116
Nolan et al. 2012 ApJS, 199, 31
Paggi, A., Massaro, F., D'Abrusco, R. et al. 2013 ApJS in prep.
Paris, I. et al. 2012 A\&A, 548A, 66
Pearson, K. 1901 Philosophical Magazine 2, 559.
Schneider et al. 2007, AJ, 134, 102
Stickel, M., Padovani, P., Urry, C. M., Fried, J. W., Kuehr, H. 1991 ApJ, 374, 431
Stocke et al. 1991, ApJS, 76, 813
Skrutskie, M. F. et al. 2006, AJ, 131, 1163
Su, M. \& Finkbeiner, D. P. 2012 ApJ submitted http://arxiv.org/abs/1207.7060v1
Urry, C. M., \& Padovani, P. 1995, PASP, 107, 803
Thompson, D. J. 2008 RPPh, 71k6901
Taylor, M. B. 2005, ASP Conf. Ser., 347, 29
Voges, W. et al. 1999 A\&A, 349, 389
White, R. L., Becker, R. H. Helfand, D. J., Gregg, M. D. et al. 1997 ApJ, 475, 479
White, G. L. et al. 1988 ApJ, 327, 561
Wright, E. L., et al. 2010 AJ, 140, 1868
Zechlin, H.-S., Fernandes, M. V., Elsasser, D., Horns, D. 2012 A\&A, 538A, 93

A. Optical counterparts

In Tables $8,9,10$ and 11, we report the magnitudes of the optical counterpart uniquely found within $3^{\prime \prime} .3$, for all the γ-ray blazar candidates, selected according to our association procedure. This information permits us to optimize the strategy for the future follow up optical observations needed to clarify the nature of the selected sources and to determine their redshifts via spectroscopy.

Table 8: Optical magnitudes of the USNO B1 catalog for the UGSs without γ-ray analysis flags.

$\begin{aligned} & \text { 2FGL } \\ & \text { name } \end{aligned}$	$\begin{gathered} \text { WISE } \\ \text { name } \end{gathered}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} \mathrm{R} 1 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} 2 \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} \mathrm{R} 2 \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{mag} \end{gathered}$
J0039.1+4331	J003858.27+432947.0	19.29	19.26	19.03	18.84	18.32
J0116.6-6153	J011619.59-615343.5		17.72	18.22	17.78	17.91
J0133.4-4408	J013306.35-441421.3		18.38	19.70	18.12	18.76
J0133.4-4408	J013321.36-441319.4		18.63	19.39	18.32	18.80
J0143.6-5844	J014347.39-584551.3		16.70	18.48	16.64	17.04
J0158.4+0107	J015910.05+010514.7	17.94	18.27	17.71	18.43	16.33
J0158.4+0107	J015757.45+011547.8	21.13	19.39		19.31	18.58
J0158.4+0107	J015836.25+010632.1	19.22	18.90	19.02	19.07	17.62
J0158.6+8558	J014935.30+860115.3	18.79	17.14	18.60	16.96	15.92
J0158.6+8558	J015550.16+854745.1	19.83	19.27	19.95	18.90	17.78
J0227.7+2249	J022744.35+224834.3			20.82	20.22	19.28
J0316.1-6434	J031614.31-643731.4		16.59	18.19	16.57	16.82
J0332.1+6309	J033153.90+630814.1			20.66	19.92	18.35
J0409.8-0357	J040946.57-040003.4	19.45	19.18	17.53	16.98	16.86
J0414.9-0855	J041457.01-085652.0	20.48	18.15	20.21	17.31	17.69
J0416.0-4355	J041605.81-435514.6		18.49	18.70	18.17	18.00
J0555.9-4348	J055618.74-435146.1		19.23	18.88	19.08	18.08
J0555.9-4348	J055531.59-435030.7		19.16	19.22	18.93	18.19
J0602.7-4011	J060237.10-401453.2		17.61	17.76	17.74	17.62
J0644.6+6034	J064459.38+603131.7	19.44	19.03	19.33	18.23	18.28
J0713.5-0952	J071223.28-094536.3			19.48	17.88	17.24
J0723.9+2901	J072354.83+285929.9	19.78	19.05	19.97	18.72	
J0744.1-2523	J074402.19-252146.0		13.33		9.510	
J0746.0-0222	J074627.03-022549.3	19.03		18.59	18.43	16.53
J0756.3-6433	J075624.60-643030.6		18.80	19.13	17.26	18.56
J0807.0-6511	J080729.66-650910.3		18.97	19.15	19.89	
J0838.8-2828	J083842.77-282830.9	19.66		18.49	19.02	18.01
J0841.3-3556	J084121.63-355505.9		17.20	17.57	16.72	16.64
J0844.9+6214	J084406.81+621458.6	19.39	16.38	18.75	16.62	15.85
J0858.3-4333	J085839.22-432642.7		20.10		20.12	17.83
J0900.9+6736	J090121.65+673955.8	19.09	18.52	19.61	18.25	18.13
J0955.0-3949	J095458.30-394655.0		16.66	18.15	17.21	17.11
J1013.6+3434	J101256.54+343648.8	20.22	18.60	20.44	17.99	17.39
J1016.1+5600	J101544.44+555100.7	19.69	19.42	20.61	19.35	
J1029.5-2022	J102946.66-201812.6	18.01	18.22	18.41	18.25	18.37
J1032.9-8401	J103015.35-840308.7		19.36	19.26	18.84	18.03
J1038.2-2423	J103754.92-242544.5	20.58	18.21	20.56	18.53	18.09
J1207.3-5055	J120746.43-505948.6			20.50	20.07	
	J120750.50-510314.9		19.12	19.71	20.27	
J1254.2-2203	J125422.47-220413.6		19.88	18.67	19.11	18.22
J1259.8-3749	J125949.80-374858.1		17.44	18.07	16.78	17.35
J1340.5-0412	J134042.02-041006.8	18.21	17.21	17.59	16.46	17.08
J1346.0-2605	J134621.08-255642.3	19.82	19.25	19.13	18.77	18.39
J1347.0-2956	J134706.89-295842.3	17.85	17.09	18.80	17.14	17.09
J1404.0-5244	J140313.11-524839.5		17.49	18.92	18.57	
J1517.2+3645	J151649.26+365022.9	20.90		21.49	20.07	19.16
J1612.0+1403	J161118.10+140328.9	18.39	18.39	19.06	19.16	18.43
J1614.8+4703	J161541.22+471111.8	17.55	16.03	16.90	15.39	15.51
	J161434.67+470420.1	15.62	15.76	16.28	16.13	15.14
	J161513.04+471355.2		20.02	21.44	20.29	19.09
	J161450.96+465953.7		19.19	21.66	19.60	19.10
J1622.8-0314	J162225.35-031439.6		19.85		19.41	
J1627.8+3219	J162800.40+322414.0	20.65	19.50	19.02	18.88	19.01
J1647.0+4351	J164619.95+435631.0	20.43	19.73	20.42	19.67	
J1730.6-0353	J173052.86-035247.1	18.31	17.40	19.30	17.33	16.73
J1745.6+0203	J174526.95+020532.7	18.71	17.12	18.06	17.28	17.16
	J174507.82+015442.5	19.21	16.40	18.11	16.30	15.98
J1759.2-3853	J175903.29-384739.5		17.95	18.95		
J1842.3+2740	J184201.25+274239.2	20.18	19.04	19.34	19.18	18.75
J1904.8-0705	J190444.57-070740.1		19.73	19.87	18.45	
J1924.9-1036	J192501.63-104316.3		18.63	19.42	18.04	17.75
J2004.6+7004	J200506.02+700439.3	20.73	19.25	19.24	18.65	
J2021.5+0632	J202155.45+062913.7	17.27	16.13	17.01	16.67	16.03
	J202154.66+062908.7	19.15	17.44	17.81	17.24	17.35
J2133.9+6645	J213349.21+664704.3				19.37	18.80
J2134.6-2130	J213430.18-213032.6	19.77	18.65	18.96	16.80	17.70
J2300.0-3553	J230010.16-360159.9		18.43	19.23	18.17	17.63
J2319.3-3830	J232000.11-383511.4		19.24	19.86	18.92	18.48
J2358.4-1811	J235828.61-181526.6	18.73	18.83	18.54	18.33	18.34

Table 9: Optical magnitudes of the USNO B1 catalog for the UGSs with γ-ray analysis flags.

2FGL name	WISE name	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} \mathrm{R} 1 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} 2 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} 2 \\ \text { mag } \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{mag} \end{gathered}$
J0233.9+6238c	J023238.07+623651.9			20.95		18.70
	J023418.09+624207.8				19.34	17.89
J0341.8+3148c	J034158.52+314855.7	18.76	14.98	17.64	14.86	13.62
	J034204.35+314711.4		19.84		19.86	17.33
J0440.5+2554c	J043947.48+260140.5		19.09		19.11	15.70
J0620.8-2556	J062108.68-255757.9	19.78		19.94	19.22	
J0631.7+0428	J063104.12+042012.6		20.31		20.36	
J0637.0+0416c	J063647.19+042058.7	20.25	17.34	20.42	17.61	16.47
	J063703.09+042146.1	18.95	16.95	19.88	17.23	16.04
	J063705.96+042537.2	21.00	18.79	20.37	17.45	16.87
	J063701.93+042037.2	21.00		18.57		
J0922.2-5214c	J092154.24-521236.1			19.57	18.86	17.49
J1059.9-2051	J110025.72-205333.4	18.44	16.57	18.08	16.62	16.64
J1208.6-2257	J120816.33-224921.9	18.29	18.04	21.52	18.12	18.43
J1255.8-5828	J125459.44-582009.5		16.56	18.67	16.71	16.33
J1315.6-0730	J131543.62-073659.0	19.88	19.09	18.21	17.95	18.06
J1315.6-0730	J131552.98-073301.9	19.78	18.68	18.75	17.75	17.56
J1324.4-5411	J132415.49-541104.4		18.15		18.86	
J1345.8-3356	J134543.05-335643.3		17.98	19.58	18.65	18.12
J1407.4-2948	J140818.86-294203.2			20.80	19.36	18.75
J1624.2-2124	J162343.89-210707.0	19.70	18.57	19.35	18.74	18.51
J1835.4+1036	J183551.92+103056.8	18.37	16.97	17.97	16.73	16.30
J1835.4+1349	J183522.00+135733.9	19.69	18.29	19.36	18.15	17.24
	J183535.34+134848.8	19.57	17.15	19.01	16.66	16.84
J1837.9+3821	J183656.31+382232.8	18.37	18.01	19.53	18.45	18.34
	J183828.80+382704.3	20.75		20.96	20.60	
	J183837.16+381900.5	21.01	19.40	19.23	19.01	18.76
J1844.3+1548	J184425.36+154645.9	18.90	18.17	18.45	17.15	16.00
J1844.9-1116	J184456.29-111352.1		18.29			13.34
J1958.6+4020	J195842.28+401125.8	18.81		19.05		
J2124.0-1513	J212423.63-152558.2	20.18	19.41	20.33	18.87	18.59
J2128.7+5824	J212900.37+583128.0	20.28	18.42	19.96	18.28	17.71

Table 10: Optical magnitudes of the USNO B1 catalog for the AGUs ($00 \mathrm{~h}-12 \mathrm{~h}$).

$\begin{aligned} & \hline \text { 2FGL } \\ & \text { name } \end{aligned}$	$\begin{aligned} & \text { WISE } \\ & \text { name } \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} 1 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} 2 \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} \mathrm{R} 2 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{mag} \end{gathered}$
J0009.1+5030	J000922.76+503028.8			19.74	19.35	17.32
J0018.8-8154	J001920.58-815251.3		15.86	16.62	16.13	15.33
J0022.2-1853	J002209.25-185334.7	19.05	18.63	18.07	16.95	17.29
J0022.3-5141	J002200.08-514024.2		15.65	17.38	15.94	16.65
J0045.5+1218	J004543.33+121712.0	18.22	17.40	18.75	16.91	15.66
J0051.4-6241	J005116.62-624204.3		16.95	16.83	16.69	15.78
J0059.7-5700	J005846.56-565911.4		17.45	17.39	16.95	17.07
J0110.3+6805	J011012.84+680541.1	18.66	16.51	18.14	16.33	15.37
J0134.4+2636	J013428.19+263843.0	16.87	16.74	17.09	15.91	15.55
J0156.4+3909	J015631.40+391430.9	17.99	18.05	18.71	19.03	18.25
J0156.5-2419	J015606.46-241754.3	21.01		20.86	21.40	
J0207.9-6832	J020750.91-683755.1		17.62	20.02	19.05	18.21
J0210.7-5102	J021046.19-510101.8		14.85	17.39	14.82	15.13
J0238.2-3905	J023749.42-390050.3		16.86	18.04	16.94	17.81
	J023800.62-390504.6		17.52	17.63	16.59	16.96
J0248.6+8440	J024948.30+843556.9	19.50	18.43	19.42	17.62	17.01
J0253.4+3218	J025333.64+321720.8		19.83	20.39	19.69	19.46
J0309.3-0743	J030943.23-074427.4	18.33	15.96	18.16	16.01	16.71
J0332.5-1118	J033200.72-111456.1	17.78	17.08	18.85	17.75	18.30
	J033223.25-111950.6	19.41	17.66	18.90	16.71	18.00
J0333.7+2918	J033349.00+291631.6	17.49	17.24	19.11	16.44	15.73
J0334.3+6538	J033356.74+653656.0		18.93	19.70	17.66	17.01
J0424.3-5332	J042347.22-533026.6		17.22	18.21	16.50	17.42
	J042504.26-533158.3		15.54	17.41	16.14	16.18
J0433.9-5726	J043344.12-572613.3		17.73	18.90	17.78	18.67
J0438.8-4521	J043900.84-452222.6		18.37	20.85	19.48	
J0456.5+2658	J045617.36+270221.1	20.42		21.50		18.68
J0505.9+6116	J050558.78+611335.9		18.71	20.73	18.67	17.30
J0506.7-5435	J050657.80-543503.9		15.95	16.73	16.91	16.25
J0508.1-1936	J050805.75-194721.6	17.57	17.51	19.44	18.22	18.09
J0512.9 + 4040	J051252.53+404143.7	16.46	15.11	16.39	15.35	14.83
J0525.5-6011	J052537.74-601732.0		20.58		20.86	
J0532.0-4826	J053158.61-482736.0			20.61		18.98
J0537.7-5716	J053748.95-571830.2		17.23	18.07	17.17	17.83
J0609.4-0248	J060915.06-024754.6	18.05	17.47	18.23	16.92	16.47
J0621.9+3750	J062157.63+375057.0	20.30		20.29	19.96	18.63
J0644.2-6713	J064428.06-671257.3			20.47	20.87	
J0647.8-6102	J064806.55-610507.4		18.75	18.89	19.26	18.05
J0653.7+2818	J065344.26+281547.5	19.15	18.26	18.12	17.54	17.72
J0700.3 + 1710	J070001.50+170921.8	18.29	18.08	18.55	16.02	17.10
J0700.3+1710	J070046.29+171019.8	18.32	17.18	17.29	17.23	16.70
J0703.1-3912	J070312.64-391418.9		16.41	17.06	17.18	17.93
J0706.5+7741	J070651.32+774137.0	17.44	17.53	17.44	18.00	16.36
J0706.7-4845	J070549.12-483911.4		18.96	19.14	18.53	18.10
J0709.3-0256	J070945.05-025517.4			19.61	19.29	
J0726.0-0053	J072550.63-005456.4	17.63	16.58	17.41	15.82	15.91
J0734.2-7706	J073443.44-771113.4		19.76		20.77	
J0746.5-0713	J074627.48-070949.7	19.73	18.81	19.64	19.52	17.37
J0746.5-4758	J074642.30-475455.2		16.58	18.18	16.99	15.85
J0816.7-2420	J081639.46-242635.4	18.00		18.26	18.06	16.14
	J081640.41-242106.6	19.42		20.70		
J0823.0+4041	J082257.55+404149.8	19.00	18.7	19.34	19.47	18.16
J0844.8-5459	J084502.47-545808.5			19.35	16.80	17.65
J0849.9-3540	J084945.61-354101.2		19.03	20.27	18.45	
J0852.4-5756	J085238.73-575529.4		18.99	18.70	19.08	18.22
J0855.1-0712	J085435.20-071837.5	16.39	16.26	16.07	15.93	15.29
J0856.0+7136	J085654.85+714623.8	19.79	19.05		19.75	17.29
J0858.1-1952	J085805.36-195036.8	19.19	18.54	18.63	18.93	17.76
J0904.8-3513	J090423.42-351203.0		18.27	20.10	18.26	
J0906.2-0906	J090618.05-090544.9	19.06	19.13	19.07	18.59	18.04
J0919.3-2203	J092002.74-215835.0	18.55	17.99	19.26	19.24	18.12
J0940.8-6105	J094047.33-610728.5		16.51	18.03	16.68	16.29
J0941.9-0755	J094221.46-075953.1	19.82	18.84	17.66	17.91	18.08
J0946.9-2541	J094709.52-254100.0	16.68	16.80	18.16	16.71	16.62
J1016.2-0638	J101542.96-063055.1	19.24		19.94	19.70	
J1016.2-0638	J101626.98-063625.2	19.98		19.81	18.86	18.07
J1045.5-2931	J104540.62-292726.4	19.30	19.06	18.77	19.17	18.64
J1103.9-5356	J110352.22-535700.7		16.12	17.82	16.42	16.02
J1106.3-3643	J110624.04-364659.0		18.71	19.65	19.20	18.37
J1154.1-3242	J115406.16-324243.0		17.96	19.06	19.00	17.94
J1230.2-5258	J122939.88-530332.1		16.62	18.03	17.41	16.72
J1238.1-1953	J123824.40-195913.4	18.03	17.48	17.66	17.01	17.97
J1239.5+0728	J123924.58+073017.2	19.07	17.76	19.34	17.92	17.96

Table 11: Optical magnitudes of the USNO B1 catalog for the AGUs (12h-24h).

2FGL name	WISE name	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} \mathrm{R} 1 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} 2 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} 2 \\ \mathrm{mag} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{mag} \end{gathered}$
J1301.6+3331	J130147.03+332236.3	19.82	20.04	20.33	19.38	18.92
J1303.8-5537	J130349.23-554031.6		16.82		17.92	17.63
J1304.1-2415	J130416.70-241216.6	17.10	16.56	19.94	18.16	16.60
J1304.3-4353	J130421.01-435310.2		15.75	17.48	16.10	15.48
J1307.5-4300	J130737.98-425938.9		15.75	16.26	15.58	14.98
J1307.6-6704	J130817.51-670705.8			20.40	17.68	
J1329.2-5608	J132901.16-560802.5			17.38		17.11
J1330.1-7002	J133011.34-700312.7			16.45	17.37	
J1351.3-2909	J135146.85-291217.4			20.22	19.44	
J1406.2-2510	J140609.60-250809.2	16.79	16.25	16.20	16.51	15.95
J1416.3-2415	J141642.23-241021.2	18.39	18.16	19.02	18.83	18.02
J1419.4-0835	J141922.56-083831.9	20.95	19.28	18.75	19.55	18.60
J1514.6-4751	J151440.03-474829.7		17.61		18.44	17.17
J1518.2-2733	J151803.60-273131.0	18.40	15.97	16.62	14.21	15.18
J1553.2-2424	J155331.62-242206.0	19.67	18.74	20.43	18.70	16.94
J1558.3+8513	J160031.76+850949.2	19.66	18.78	19.50	18.79	17.90
J1604.5-4442	J160431.03-444131.9		17.50	20.00		
J1626.0-7636	J162638.17-763855.4		14.89	16.12	14.94	15.05
J1725.1-7714	J172350.86-771350.3		19.12	19.71	18.94	18.31
J1811.0+5340	J181037.99+533501.5	18.88	18.77	19.34	18.45	16.71
J1815.6-6407	J181425.96-641008.8		18.87	18.96	19.02	
J1816.7-4942	J181655.99-494344.7		18.23	17.88	18.31	17.92
J1818.7+2138	J181905.22+213234.0	17.64	16.75	17.52	17.22	16.49
J1820.6+3625	J182023.61+362914.4	17.93	18.20		17.94	17.43
J1825.1-5231	J182513.79-523058.1		19.05	18.80	18.83	16.74
J1830.0+1325	J183000.76+132414.4	19.91	17.77	18.57	17.66	17.51
J1830.2-4441	J183000.86-444111.4		16.54	18.17	17.47	16.88
J1844.7+5716	J184450.96+570938.6	17.69	17.79	18.52	17.49	17.55
J1936.9+8402	J193930.23+835925.8	19.59	18.55	18.89	19.11	18.45
J1940.8-6213	J194121.76-621120.8			21.07	20.04	18.53
J1942.8+1033	J194247.48+103327.2	18.59	16.82	16.69	15.37	15.24
J1959.9-4727	J195945.66-472519.2		16.61	16.66	16.70	16.48
J2103.6-6236	J210338.38-623225.8		16.00	17.83	16.24	16.13
J2250.2-4205	J225014.94-420218.6		19.52	20.53	19.44	18.46
	J225022.20-420613.2		16.21	17.41	17.23	16.49
J2317.3-4534	J231731.97-453359.6		17.36	18.24	18.80	17.44
J2323.0-4918	J232255.30-491942.0		20.55	20.19	20.13	17.67
J2324.6+0801	J232445.31+080206.3	18.75	17.97	18.63	17.37	17.92
J2325.4+1650	J232526.62+164941.1	20.45			20.50	
	J232538.11+164642.8	18.56	18.29	17.37	17.09	17.27

[^0]: ${ }^{1}$ SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
 ${ }^{2}$ Harvard - Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA
 ${ }^{3}$ INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, 40129, Bologna, Italy
 ${ }^{4}$ INAF Istituto di Radioastronomia, via Gobetti 101, 40129, Bologna, Italy
 ${ }^{5}$ Dipartimento di Fisica, Università degli Studi di Perugia, 06123 Perugia, Italy
 ${ }^{6}$ Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy

[^1]: ${ }^{1}$ http://wise2.ipac.caltech.edu/docs/release/prelim/
 ${ }^{2}$ http://wise2.ipac.caltech.edu/docs/release/allsky/

[^2]: ${ }^{3}$ The IR magnitudes in the [3.4], [4.6], [12], [22] $\mu \mathrm{m}$ nominal WISE bands are in the Vega system.

[^3]: ${ }^{4}$ https: //confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars

[^4]: ${ }^{5}$ http://ned.ipac.caltech.edu/

[^5]: ${ }^{6}$ http://www.star.bris.ac.uk/~mbt/topcat/

