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I. INTRODUCTION

In Ref. [1] the authors put forward a concept of coherent electron cooling of hadrons.

At the core of the concept lies the following idea: a density perturbation induced by an

hadron in a co-propagating electron beam is amplified by several orders of magnitude in a

free electron laser (FEL). After the FEL the electron beam is merged again with the hadron

one and the amplified electric field in the electron beam acts back on each hadron resulting,

after many repetitions, in a cooling of the hadron beam. The efficiency of the process is

critically determined by the amplification factor of the longitudinal electric field induced by

the hadron in the electron beam. The authors associate this amplification with the FEL gain

factor. In this note we show that it is actually considerably smaller than the (conventionally

defined) FEL gain with the smallness parameter to be the relative bandwidth σω/ω0 of the

FEL amplifier.

II. AMPLIFICATION OF THE LONGITUDINAL FIELD INDUCED BY HADRON

In our analysis we use a standard one-dimensional linear FEL theory which gives a rea-

sonably good approximation for typical parameters of modern FELs, (see, e.g., [2, 3]). For

simplicity we assume a helical undulator with the undulator parameter K, the undulator

period λu = 2π/ku and length lu. An electron beam with a localized line density perturba-

tion δn0(z) induced by an hadron (δn0 has dimension of inverse length, z is the longitudinal

coordinate inside the bunch in the direction of propagation) enters the FEL. Following [3]

we use the dimensionless undulator length τ = kulu.

We expand δn0(z) into Fourier integral and then use linear FEL theory to propagate each

harmonic from the beginning to the end of the FEL assuming a high-gain FEL process. The

density at the exit δn0(z, τ) is Fourier transformed over z

δnq(τ) =

∫ ∞
−∞

dze−ik0(1+q)zδn0(z, τ), (1)

where k0 = ω0/c = 2γ2ku/(1 + K2) corresponds to the fundamental FEL frequency and q

is the dimensionless detuning. In a linear approximation, assuming a cold beam, the FEL

instability develops as δnq ∝ esτ with s satisfying the following dispersion equation

s2(s+ iq) = i(2ρ)3, (2)
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and ρ the standard FEL parameter defined by

(2ρ)3 =
2λu
γk0S

K2

1 +K2

I

IA
, (3)

where γ is the beam Lorentz factor, S is the beam area, I is the beam current and IA =

mc3/e ≈ 17 kA is the Alfven current. A useful approximation for s for small detuning is

given in [3]

s ≈ 2ρ

[
µ− i

3

q

2ρ
− 1

9µ

(
q

2ρ

)2
]
, (4)

with roots si corresponding to the three values of µ in (4): µ1 =
√
3
2

+ i
2
, µ2 = −

√
3
2

+ i
2

and

µ3 = −i. In what follows we assume a large gain, when the terms involving s2 and s3 can

be neglected. In this limit only the fastest growing exponential term involving s1 is kept.

The Fourier transform δnq(τ) at the exit of the FEL in this limit can be expressed in terms

of the initial value δnq(0) [3]

δnq(τ) = (s1 + iq)Hq(τ)δnq(0), (5)

where

Hq(τ) =
s1e

s1τ

(s1 − s2)(s1 − s3)
. (6)

Let us assume that δn0(z) corresponds to a localized perturbation at z = 0 that carries

a charge Ze. If the width in z of the perturbation is smaller than the reduced radiation

wavelength 1/k0 it can be approximated by a delta function δ(z):

δn0(z) = Zδ(z) (7)

and δnq(0) = Z. Note that E0 = 2πZe/S is the initial electric field of the localized pertur-

bation (7) in 1D model.

The density perturbation δn(z, τ) is given by the inverse Fourier transformation

δn(z, τ) =
k0
2π

∫ ∞
−∞

dqeik0(1+q)zδnq(τ) =
1

2π
k0Ze

ik0z

∫ ∞
−∞

dqeik0zq(s1 + iq)Hq(τ). (8)

In the expression for (s1+iq)Hq(τ) we can neglect q in comparison with s everywhere, except

in the exponent of es1τ , which with the help of (4) gives

s1Hq(τ) =
1

3
exp

(
2ρτ

[√
3

2
+
i

2
− i

3

q

2ρ
− 1

9

(√
3

2
− i

2

)(
q

2ρ

)2
])

. (9)
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We obtain

δn(z, τ) =
1

6π
k0Ze

ik0z+(
√
3+i)ρτ

∫ ∞
−∞

dqeik0zq exp

(
τ

[
− i

3
q − 1

9

(√
3− i

) q2
4ρ

])
. (10)

The integral in (10) is easily computed∫ ∞
−∞

dqeik0zq exp

(
τ

[
− i

3
q − 1

9

(√
3− i

) q2
4ρ

])
=

√
ρ

τ

6
√
π√

31/2 − i
e
− ρ(τ−3k0z)

2

(
√
3−i)τ . (11)

We see that for a given τ (the undulator length) δn(z, τ) has a Gaussian distribution over

z. The maximal value of |δn(z, τ)| is achieved at the point where the argument of the

exponential function in (11) is equal to zero, k0z = τ/3. Introducing the standard power

gain length Lg

L−1g = 2
√

3ρku (12)

we replace ρτ = lu/2
√

3Lg and obtain

max |δn(z, τ)| = 31/4

√
π
k0Zρ

√
Lg
lu
elu/2Lg . (13)

The longitudinal electric field δE‖(z, τ) generated by the density perturbation δn(z, τ) is

found from the 1D Poisson equation. This equation is trivially solved if one remembers that

δn(z, τ) has a fast oscillating factor eik0z in it, hence

max |δE‖(z, τ)| = 4πe

k0S
max |δn(z, τ)| = 4πZe

S

31/4

√
π
ρ

√
Lg
lu
elu/2Lg . (14)

We can write the result (14) as the initial field E0 multiplied by an amplification factor G,

max |δE‖(z, τ)| = GE0, where

G = 2
31/4

√
π
ρ

√
Lg
lu
elu/2Lg . (15)

This factor G can be related to the (amplitude) FEL amplification factor GFEL. The latter is

usually defined as a ratio of the final (exit) amplitude of a sinusoidal density perturbation at

the resonant frequency (q = 0) to its initial value; in our notation GFEL = |δnq(τ)/δnq(0)|q=0.

Using (5) we find

GFEL = |s1Hq(τ)|q=0 =
1

3
elu/2Lg . (16)
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We see that the amplification factor G of the longitudinal field (15) is much smaller than

the FEL amplification factor

G = 2
35/4

√
π
ρ

√
Lg
lu
GFEL, (17)

in contrast to the statement in [1] where it seems that G is identified with GFEL. Note that

Eq. (17) can be also written as

G ≈ σω
ω0

GFEL, (18)

which shows that the smallness of G in comparison with GFEL is due to the narrow amplifi-

cation line of the FEL. Given that the parameter ρ is a small quantity, of order of 10−3, the

difference between GFEL and G can be as large as two to three orders of magnitude.

III. NUMERICAL ESTIMATE

Note that, as discussed in [1], the maximally achievable FEL gain is limited by FEL

saturation. The saturation length lsat can be estimated from the linear FEL theory using

an equation for the power of the FEL radiation which starts from the shot noise [3] (SASE

regime)

P (l) =
1

3
√
π
ρ2ω0γmc

2

√
Lg
l
el/Lg . (19)

It is known that in saturation the SASE FEL power is approximately equal to ργmc2I/e.

Equating this quantity to (19) we can express the ratio lsat/Lg through other FEL parame-

ters: √
Lg
lsat

el
sat/Lg =

3

2
√
π

λ0
ρre

I

IA
, (20)

where λ0 = 2π/k0 is the FEL wavelength, and re = e2/mc2 is the classical electron radius.

We now use the parameters quoted in [1] for an hypothetical FEL for an LHC cooler:

λ0 = 10 nm, the undulator period λu = 5 cm, I = 100 A, γ = 7.6× 103. From the relation

between λ0 and λu we find K = 4.6. We assume the electron beam emittance of εn = 3 µm

(such a relatively large emittance is due to a large electron beam charge of several nC needed

for CeC) and the beta function of β = 10 m in the undulator. Estimating the transverse

area of the beam as S = 2πβεn/γ we find S = 2.5 × 10−4 cm2. From (4) we now find the
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parameter ρ = 8.7 × 10−4 and the saturation length lsat/Lg = 18.3. Assuming lu = lsat,

Eq. (15) gives G = 2.8 which is more than two orders short of the value G = 500 assumed

by the authors of [1].

It follows from Eqs. (15) and (20) that the amplification factor G is roughly proportional

to the square root of the radiation wavelength λ0. Choosing a larger wavelength, hence,

can increase G (assuming that an undulator for such a wavelength is feasible). Some effects

relevant for longer FEL wavelengths are considered in the next section.

IV. USING LONG-WAVELENGTH FEL IN COHERENT ELECTRON COOLING

The 1D FEL theory used in the previous sections is valid if the beam cross section area

S is larger than the product of the gain length and the inverse wave number of radiation,

S � Lg/k0. Using a large FEL wavelength can violate this inequality. In the opposite limit

one has to employ the 3D FEL model, in which discreet modes are amplified when the beam

propagates through the undulator. While analysis in this case becomes more complicated

(due to the lack of universality of the 1D model), the main effect of the narrowness of the

FEL bandwidth remains valid, as well as our final result (18).

Increasing the wavelength λ0 can also lead to suppression of the longitudinal electric

field for a given amplitude of the density modulation δn. Instead of the 1D relation δE‖ =

(4πe/k0S)δn used in the previous section one has solve a 2D Poisson equation for a given

transverse density profile. Assuming a Gaussian profile and sinusoidal modulation along the

beam, δn = δn0 sin(k0z)(2πσ2)−1e−r
2/2σ2

, it is easy to find the electric field on the axis of

the beam, r = 0,

δE‖(z) =
2eδn0

k0σ2
cos(k0z)J

(
k0σ

γ

)
, (21)

where

J (a) =
1

a2

∫ ∞
0

tdt[1− tK1(t)]e
−t2/2a2 . (22)

The plot of function J (a) is shown in Fig. 1. In the limit a� 1 we have J (a)→ 1 and one

recovers the 1D result with S replaced by 2πσ2. In the opposite limit of small parameter a

the electric field on the axis rapidly diminishes.

Note that for parameters of the proof-of-principle installation [4] with the beam energy

21.8 MeV, the beam emittance 5 µm, the beta function 5.5 m, and the FEL wavelength 10
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FIG. 1. Function J (q).

µm, the ratio k0σ/γ is approximately equal to 12 and the suppression effect is negligible.

However, for higher energy FELs, it may impose a certain restriction for the design of the

cooler.
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