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Sizable amount of heavy-quarkonium events can be produced through W -boson decays at the
LHC. Such channels will provide a suitable platform to study the heavy-quarkonium properties.
The “improved trace technology”, which disposes the amplitude M at the amplitude-level, is helpful
for deriving compact analytical results for complex processes. As an important new application,
in addition to the production of the lower-level Fock states |(QQ̄′)[1S]〉 and |(QQ̄′)[1P ]〉, we make
a further study on the production of higher-excited |(QQ̄′)〉-quarkonium Fock states |(QQ̄′)[2S]〉,
|(QQ̄′)[3S]〉 and |(QQ̄′)[2P ]〉. Here |(QQ̄′)〉 stands for the |(cc̄)〉-charmonium, |(cb̄)〉-quarkonium and
|(bb̄)〉-bottomonium respectively. We show that sizable amount of events for those higher-excited
states can also be produced at the LHC. Therefore, we need to take them into consideration for a
sound estimation. If assuming all excited heavy-quarkonium states decay to the ground spin-singlet
[11S0]-wave state with 100% efficiency via electromagnetic or hadronic interactions, we obtain the
total decay width by adding all the mentioned Fock states together; i.e. by taking the bound-state
parameters under the Buchmüller-Tye potential model, we obtain ΓW+→|(cc̄)〉+cs̄ = 591.3 KeV,
ΓW+→|(cb̄)〉+bs̄ = 27.0 KeV, ΓW+→|(cb̄)〉+cc̄ = 2.01 KeV, and ΓW+→|(bb̄)〉+cb̄ = 93.3 eV. At the LHC

with the luminosity L ∝ 1034cm−2s−1 and the center-of-mass energy
√
S = 14 TeV, this shows

that 8.7× 106 ηc and J/Ψ, 4.3× 105 Bc and B∗
c , 1.4× 103 ηb and Υ events per year can be obtained

through W+ decays.

PACS numbers: 12.38.Bx, 14.40.Pq, 14.70.Fm

I. INTRODUCTION

Within the framework of Non-Relativistic QCD
(NRQCD) [1], a doubly heavy meson is considered as
an expansion of Fock states. A systematic study on the
production of lower |(QQ̄′)〉-quarkonium Fock states at
the 1S-level (|(QQ̄′)[11S0]〉 and |(QQ̄′)[13S1]〉) and the
1P -level (|(QQ̄′)[11P1]〉 and |(QQ̄′)[13PJ ]〉(J = 0, 1, 2))
via the W+ semi-inclusive decays has been done in
Ref.[2]. Here |(QQ̄′)〉-quarkonium stands for the |(cc̄)〉-
charmonium, |(cb̄)〉-quarkonium and |(bb̄)〉-bottomonium
respectively. At the LHC, due to its high collision
energy and high luminosity, sizable amount of heavy-
quarkonium events can be produced through W+ decays
[2, 3]. So these channels maybe an important supplement
for other measurements at the LHC.
In this paper, we will make a further discussion on

the production of even higher |(QQ̄′)〉-quarkonium Fock
states via the W+ semi-inclusive decays, which are at
the nS-level (|(QQ̄′)[nS]〉) and nP -level (|(QQ̄′)[nP ]〉)
with n ≥ 2 respectively. As shown in Ref.[2], due to the
color-suppression of the amplitude and the relative ve-
locity suppression of the color-octet matrix element, the
color-octet (QQ̄′)-component provides negligible contri-
butions, so at the present, we will only discuss the color-
singlet states’ production channels. Moreover, because
the W decay-widths to the |(bb̄)〉-bottomonium states
are quite small, we will concentrate our attention on
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the |(cc̄)〉-charmonium and the |(cb̄)〉-quarkonium pro-
duction.
For the purpose, we will deal with the 1 → 3 de-

cay channel, W+ → |(QQ̄′)[n]〉 + q + q̄′, which is a
short notation for the following four semi-inclusive de-
cay channels: W+ → |(cc̄)[n]〉+ cs̄, W+ → |(cb̄)[n]〉+ bs̄,
W+ → |(cb̄)[n]〉 + cc̄ and W+ → |(bb̄)[n]〉 + cb̄, respec-
tively. Here n stands for the corresponding quantum
number of the heavy |(QQ̄′)〉-quarkonium Fock state, q
and q̄′ stand for the outgoing quark and anti-quark. In-
tuitively, the heavy-quarkonium production could be un-
derstood in terms of two distinct steps: one is the pro-
duction of the heavy (QQ̄′)-pair with certain quantum
number n, together with the out-going quark q and anti-
quark q̄′; and the second subsequent step is the evolution
of such QQ̄′ pair into a quarkonium bound state. The
first step is pQCD calculable, where the quantum state
[n] of the (QQ̄′)-pair can be achieved by a suitable pro-
jector [4–6], and the second step is characterized by a
non-perturbative matrix element which is proportional
to the inclusive transition probability of the perturba-
tive (QQ̄′)-pair with certain quantum number [n] into a
bound state |(QQ̄′)[n]〉 [1].
To deal with the heavy-quarkonium production

through the W+ semi-inclusive decays, one needs to de-
rive the pQCD calculable squared amplitude. The usual
way is to deal with the squared amplitude |M|2. Be-
cause of the emergence of massive-fermion lines, the an-
alytical expression for the squared amplitude becomes
too complex and lengthy for more (massive) particles in
the final states and for higher-level Fock states to be
generated. For example, to derive the amplitudes for
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the P -wave states, one also needs to get the derivative
of the amplitudes over the relative momentum of the
constitute quarks. It has been found that to do the
numerical calculation using this conventional squared-
amplitude technology becomes time-consuming for those
complex processes, since the cross-terms of the matrix
elements increase with the increment of Feynman dia-
grams, |M|2 =

∑

ij MiM∗
j , where i and j stand for the

number of Feynman diagrams of the process.
One important way to solve this is to deal with the pro-

cess directly at the amplitude level. For the purpose, the
“improved trace technology” is suggested and developed
in the literature [7–11]. After generating proper phase-
space points, one first calculate the numerical value for
the amplitudes Mi, and then sum these values alge-
braically and square it to get the squared amplitude,
|M|2 = |

∑

i Mi|2; through such way, numerical sim-
ulation efficiency can be greatly improved in compari-
son to the conventional squared-amplitude technology.
Moreover, under the approach, many simplifications can
be done at the amplitude level due to the fermion-line
symmetries and the specific properties of each heavy-
quarkonium Fock states, then, we can even written down
the analytic expressions for the amplitude.
The remaining parts of this paper are organized as fol-

lows: In Sec.II, we give a short review of dealing the W+

semi-inclusive decays by using the “improved trace tech-
nology”. In Sec.III, we present the numerical results and
discuss on the properties of the heavy-quarkonium pro-
duction throughW+ decays. The final section is reserved
for a summary.

II. A SHORT REVIEW OF THE CALCULATION

TECHNOLOGY

Our present method for deriving the decay width of
W+(k) → |(QQ̄′)[n]〉(q3) + q(q2) + q̄′(q1), especially the
pQCD calculable part, is the same as that of Ref.[2], for
self-consistency, we will list the main points here.
According to the NRQCD factorization formula [12],

the differential decay width ofW+(k) → |(QQ̄′)[n]〉(q3)+
q(q2) + q̄′(q1) can be factorized as

dΓ =
∑

n

dΓ̂(W+ → (QQ̄′)[n] + qq̄′)〈OH(n)〉, (1)

where 〈OH(n)〉 describes the hadronization of a QQ̄′-pair
into the observable quark state H and is proportional
to the transition probability of the perturbative state
(QQ̄′)[n] into the bound state |(QQ̄′)[n]〉. The parame-
ters k and qi are momenta of the corresponding out-going
particles.
The short-distance differential decay width

dΓ̂(W+ → (QQ̄′)[n] + qq̄′) =
1

2k0

∑

|M|2dΦ3, (2)

where
∑

means that we need to average over the spin
states of the initial particles and to sum over the color

and spin of all the final particles. In the W+ rest frame,
the three-particle phase space can be written as

dΦ3 = (2π)4δ4



k −
3

∑

f

qf





3
∏

f=1

d3~qf
(2π)32q0f

. (3)

The 1 → 3 phase space with massive quark/antiqark in
the final state can be found in Refs.[9, 10]. With the help
of the formulas listed in Refs.[9, 10], one can not only
derive the whole decay width but also obtain the corre-
sponding differential decay widths that are helpful for ex-
perimental studies, such as dΓ/ds1, dΓ/ds2, dΓ/d cos θ13
and dΓ/d cos θ23, where s1 = (q1 + q3)

2, s2 = (q1 + q2)
2,

θ13 is the angle between ~q1 and ~q3 in the W+ rest frame,
and θ23 is the angle between ~q2 and ~q3 in the W+ rest
frame. Especially, the partial decay-widths over s1 and
s2 can be expressed as:

dΓ

ds1ds2
=

〈OH
1 (n)〉

256π3m3
W

∑

|M|2, (4)

wheremW stands for theW -boson mass. The integration
over s1 and s2 can be done with the help of the VEGAS
program [13] 1.
Selection of appropriate angular momentum quantum

number for the quarkonium state is done by suitable pro-
jector and by performing proper polarization sum [4–
6]. The color-singlet non-perturbative matrix-element
〈OH

1 (n)〉 can be related to the Schrödinger wavefunctions
at the origin |ψ(QQ̄′)(0)| or the first derivative of the wave-
functions at the origin |ψ′

(QQ̄′)
(0)|. For the color-singlet

[nS]- and [nP ]- wave states, we have [5, 16]

〈OH
1 (nS)〉 ≃ |ψ|(QQ̄′)[nS]〉(0)|2, (5)

〈OH
1 (nP )〉 ≃ |ψ′

|(QQ̄′)[nP ]〉(0)|2. (6)

Here we have adopted the convention of Ref.[5] for
the non-perturbative matrix elements. Since the spin-
splitting effects are small, we will not distinguish the
difference between the wavefunction parameters for the
spin-singlet and spin-triplet states at the same n-th level.

W+(k)

s̄(q1)

Q′(q2)

|(cQ̄′)[n]〉(q3)

W+(k)

s̄(q1)

Q′(q2)

|(cQ̄′)[n]〉(q3)

FIG. 1. Feynman diagrams for the process W+(k) →
|(cQ̄′)[n]〉(q3) +Q′(q2)s̄(q1), where Q′ stands for c or b quark
accordingly, and |(cQ̄′)[n]〉 stands for a heavy-quarkonium
Fock state.

1 The improved VEGAS version can be found in the programs
BCVEGPY [14] and GENXICC [15].
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W+(k)

c(q2)

Q̄(q1)

|(Qb̄)[n]〉(q3)

W+(k)

c(q2)

Q̄(q1)

|(Qb̄)[n]〉(q3)

FIG. 2. Feynman diagrams for the process W+(k) →
|(Qb̄)[n]〉(q3)+c(q2)Q̄(q1), where Q stands for the c or b quark
accordingly, and |(Qb̄)[n]〉 stands for a heavy-quarkonium
Fock state.

The amplitude M for the mentioned channels can be
calculated from two types of Feynman diagrams which
are shown in Figs.(1,2) respectively. We present the two
process W+ → |(cc̄)[n]〉+ cs̄ and W+ → |(cb̄)[n]〉+ bs̄ as
W+(k) → |(cQ̄′)[n]〉(q3) + Q′(q2)s̄(q1), where Q′ stands
for c or b quark accordingly. We present the two processes
W+ → |(cb̄)[n]〉+cc̄ andW+ → |(bb̄)[n]〉+cb̄ asW+(k) →
|(Qb̄)[n]〉(q3) + c(q2)Q̄(q1), where Q stands for the c or
b quark accordingly. In those Feynman diagrams, the
intermediate gluon should be hard enough to produce a
cc̄ pair or bb̄ pair, so the amplitude is perturbative QCD
calculable.
For each production channel, the pQCD calculable am-

plitude for a specific spin-state combination Mss′ can be
generally expressed as

iMss′ = Cūsi(q2)
2

∑

n=1

Anvs′j(q1), (7)

where s and s′ are spin indices, i and j are color in-
dices for the outgoing quark and antiquark. The overall

factor C =
2gg2

sVCKM

3
√
6

δij . VCKM stands for the Cabibbo-

Kobayashi-Maskawa matrix element, VCKM = Vcs for
W+ → |(cc̄)[n]〉+ cs̄ and W+ → |(cb̄)[n]〉+ bs̄; VCKM =
Vcb for W+ → |(cb̄)[n]〉+ cc̄ and W+ → |(bb̄)[n]〉+ cb̄.
The expressions for An can be read from Figs.(1,2),

and then we deal with the amplitudeM by using the “im-
proved trace technology” [7–11]. Under such approach,
we first arrange the amplitude into four orthogonal sub-
amplitudes M±s±s′ according to the spins of the out-
going quark q with spin s and antiquark q̄′ with spin
s′. After summing up the spin states of the outgoing
quark/antiquark, the squared amplitude can be divided
into four orthogonal parts,

|M|2 = |M1|2 + |M2|2 + |M3|2 + |M4|2, (8)

where the four amplitudes Mi (i = 1, · · · , 4) are defined
as

M1 =
Mss′ +M−s−s′√

2
, M2 =

Mss′ −M−s−s′√
2

,

M3 =
Ms−s′ −M−ss′√

2
, M4 =

Ms−s′ +M−ss′√
2

.(9)

These four amplitudes Mi can be transformed into trace
forms by properly dealing with the massive spinors with

the help of an arbitrary light-like momentum k0 and an
arbitrary space-like momentum k1 (k21 = −1), k0 and k1
satisfy the constraint k0 · k1 = 0.
More explicitly, we first introduce a massless spinor

with negative helicity u−(k0) which satisfies the following
projection

u−(k0)ū−(k0) = ω− 6k0, (10)

where ω− = (1 − γ5)/2. Then, we construct the positive
helicity state as

u+(k0) = 6k1u−(k0). (11)

It is easy to check that u+(k0)ū+(k0) = ω+ 6 k0, where
ω+ = (1 + γ5)/2. Using these two massless spinors, the
massive spinors for the fermion and antifermion can be
written as follows:

us(q) = (6q +m)u−(k0)/
√

2k0 · q, (12)

u−s(q) = (6q +m)u+(k0)/
√

2k0 · q, (13)

vs(q) = (6q −m)u−(k0)/
√

2k0 · q, (14)

v−s(q) = (6q −m)u+(k0)/
√

2k0 · q, (15)

where the spin vector sµ =
qµ
m

− m
q·k0

k0µ.

Using the above relations, the amplitudes Mi can be
conveniently transformed into trace forms. And then we
do the trace of the Dirac γ-matrix strings which will re-
sult in explicit series over some limited and independent
Lorentz-structures. The final results are independent of
the choice of k0 and k1, one can choose them to be those
that can maximumly simply the analytical expressions
of the amplitude. The compact and complex expressions
for the amplitudes of the S-wave and P -wave cases can
be found in the appendix of Ref.[2].
These results provide the foundation for estimating the

higher Fock-states’ properties.
Even though it is hard to get the analytic results for the

conventional squared-amplitude technology, as a cross-
check, we also adopt it to calculate theW+-decay widths
numerically. Under the same parameter values, we have
found agreement of these two approaches.

III. NUMERICAL RESULTS AND

DISCUSSIONS

A. Input parameters

When doing the numerical calculation, the input pa-
rameters are chosen as the following values [17, 18]:
mW = 80.399 GeV, ΓW+ = 2.085 GeV, ms = 0.105
GeV, |Vcs| = 1.023 ± 0.036 and |Vcb| = 0.0406 ±
0.0013. Leading-order αs running is adopted. An op-
timal process to set the renormalization scale µr has re-
cently been suggested in the literature, i.e. the Prin-
ciple of Maximum Conformality (PMC) [19], which is
renormalization-scheme independent and can provide al-
most renormalization-scale independent estimation even
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n = 1 n = 2 n = 3

|R|(cc̄)[nS]〉(0)|2 0.810 GeV3 0.529 GeV3 0.455 GeV3

|R′

|(cc̄)[nP ]〉(0)|2 0.075 GeV5 0.102 GeV5 ∼
|R|(cb̄)[nS]〉(0)|2 1.642 GeV3 0.983 GeV3 0.817 GeV3

|R′

|(cb̄)[nP ]〉(0)|2 0.201 GeV5 0.264 GeV5 ∼
|R|(bb̄)[nS]〉(0)|2 6.477 GeV3 3.234 GeV3 2.474 GeV3

|R′

|(bb̄)[nP ]〉(0)|2 1.417 GeV5 1.653 GeV5 ∼
mc 1.48 GeV 1.70 GeV 1.90 GeV

mb 4.88 GeV 5.00 GeV 5.10 GeV

TABLE I. Bound-state parameters adopted in the calculation,
which are derived under the Buchmüller-Tye potential [20].

at the fixed-order. However to set the leading-order
PMC scale, one needs to know the next-to-leading order
{βi}-terms which will be absorbed into the αs-running
to form a commensurate leading-order PMC scale. For
the present leading-order calculation, since Γ ∝ α2

s(µr),
the renormalization scale-uncertainty can be easily fig-
ured out when we know the physical scale well. For clar-
ity, we set µr to the conventional choice of 2mc, and
αs(2mc) = 0.26.
As for the wavefunction at the origin and the first

derivative of the wavefunction at the origin, we adopt
the values derived in Ref.[20] under the Buchmüller-Tye-
potential (BT-potential) model as their central values,
since it is noted that the BT-potential has the correct
two-loop short-distance behavior in pQCD [21]. The re-
sults for three other potential models, i.e. the Power-Law
model [22], the Logarithmic model [23] and the Cornell
model [24], will be adopted as an error analysis. Further-
more, similar to our previous treatment [2], we adopt the
same constitute quark masses for the same n-th level Fock
states. To ensure the gauge invariance of the hard am-
plitude, we set the |(QQ̄′)〉-quarkonium mass M to be
mQ +mQ′ .
We present the quarkonium bound-state parameters

under the BT-potential model in Table I, where the
constitute charm- and bottom- quark masses, the ra-
dial wavefunction at the origin and the first derivative
of the radial wavefunctions at the origin for |(QQ̄′)[n]〉-
quarkonium are presented. Here R|(QQ̄′)[nS]〉(0) and

R
′

|(QQ̄′)[nP ]〉(0) are related to the wavefunction at the ori-

gin and the first derivative of the wavefunction at the
origin through the following equations:

|Ψ|(QQ̄′)[nS]〉(0)| =
√

1/4π|R|(QQ̄′)[nS]〉(0)|,
|Ψ′

|(QQ̄′)[nP ]〉(0)| =
√

3/4π|R′
|(QQ̄′)[nP ]〉(0)|. (16)

B. Heavy-quarkonium production via W+ decays

The decay widths for the aforementioned quarko-
nium states through the production channel, W+ →
|(QQ̄′)[n]〉+ qq̄′, are listed in Tables II and III.

n=1 n=2 n=3

W+ → |(cc̄)[n1S0]〉 + cs̄ 132.0 56.36 22.85

W+ → |(cc̄)[n3S1]〉 + cs̄ 136.4 58.30 33.38

W+ → |(cb̄)[n1S0]〉 + bs̄ 6.39 3.53 2.74

W+ → |(cb̄)[n3S1]〉 + bs̄ 5.49 3.07 2.41

W+ → |(cb̄)[n1S0]〉 + cc̄ 0.411 0.160 0.094

W+ → |(cb̄)[n3S1]〉 + cc̄ 0.593 0.224 0.128

TABLE II. Decay widths (in unit: KeV) for the production
of |(QQ̄′)[nS]〉-quarkonium through W+ decays.

n=1 n=2

W+ → |(cc̄)[n1P1]〉 + cs̄ 22.95 12.98

W+ → |(cc̄)[n3P0]〉 + cs̄ 28.33 17.21

W+ → |(cc̄)[n3P1]〉 + cs̄ 28.31 19.07

W+ → |(cc̄)[n3P2]〉 + cs̄ 14.76 8.414

W+ → |(cb̄)[n1P1]〉 + bs̄ 0.270 0.360

W+ → |(cb̄)[n3P0]〉 + bs̄ 0.733 0.693

W+ → |(cb̄)[n3P1]〉 + bs̄ 0.514 0.724

W+ → |(cb̄)[n3P2]〉 + bs̄ 0.034 0.039

W+ → |(cb̄)[n1P1]〉+ cc̄ 0.105 0.066

W+ → |(cb̄)[n3P0]〉+ cc̄ 0.026 0.019

W+ → |(cb̄)[n3P1]〉+ cc̄ 0.054 0.036

W+ → |(cb̄)[n3P2]〉+ cc̄ 0.060 0.037

TABLE III. Decay widths (in unit: KeV) for the production
of |(QQ̄′)[nP ]〉-quarkonium through W+ decays.

From Tables II and III, it is found that in addition to
the ground 1S-level states, the higher (QQ̄′)-quarkonium
states can also provide sizable contributions to the total
decay width; i.e.,

• For the charmonium production channel, W+ →
|(cc̄)[n]〉+cs̄, the decay widths for [n] = 2S, 3S, 1P
and 2P -wave states are about 43%, 21%, 35% and
21% of that of the 1S-level wave state, respectively.

• For the (cb̄)-quarkonium production channel,
W+ → |(cb̄)[n]〉+bs̄, the decay widths for [n] = 2S,
3S, 1P and 2P -wave states are about 55%, 43%,
13% and 15% of that of the 1S-level, respectively.

• For the (cb̄)-quarkonium production channel,
W+ → |(cb̄)[n]〉+cc̄, the decay widths for [n] = 2S,
3S, 1P and 2P -wave states are about 38%, 22%,
24% and 16% of that of the 1S-level, respectively.

Here, for convenience, we have used [nS] to represent the
summed decay width of [n1S0] and [n3S1] at the same
n-th level; [nP ] to represent the summed decay width of
[n1P1] and [n3PJ ] at the same n-th level.
To show the relative importance among different Fock-

states more clearly, we present the differential distribu-
tions dΓ/ds1, dΓ/ds2, dΓ/d cos θ13 and dΓ/d cos θ12 for
the mentioned channels in Figs.(3,4,5) and Figs.(6,7,8).
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|(cb̄)[2S]〉, |(cb̄)[3S]〉, |(cb̄)[1P ]〉 and |(cb̄)[2P ]〉, respectively.
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FIG. 6. Differential decay widths dΓ/d cos θ13 and
dΓ/d cos θ23 for W+ → |(cc̄)[n]〉 + cs̄, where the diamond,
the dash-dot, the dotted, the solid and the dashed lines are
for |(cc̄)[1S]〉, |(cc̄)[2S]〉, |(cc̄)[3S]〉, |(cc̄)[1P ]〉 and |(cc̄)[2P ]〉,
respectively.
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FIG. 7. Differential decay widths dΓ/d cos θ13 and
dΓ/d cos θ23 for W+ → |(cb̄)[n]〉 + bs̄, where the diamond,
the dash-dot, the dotted, the solid and the dashed lines are
for |(cb̄)[1S]〉, |(cb̄)[2S]〉, |(cb̄)[3S]〉, |(cb̄)[1P ]〉 and |(cb̄)[2P ]〉,
respectively.
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FIG. 8. Differential decay widths dΓ/d cos θ13 and
dΓ/d cos θ23 for W+ → |(cb̄)[n]〉 + cc̄, where the diamond,
the dash-dot, the dotted, the solid and the dashed lines are
for |(cb̄)[1S]〉, |(cb̄)[2S]〉, |(cb̄)[3S]〉, |(cb̄)[1P ]〉 and |(cb̄)[2P ]〉,
respectively.

Moreover, taking the channel W+ → |(cc̄)[n]〉+ cs̄ as an
example, we define a ratio

Ri[n] =
dΓ/dsi(|(cc̄)[n]〉)
dΓ/dsi(|(cc̄)[1S]〉)

, (17)

where i = 1, 2. The curves are presented in Fig.(9).
These figures show explicitly that higher Fock-states
|(QQ̄′)[2S]〉, |(QQ̄′)[3S]〉, |(QQ̄′)[1P ]〉 and |(QQ̄′)[2P ]〉
can provide sizable contributions in comparison to the
lower Fock-state |(QQ̄′)[1S]〉 in almost the whole kine-
matical region.
If assuming all the higher excited heavy-quarkonium

states decay to the ground spin-singlet S-wave state
((QQ̄′)|[11S0]〉) with 100% efficiency via electromagnetic
or hadronic interactions, we obtain the total decay width

ΓW+→|(cc̄)〉+cs̄ = 591.3 KeV, (18)

ΓW+→|(cb̄)〉+bs̄ = 27.0 KeV, (19)

ΓW+→|(cb̄)〉+cc̄ = 2.01 KeV, (20)

ΓW+→|(bb̄)〉+cb̄ = 93.3 eV. (21)

It shows that the total decay width of the bottomonium
case is small as previously mentioned.
At the LHC, with the luminosity Lp−p = 1034cm−2s−1

and the center-of-mass energy
√
s = 14 TeV, about

3.07 × 1010 of W+ events per year can be produced
[25]. Then, we can estimate the event numbers of
|(QQ̄′)〉-quarkonium production throughW+ decays; i.e.
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FIG. 9. The ratios R1[n] and R2[n] versus s1 and s2 for the
channel W+ → |(cc̄)[n]〉 + cs̄. Here the dotted, the dash-dot,
the solid and the dashed lines are for |(cc̄)[2S]〉, |(cc̄)[3S]〉,
|(cc̄)[1P ]〉 and |(cc̄)[2P ]〉, respectively.

B.T.[21] P.L.[22] Log.[23] Cor.[24]

[n] = [11S0] 132.0 162.8 132.8 236.9

[n] = [13S1] 136.4 168.3 137.3 244.9

[n] = [21S0] 56.36 59.55 44.53 98.76

[n] = [23S1] 58.30 61.60 46.06 102.2

[n] = [31S0] 22.85 20.59 14.36 39.72

[n] = [33S1] 33.38 30.08 20.98 58.04

[n] = [11P1] 22.95 38.25 23.87 40.09

[n] = [13P0] 28.33 47.22 29.47 49.49

[n] = [13P1] 28.31 47.18 29.44 49.45

[n] = [13P2] 14.76 24.59 15.35 25.77

[n] = [21P1] 12.98 16.67 9.673 23.67

[n] = [23P0] 17.21 22.10 12.82 31.38

[n] = [23P1] 19.07 24.50 14.21 34.78

[n] = [23P2] 8.414 10.81 6.269 15.34

sum 591.3 734.2 537.1 1050.

TABLE IV. Decay widths (in unit: KeV) for (cc̄)-charmonium
production channel W+ → |(cc̄)[n]〉 + cs̄, where bound-state
parameters from four potential models are adopted.

3.95 × 106 |(cc̄)[1S]〉, 1.69 × 106 |(cc̄)[2S]〉, 8.29 × 105

|(cc̄)[3S]〉, 1.39 × 106 |(cc̄)[1P ]〉, 8.49 × 105 |(cc̄)[2P ]〉
events per year can be produced; 1.90 × 105 |(cb̄)[1S]〉,
1.03 × 105 |(cb̄)[2S]〉, 7.91 × 104 |(cb̄)[3S]〉, 2.64 × 104

|(cb̄)[1P ]〉, 2.91 × 104 |(cb̄)[2P ]〉 events per year can be
produced.

C. Decay widths under four potential models

Next, we discuss the uncertainty caused by the
bound-state parameters. These parameters are main
uncertainty sources for estimating the heavy |(QQ̄′)〉-
quarkonium production. We take the parameters derived
under four potential models, i.e. the Buchmüller-Tye
model [21], the Power-Law model [22], the Logarithmic
model [23] and the Cornell model [24], to do our discus-
sion. We take the symbols B.T., P.L., Log. and Cor.
as short notations for the Buchmüller-Tye model, the
Power-Law model, the Logarithmic model and the Cor-

B.T.[21] P.L.[22] Log.[23] Cor.[24]

[n] = [11S0] 6.39 6.66 5.87 12.4

[n] = [13S1] 5.49 5.72 5.05 10.7

[n] = [21S0] 3.53 3.41 2.76 6.33

[n] = [23S1] 3.07 2.97 2.40 5.51

[n] = [31S0] 2.74 2.28 1.89 4.84

[n] = [33S1] 2.41 2.01 1.66 4.26

[n] = [11P1] 0.270 0.439 0.321 0.459

[n] = [13P0] 0.733 1.19 0.871 1.25

[n] = [13P1] 0.514 0.836 0.611 0.875

[n] = [13P2] 0.0336 0.0547 0.0400 0.0572

[n] = [21P1] 0.360 0.480 0.326 0.629

[n] = [23P0] 0.693 0.924 0.627 1.21

[n] = [23P1] 0.724 0.965 0.655 1.26

[n] = [23P2] 0.0392 0.0522 0.0355 0.0684

sum 27.0 28.0 23.1 49.8

TABLE V. Decay widths (in unit: KeV) for (cb̄)-quarkonium
production through W+ → |(cb̄)[n]〉 + bs̄, where bound-state
parameters from four potential models are adopted.

B.T.[21] P.L.[22] Log.[23] Cor.[24]

[n] = [11S0] 0.411 0.428 0.378 0.798

[n] = [13S1] 0.593 0.618 0.545 1.15

[n] = [21S0] 0.160 0.155 0.126 0.288

[n] = [23S1] 0.224 0.216 0.175 0.402

[n] = [31S0] 0.0942 0.0784 0.0649 0.166

[n] = [33S1] 0.128 0.107 0.0883 0.227

[n] = [11P1] 0.105 0.170 0.124 0.178

[n] = [13P0] 0.0255 0.0415 0.0303 0.0434

[n] = [13P1] 0.0536 0.0872 0.0637 0.0912

[n] = [13P2] 0.0598 0.0972 0.0711 0.102

[n] = [21P1] 0.0659 0.0878 0.0596 0.115

[n] = [23P0] 0.0185 0.0247 0.0168 0.0324

[n] = [23P1] 0.0364 0.0486 0.0330 0.0636

[n] = [23P2] 0.0374 0.0498 0.0338 0.0653

sum 2.01 2.21 1.81 3.72

TABLE VI. Decay widths (in unit: KeV) for (cb̄)-quarkonium
production through W+ → |(cb̄)[n]〉 + cc̄, where bound-state
parameters from four potential models are adopted.

nell model, respectively. The constitute quark masses
and their corresponding radial wavefunctions at the ori-
gin and the first derivative of the radial wavefunctions
at the origin for the |(QQ̄′)〉-quarkonium states can be
found in Tables I, II and III of Ref.[20]. To short the
paper, we do not repeat them here.
The decay width for |(QQ̄′)〉-quarkonium production

under four potential models are presented in Tables
IV, V and VI. The Cornell model, which is a naive
Coulomb-plus-linear potential, always gives the largest
values among the four models. While, the decay widths
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for the other three models are consistent with each other:
taking the BT-model decay width as the center value, for
the channel W+ → |(cc̄)[n]〉 + cs̄, we obtain the uncer-

tainty
(

+24%
−9%

)

, where the upper value is for the Power-

Law model and the lower value is for the Logarithmic
model; for the channelW+ → |(cb̄)[n]〉+bs̄, we obtain the

uncertainty
(

+4%
−15%

)

; for the channelW+ → |(cb̄)[n]〉+cc̄,
we obtain the uncertainty ±10%.

IV. SUMMARY

In addition to our previous studies on the lower Fock
states’ production presented in Ref.[2], we have car-
ried out an investigation on the higher-excited |(QQ̄)〉-
quarkonium states’ production through W+-boson semi-
inclusive decays.
For the |(cc̄)〉-charmonium production channel W+ →

|(cc̄)[n]〉 + cs̄, the decay width for [n] = 2S, 3S, 1P and
2P states are about 43%, 21%, 35% and 21% of that of
the 1S-level; For the |(cb̄)〉-quarkonium production chan-
nel W+ → |(cb̄)[n]〉 + bs̄, the decay width for [n] = 2S,
3S, 1P and 2P states are about 55%, 43%, 13% and 15%
of that of the 1S-level; For the |(cb̄)〉-quarkonium pro-

duction channel W+ → |(cb̄)[n]〉 + cc̄, the decay width
for [n] = 2S, 3S, 1P and 2P states are about 38%, 22%,
24% and 16% of that of the 1S-level. Then these higher-
excited nS-level and nP -level states with n ≥ 2 can also
provide sizable contributions to the heavy quarkonium
production. Therefore, we need to take these higher ex-
cited states into consideration for a sound estimation.

At the LHC with the luminosity L ∝ 1034cm−2s−1 and
the center-of-mass energy

√
S = 14 TeV, with the help of

Eqs.(18,19,20,21), one can obtain 8.7× 106 ηc and J/Ψ,
4.3 × 105 Bc and B∗

c and 1.4 × 103 ηb and Υ events per
year. Uncertainties caused by the bound-state parame-
ters are presented, four potential models are adopted for
the purpose. It is found that the decay widths for the
BT model, the Power-Law model and the Logarithmic
are consistent with each other, whereas the naive Cornell
model is not.
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