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We introduce a generalization of the conventional renormalization schemes used in dimensional
regularization, which illuminates the renormalization scheme and scale ambiguities of pQCD predic-
tions, exposes the general pattern of nonconformal {βi} terms, and reveals a special degeneracy of
the terms in the perturbative coefficients. It allows us to systematically determine the argument of
the running coupling order by order in pQCD in a form which can be readily automatized. The new
method satisfies all of the principles of the renormalization group and eliminates an unnecessary
source of systematic error.
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An important goal in high energy physics is to make
perturbative QCD (pQCD) predictions as precise as pos-
sible, not only to test QCD itself, but also to expose
new physics beyond the standard model. In this let-
ter we present a systematic method which determines
the argument of the running coupling order by order in
pQCD, and which can be readily automatized. The re-
sulting predictions for physical processes are independent
of theoretical conventions such as the choice of renormal-
ization scheme and the initial choice of renormalization
scale. The resulting scales also determine the effective
number of flavors at each order of perturbation theory.
The method can be applied to processes with multiple
physical scales and is consistent with QED scale setting
in the limit Nc → 0. The new method satisfies all of the
principles of the renormalization group [1], and it elimi-
nates an unnecessary source of systematic error.

The starting point for our analysis is to introduce
a generalization of the conventional schemes used in
dimensional regularization in which a constant −δ is
subtracted in addition to the standard subtraction
ln 4π − γE of the MS-scheme. This amounts to redefin-
ing the renormalization scale by an exponential factor;
i.e. µ2

δ = µ2
MS

exp(δ). In particular, the MS-scheme is
recovered for δ = ln 4π − γE . The δ-subtraction defines
an infinite set of renormalization schemes which we call
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the δ-Renormalization (Rδ) scheme; since physical re-
sults cannot depend on the choice of scheme, predictions
must be independent of δ. Moreover, as all Rδ schemes
are connected by scale-displacements, the β-function of
the strong QCD coupling constant a = αs/4π in any
Rδ-scheme is the same:

µ2
δ

da

dµ2
δ

= β(a) = −a(µδ)
2
∞∑
i=0

βia(µδ)
i . (1)

The Rδ-scheme exposes the general pattern of noncon-
formal {βi}-terms and it reveals a special degeneracy of
the terms in the perturbative coefficients which allows us
to resum the perturbative series. The resummed series
matches the conformal series, which is itself free of any
scheme and scale ambiguities as well as being free of di-
vergent renormalon series. It is the final expression one
should use for physical predictions. It also makes it pos-
sible to setup an algorithm for automatically computing
the conformal series and setting the effective scales for
the coupling constant at each perturbative order.

Consider an observable in pQCD in some scheme which
we put as the reference scheme R0 (e.g. the MS-scheme
which is the conventional one in the literature) with the
following expansion:

ρ0(Q2) =
∞∑
i=0

ri(Q
2/µ2

0)a(µ0)i , (2)

where µ0 stands for the initial renormalization scale and
Q is the kinematic scale of the process. The more general
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expansion with higher tree level power in a can readily
be derived [2] and does not change our conclusions and
results. Since results in any Rδ are related by scale dis-
placements, we can derive the general expression for ρ by
using the displacement relation:

a(µ0) = a(µδ) +
∞∑
n=1

1

n!

dna(µ)

(d lnµ2)n
|µ=µδ (−δ)n , (3)

where we used lnµ2
0/µ

2
δ = −δ. Then ρ in Rδ to order a4

reads:

ρδ(Q
2) =r0 + r1a1(µ1) + (r2 + β0r1δ1)a2(µ2)2

+ [r3 + β1r1δ1 + 2β0r2δ2 + β2
0r1δ

2
1 ]a3(µ3)3

+ [r4 + β2r1δ1 + 2β1r2δ2 + 3β0r3δ3 + 3β2
0r2δ

2
2

+ β3
0r1δ

3
1 +

5

2
β1β0r1δ

2
1 ]a4(µ4)4 +O(a5) . (4)

where µi = Qeδi/2 and the initial scale is for simplicity
set to µ0 = Q and we defined ri(1) = ri. An artificial
index was introduced on each a and correspondingly on
each δ to keep track of which coupling each δ term is
associated to. This will be useful later. We emphasize
that the choice µ0 = Q is arbitrary and is not the final
argument of the running coupling. The final effective
scales must be independent of the initial renormalization
scale.

In a conformal (or scale-invariant) theory, where
{βi} = {0}, the δ dependency vanishes in Eq.(4). There-
fore, by absorbing all {βi} dependency into the running
coupling at each order, we obtain a final result indepen-
dent of the initial choice of scale and scheme. The use
of Rδ allows us to put this on formal grounds. From the
explicit expression in Eq.(4) it is easy to confirm that

∂ρδ
∂δ

= −β(a)
∂ρδ
∂a

. (5)

To satisfy scheme-invariance of the physical predic-
tion; i.e. ∂ρδ/∂δ = 0, we must set the scales such
that β(a) = 0. This is equivalent to setting the {βi}-
coefficients equal to zero and leads to the conformal se-
ries. Notice that this holds at any order in perturbation
theory and is a theoretical requirement, different from the
physical fact that the all-orders expression for ρ, being
a physical observable, must be renormalization scale and

scheme invariant; i.e. dρ/dµ0 = 0. It should be empha-
sized that this is not a fixed point expression for a but is
a fully conformal requirement; the β-function must van-
ish identically. This proves the concept of the principal
of maximal conformality [3–5] (PMC) to any order.

The expression in Eq.(4) exposes the pattern of {βi}-
terms in the coefficients at each order. Such pattern has
recently been considered in Ref. [9] for the Crewther rela-
tions. The Rδ-scheme reveals its origin and its generality
for any pQCD prediction. It is possible to infer even more
from Eq.(4). By using the logic that there is nothing spe-
cial about a particular value of δ, we must conclude that
some of the coefficients of the {βi}-terms are degener-
ate; e.g. the coefficient of β0a(Q)2 and β1a(Q)3 must
be equal. Forgetting about any reference scheme, the
expression for ρ in any scheme must be of the form:

ρ(Q2) =r0,0 + r1,0a(Q) + [r2,0 + β0r2,1]a(Q)2

+ [r3,0 + β1r2,1 + 2β0r3,1 + β2
0r3,2]a(Q)3

+ [r4,0 + β2r2,1 + 2β1r3,1 +
5

2
β1β0r3,2 + 3β0r4,1

+ 3β2
0r4,2 + β3

0r4,3]a(Q)4 +O(a5) (6)

where ri,0 are the conformal parts of the perturbative co-
efficients. The Rδ-scheme not only illuminates the {βi}-
pattern, but also exposes a special degeneracy of coef-
ficients at different orders. We have checked that this
degeneracy holds for several known results and it is triv-
ially consistent with QED. A QCD example is provided
in the end.

The expression in Eq.(4) reveals how the {βi}-terms
must be absorbed into the running coupling. The differ-
ent δk’s keep track of the power of the 1/ε divergence of
the associated diagram at each loop order in the follow-
ing way; the δpka

n-term indicates the term associated to a

diagram with 1/εn−k divergence for any p. Grouping to-
gether the different δk-terms one recovers in the Abelian
limit the dressed skeleton expansion. Resumming the se-
ries according to this expansion thus correctly reproduces
the QED limit of the observable and matches the confor-
mal series with running coupling constants evaluated at
effective scales at each order.

Using this information from the δk-expansion, it can be
shown that the order a(Q)k coupling must be resummed
into the effective coupling a(Qk)k, given by:

r1,0a(Q1) = r1,0a(Q)− β(a)r2,1 +
1

2
β(a)

∂β

∂a
r3,2 + · · ·+ (−1)n

n!

dn−1β

(d lnµ2)n−1
rn+1,n , (7)

...
rk,0a(Qk)k = rk,0a(Q)k + rk,0 k a(Q)k−1β(a)

{
Rk,1 + ∆

(1)
k (a)Rk,2 + · · ·+ ∆

(n−1)
k (a)Rk,n

}
, (8)

which defines the PMC scales Qk and where we introduced

Rk,j = (−1)j
rk+j,j

rk,0
, ∆

(1)
k (a) =

1

2

[
∂β

∂a
+ (k − 1)

β

a

]
, · · · (9)
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Eq.(8) is systematically derived by replacing the lnj Q2
1/Q

2 by Rk,j in the logarithmic expansion of a(Qk)k up to the
highest known Rk,n-coefficient in pQCD. The derivations are straightforward but tedious and will be given elsewhere
[2]. The resummation can be performed iteratively using the renormalization group equation for a and leads to the
effective scales for an NNNLO prediction:

ln
Q2
k

Q2
=

Rk,1 + ∆
(1)
k (a)Rk,2 + ∆

(2)
k (a)Rk,3

1 + ∆
(1)
k (a)Rk,1 +

(
∆

(1)
k (a)

)2

(Rk,2 −R2
k,1) + ∆

(2)
k (a)R2

k,1

. (10)

The final pQCD prediction for ρ after setting the PMC scales Qi reads

ρ(Q2) =r0,0 + r1,0a(Q1) + r2,0a(Q2)2 + r3,0a(Q3)3 + r4,0a(Q4)4 +O(a5) , (11)

Note that Q4 remains unknown as it requires to know
r5,1 in the coefficient of a5. In some cases, this might be
known or estimated. This last ambiguity resides only in
the highest order coupling constant and is negligible in
practice.

It is easy to see that the leading order values of the ef-
fective scales are independent of the initial renormaliza-
tion scale µ0. This follows since taking µ0 6= Q we must
replace Rk,1 → Rk,1 + lnQ2/µ2

0 and thus the leading or-
der effective scales read lnQ2

k,LO/µ
2
0 = Rk,1 + lnQ2/µ2

0,

where µ0 cancels and Eq. (10) at LO is recovered. More
generally the effective scales do not depend on the initial
renormalization scale at any order. In practice, however,
since the β-function is not known to all orders, higher
order residual renormalization scale dependency will en-
ter through the running coupling constant. This residual
renormalization scale dependency is strongly suppressed
in the perturbative regime of the coupling [10, 11].

The effective scales contain all the information of the
non-conformal parts of the initial pQCD expression for
ρ in Eq.(6), which is exactly the purpose of the running
coupling constant. The quotient form of Eq. (10) sums up
an infinite set of terms related to the known rj,k 6=0 which
appear at every higher order due to the special degener-
acy. It is, however, not the full solution as this requires
to know all rj,k 6=0-terms to all orders. The method sys-
tematically sums up all known non-conformal terms, in
principle to all-orders, but is in practice truncated due
to the limited knowledge of the β-function.

In earlier PMC scale setting [3–5], and its predecessor,
the Brodsky-Lepage-Mackenzie (BLM) method [6–8], the
PMC/BLM scales have been set by using a perturbative
expansion in a and only approximate conformal series
have been obtained. Here, we have been able to obtain
the conformal series exactly due to the revelation of the
{βi}-pattern byRδ and the effective scales have naturally
become functions of the coupling constant through the β-
function, in principle to all orders.

In many cases the coefficients in a pQCD expression
for an observable is computed numerically and the {βi}
dependency is not known explicitly. It is, however, easy
to extract the explicit number of quark flavor Nf depen-
dency, since Nf enters analytically in any loop diagram

computation. To use the systematic method presented
in this letter one must put the pQCD expression into the
form of Eq.(6). Due to the special degeneracy in the co-
efficient of the {βi}-terms, it turns out that the Nf series
is all that is needed to find the rj,k coefficients and to
set the effective scales. This allows to automate the scale
setting process algorithmically for pQCD predictions.

The general Nf -series of the n-th order coefficient in
pQCD reads:

rn = cn,0 + cn,1Nf + · · ·+ cn,n−1N
n−1
f . (12)

By inspection of Eq.(6) it is seen that there are exactly as
many unknown coefficients in the {βi}-expansion at the
order an as the Nf coefficients, cn,j . This is only realized
due to the special degeneracy found in (6) through its Rδ
expression. The ri,j coefficients in Eq.(6) can thus be ex-
pressed in terms of the cn,j coefficients. This means that
the Nf terms can unambiguously be associated to {βi}-
terms and demonstrates PMC as the underlying principle
of BLM scale setting. The relations between cn,j and ri,j
are easy to derive and they transform the BLM scales
into the correct PMC scales [2].

The automation process can be outlined as follows:

1. Choose any δ-Renormalization scheme and scale.

2. Compute the physical observable in pQCD and ex-
tract the Nf coefficients, ck,j .

3. Find the βi coefficients, rk,j from the ck,j coeffi-
cients and compute the PMC scales, Qk.

4. The final pQCD expression for the observable reads
ρfinal(Q) =

∑
k=0 rk,0a(Qk)k.

Example of e+e− → hadrons. The ratio for electron-

positron annihilation into hadrons, Re
+e−→h, was re-

cently computed to order a4 [12] and can be shown to
exactly match the generic form of Eq.(6). It can be de-
rived by analytically continuing the Adler function, D,
into the time-like region, with D given by:

D(Q2) = γph(a)− β(a)
d

da
Π(Q2, a) , (13)
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where γph is the anomalous dimension of the photon field,
Π is the vacuum polarization function and they are given
by the perturbative expansions: γph(a) =

∑∞
n=0 γna

n

and Π(a) =
∑∞
n=1 Πna

n. It is easy to show that to order

a4 the perturbative expression for Re
+e−→h in terms of

γn and Πn reads:

Re
+e−→h(Q) = γ0 + γ1a(Q) + [γ2 − β0Π2]a(Q)2 (14)

+ [γ3 + β1Π2 + 2β0Π3 − β2
0

π2γ1

3
]a(Q)3

+ [γ4 + β2Π2 + 2β1Π3 + β0Π4

− 5

2
β0β1

π2γ1

3
− 3β2

0

π2γ2

3
− β3

0π
2Π2]a(Q)4 .

As expected, this expression has exactly the form
of Eq.(6), with the coefficients: ri,0 = γi, ri,1 = Πi,

ri,2 = −π
2

3 γi−2 and ri,3 = −π2Πi−2. Note that we here
have knowledge of higher order coefficient, which allows
us to set the effective scales Q1, Q2 and Q3 to the
NNNLO order, given by Eq.(10). It is worth noting
that the Adler function D itself has a much simpler {βi}
structure. By convention the argument of a is space-like,

however, the π2-terms appearing in Re
+e−→h might be

avoided by using a coupling constant with time-like ar-
gument, leading to a more convergent series [14].

The last unknown scale can in this case be estimated.
It is to leading order given by ln

Q2
4

Q2 = −Π5

γ4
, where Π5 is

unknown, but it can be expressed in terms of coefficient
among which all but one are known from the lower order
coefficients [2]. It turns out that Q4 ∼ Q which is the
value we have used. The expression for the coefficient γi
and Πi can be found in Ref. [12], while the four-loops β-
function is given in Ref. [13]. The final result in numerical
form in terms of α = αs/π for QCD with five active
flavors reads:

3

11
Re

+e−→h(Q) =1 + α(Q1) + 1.84α(Q2)2

− 1.00α(Q3)3 − 11.31α(Q4)4 . (15)

This is the most convergent result compared to all previ-
ous estimates, it is free of any scheme and scale ambigu-
ities (up to strongly suppressed residual ones) and is to
date the most exact estimate. To find numerical values
for the effective scales, we must determine the asymptotic
scale, Λ, of the running coupling by comparing with ex-
perimental results [15]:

3

11
Re

+e−→h
exp (

√
s = 31.6 GeV) = 1.0527± 0.0050 . (16)

The asymptotic scale Λ is derived by matching Eq.(15)
with the experimental result and using a logarithmic ex-
pansion solution of the renormalization group equation
for a from which we find: ΛMS = 419+222

−168 MeV. Here we

have used the MS definition for the asymptotic scale for
comparison with other estimates. The asymptotic scale
of Rδ can be taken to be the same for any δ. The ef-
fective scales are found to be: Q1 = 1.3Q ,Q2 = 1.2Q,

Q3 ≈ 5.3Q. The values are independent of the initial
renormalization scale up to some residual dependency
coming from the truncated β-function, which is less than
the quoted accuracy on the numbers. This is illustrated
in Fig. 1. For Q3 we have taken the LO value, which is
sufficient to get the conformal series at four loops, and is
renormalization scale independent. Its higher order value
has artificially strong residual renormalization scale de-
pendency due to the large numerical value of Π4 in QCD
with five active flavors.

We have checked against the QED case, where

Re
+e−→h can be seen as the imaginary part of the QED

four loop 1PI vacuum polarization diagram by the opti-
cal theorem, and find in this case nearly complete renor-
malization scale independence of all three scales to the
NNNLO order due to the small value of the coupling con-
stant. Numerically, we get for three (lepton) flavors:

1

3
Re

+e−→`
QED (Q) =1 + 0.24αe(Q1)− 0.08αe(Q2)2

− 0.13αe(Q3)3 + 0.05αe(Q4)4 , (17)

where αe = e2/4π and {Q1

Q ,
Q2

Q ,
Q3

Q } = {1.1, 0.6, 0.5}.
For completness, we use our final result to predict the

strong coupling constant at the scale of the Z-boson mass,
MZ , which reads:

αs(MZ) = 0.132+0.010
−0.011 . (18)

In this letter, we have shown that a generalization of
the conventional MS-scheme is illuminating. It enables
one to determine the general (and degenerate) pattern
of nonconformal {βi}-terms and to systematically deter-
mine the argument of the running coupling order by order
in pQCD, in a way which is readily automatized. The re-
summed series matches the conformal series, in which no
factorially divergent n!βnαns “renormalon” series appear
and which is free of any scheme and scale ambiguities.

50 100 150 Μ0�GeV
1.046

1.048

1.050

1.052

1.054

1.056

1.058

1.060
R
e+ e-® h

H31.6 GeVL

FIG. 1: The final result for Re+e−→h as a function of
the initial renormalization scale (solid line), showing the
initial scale-invariance of the final prediction up to
strongly suppressed residual dependency. The shaded
region is the experimental bounds with the central value
given by the dashed line.
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This is the final expression one should use for physical
predictions. The method can be applied to processes
with multiple physical scales and is consistent with QED
scale setting in the limit NC → 0. The new method sat-
isfies all of the principles of the renormalization group,
including the principle of maximum conformality, and it
eliminates an unnecessary source of systematic error.
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