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= − 1 + | | + | | + − 12 ∙ ∗  

 

 
(4) 

Where = −  and = 0 ∙ 0∗
. The left 

side of eq. (4) contains the power flowing across the 
waveguide aperture; the incoming wave  can be written in 
terms of the input power = 2 , while the 
outcoming wave  can be expressed as = − + , 
where Ve is the wave emitted from the cavity. Its 
amplitude depends only on the stored energy, while its 
phase can be expressed as a function of the phase of the 
incoming field, V+ if there is no beam; if there is also the 
beam, it depends also on the phase of the field inside the 
cavity (i.e., on the phase of α). We then have the final 
equation for the complex coefficient α: 
 

∗ = 2
1 + + − + 
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(5) 

The first term in equation (5) is due to the input power 
coming from the waveguide, and it is obviously different 
from zero only for the case of the klystron input cavity. 
The last integral represents the interaction between the 
cavity field and the beam current density. This current can 
be written as the sum of the N individual electron 
currents, so that we get, after some manipulations, the 
final expression of the coefficient: 

 

∗ = 2
1 + + − + 
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(6) 

The Simulation Algorithm 
In order to get the value of the field coefficient α we 

need to know the positions and the velocities of all the 
particles along the cavity. This means that we have to 
solve the relativistic equations of motion for all the N 
particles in presence of the electromagnetic field given by 
(2). The simulation algorithm is the following: 

 
1. Assume an initial value α1 for the field 

coefficient; 
2. Integrate the equations of motion for each 

particle through the length of the cavity with 
the field =  and = ℎ , where  

and ℎ  can be obtained from an 
electromagnetic simulation code as the FEM 
code developed by S. Tantawi; 

3. Calculate the new value α2 for the field 
coefficient through eq. (6); 

4. If α2=α1 (within a certain tolerance) go to the 
next step; otherwise assume a new value for α1 
and go to step 2.  

5. Calculate the steady state solution for the 
electromagnetic field by eq. (2). 

Simulations Results 
The routine described in the previous paragraph has 

been implemented using Mathematica [5]. In order to 
check the self-consistency of the method, the first step has 
been the simulation of a simple X-band pillbox input 
cavity (11.424 GHz) with a 100 A-100 KV beam flowing 
through it. We used, as a first approximation, the 
analytical field of an ideal cylindrical cavity without 
beam pipe plus a Brillouin focusing magnetic field, and 
we neglected the space charge forces between particles.  

Fig. 2 shows the outcoming power = | − |  

as a function of the cavity resonant frequency for an input 
power of 250 W and an external Q of 95, chosen to 
minimize reflections. We can see that we have a 
minimum of the outcoming power from the cavity at 
11.450 GHz, slightly above the design frequency, as 
expected in the presence of the electron beam. 

 
 

 
Figure 2: Outcoming power from a pillbox input cavity as 
a function of resonance frequency (GHz). 

 
The algorithm has then been applied to a cavity with no 

RF power coming from a driver, like the output cavity of 



a two cavity klystron. Space charge forces have been still 
neglected. In this case the beam itself is responsible of the 
field excitation and the modulated beam is the one 
coming from the previous input cavity followed by a 30 
cm drift. In this case the cavity resonant frequency and 
the external Q are optimized to maximize the output 
power so that we get a maximum efficiency for this 
simple device of 30% at 11.364 GHz with Qe2=40. 

The results of the previous simulations have been 
compared to the ones obtained with klystron kinematic 
theory and with AJDisk [6], a 1-D simulation code for 
round and sheet beem klystrons developed at SLAC.  

Fig. 3 shows the voltage induced by the beam in the 
second cavity of a two cavity klystron as a function of the 
beam current. The new algorithm shows a good 
agreement with AJDisk in the case of very low current 
simulations, while the voltage is overestimated in the case 
of higher beam currents, as expected, since the effect of 
the space charge forces has not been included yet in the 
algorithm. 

 
Figure 3: Voltage in the second cavity calculated with the 
Mathematica algorithm (blue), AJDisk (red) and 
kinematic theory (green). 

 

The Space Charge Field 
An iterative method to evaluate the effects of the space 

charge fields in the drift tubes between klystron cavities 
has then been developed and it is being implemented in 
the code.  

We search the steady state solution by applying the 
method shown in fig.4: the first iteration consists of a 
simple tracking of the electrons through the drift tube, 
without considering any kind of space charge field. The 
result is a complete description of the particles phase 
space as a function of time inside the pipe between two 
cavities. After this first tracking we can calculate the 
space charge potentials generated by the previous 
particles distribution in every point of the pipe and for 
every time t. This can be done either analytically (with 
some approximations), or numerically, by solving the 
Poisson’s equation (in the particles frame and then 
Lorentz transforming) with an electromagnetic solver. 
These potentials are then used to integrate the equations 
of motion during the second iteration. The space charge 
potentials can then be recalculated and the procedure is 
iterated until it reaches convergence. 
 

 
Figure 4: Flow chart for the steady state simulations with 
space charge. 
 
This routine has been implemented so far only by using 
the analytical approach and by making some 
approximations in order to preserve the simplicity and the 
speed of the code; in particular, free space potentials have 
been used for the calculation of the space charge fields.  
Further work has to be done in order to optimize the 
implementation of the complete space charge algorithm. 

CONCLUSIONS  
A steady state algorithm which can self-consistently 

simulate the complete beam-cavity interaction has been 
presented. The method is based on the iterative solution of 
a power balance equation, and it determines the amplitude 
and phase of the electromagnetic field inside the structure 
starting from the cavity mode field. 

 The algorithm has been implemented using 
Mathematica and it has been applied to some simple 
situations in absence of space charge effects.  

The effect of the space charge forces has then been 
introduced by using an iterative routine and its complete 
implementation is still in progress. 
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