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Abstract

A key problem in making precise perturbative QCD predictions is to set the proper renormaliza-
tion scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary
range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc

procedure gives results which depend on the choice of the renormalization scheme, and it is in
conflict with the standard scale-setting procedure used in QED. Predictions for physical results
should be independent of the choice of scheme or other theoretical conventions. We review current
ideas and points of view on how to deal with the renormalization scale ambiguity and show how
to obtain renormalization scheme- and scale- independent estimates. We begin by introducing the
renormalization group (RG) equation and an extended version, which expresses the invariance of
physical observables under both the renormalization scheme and scale-parameter transformations.
The RG equation provides a convenient way for estimating the scheme- and scale- dependence of a
physical process. We then discuss self-consistency requirements of the RG equations, such as reflex-
ivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical
scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC)
criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky-Lepage-Mackenzie method
(BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties
and their applications are discussed. We pay particular attention to the PMC, which satisfies all
of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with
the β-function in the perturbative series are summed into the running coupling, and one obtains
a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the
principle underlying the BLM method, since it gives the general rule for extending BLM up to
any perturbative order; in fact, they are equivalent to each other through the PMC - BLM cor-
respondence principle. Thus, all the features previously observed in the BLM literature are also
adaptable to the PMC. The PMC scales and the resulting finite-order PMC predictions are to high
accuracy independent of the choice of initial renormalization scale, and thus consistent with RG
invariance. The PMC is also consistent with the renormalization scale-setting procedure for QED
in the zero-color limit. The use of the PMC thus eliminates a serious systematic scale error in
perturbative QCD predictions, greatly improving the precision of empirical tests of the Standard
Model and their sensitivity to new physics.
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1 Introduction

Quantum chromodynamics (QCD) is believed to be the field theory of hadronic strong interactions.
Due to its asymptotic freedom property [1, 2], the QCD running coupling becomes numerically small at
short distances, allowing perturbative calculations of cross sections for high momentum transfer physical
processes. In the perturbative QCD (pQCD) framework, a physical quantity (ρ) is expanded to n-th
order in the QCD coupling αs(µr); i.e.,

ρn = C0 αp
s(µr) +

n∑

i=1

Ci(µr) α
p+i
s (µr), (p ≥ 0) (1)

where C0 is the tree-level term, C1 the one-loop correction, C2 the two-loop correction, etc., and p is
the power of the coupling associated with the tree-level term. The renormalization scale µr must be
specified in order to obtain a definite prediction. The calculation of the coefficients Ci(µr) involves
ultraviolet divergences which must be regulated and removed by a renormalization procedure. The infi-
nite series ρn→∞ is in principle renormalization scheme and renormalization scale independent because
of renormalization group (RG) invariance [3, 4, 5, 6, 7, 8]; i.e., the physical predictions of a theory,
calculated up to all orders, are formally independent of the choice of renormalization scale and renor-
malization scheme. However, at any finite order, the scale/scheme dependence from αs(µr) and Ci(µr)
do not exactly cancel, leading to renormalization-scheme and renormalization-scale ambiguities. Such
ambiguities are well-known [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. A guiding principle for
resolving such problems is that physical results must be independent of theoretical conventions.

It should be recalled that there is no ambiguity in setting the renormalization scale in quantum
electrodynamics (QED) at any finite order. Mass renormalization is straightforward in QED. Due to the
Ward-Takahashi identity [22], the divergences in the vertex and fermion wavefunction corrections exactly
cancel, and the remaining ultraviolet divergence Z3 associated with the vacuum polarization insertions
defines a natural scale for the running QED coupling αem(q

2). For example, the renormalization scale for
the electron-muon elastic scattering due to the one-photon exchange skeleton graph in the conventional
Gell Mann-Low (GM-L) scheme [4] is simply equal to the momentum transfer squared t = q2 carried
by the photon propagator. The renormalization scale µ2

r = t = q2 is independent of the choice of initial
renormalization scale t0 since in QED

αem(t) =
αem(t0)

1− Π(t, t0)
, (2)

where

Π(t, t0) =
Π(t, 0)−Π(t0, 0)

1−Π(t0, 0)
,

which sums all vacuum polarization contributions, both proper and improper, to the dressed photon
propagator. Equation (2) shows explicitly that although the initial renormalization scale t0 is arbitrary,
the final scale t is unique and unambiguous, in agreement with the RG invariance. With any other
choice of initial scale, one will recover the same result, but only after summing an infinite number
of vacuum polarization corrections. In the case of muonic atoms (µ−Z), the modified muon-nucleus
Coulomb potential is precisely −Zα(−~q2)/~q2; i.e., µ2 = −~q2. Again, the renormalization scale is also
unique.

The renormalization scale in QED can be determined unambiguously in any scheme, including
dimensional regularization; the scale for different schemes are connected to the GM-L scale by com-
mensurate scale relations (CSRs) [23], a topic which we will discuss below. The resulting perturbative
prediction is then scheme-independent. The computation of higher-order {βi}-functions for the RG
equation is important for perturbative calculations at high orders [24, 25, 26, 27].
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The scale-setting question is much more complicated in QCD due to its non-Abelian nature. Unlike
QED, where there is a preferred (GM-L) scheme and a precisely known value of the coupling at zero
momentum scale (the fine-structure constant αem(0) ≃ 1/137.036 · · · [28]); in the case of QCD we do not
have a uniquely preferred scheme and well-determined value for the coupling in the perturbative region.
Consequently, in QCD, the uncertainty from the choice of renormalization scheme and scale must be
treated with great care. It should be noted, however, that pQCD reduces to Abelian theory in the zero-
color NC → 0 limit [29]. This analytic limit provides an important constraint on the renormalization
scale problem in QCD.

In the standard procedure for a first estimate of the physical observable, one chooses a renor-
malization scheme with an initial renormalization scale µr = µinit

r in Eq.(1), and then applies some
scale-setting method to improve the pQCD estimate. After scale setting, the perturbative series for the
physical observable (1) can be rewritten as

ρn = C0 αp
s(µ̃

0
r) +

n∑

i=1

C̃i(µ̃i
r) α

p+i
s (µ̃i

r), (p ≥ 0) (3)

where the new leading-order (LO) and higher-order scales µ̃0
r and µ̃

i
r are functions of the initial renormal-

ization µinit
r , depending on the choice of the scale-setting method. At the same time, the new coefficients

C̃i(µ̃i
r) are changed accordingly so as to obtain a consistent result.
A common practice adopted in the literature is to directly deal with Eq.(1), which is a very special

case of Eq.(3) by simply taking {µ̃i
r} ≡ µinit

r = Q and C̃i(µ̃i
r) ≡ Ci(Q). Here Q is usually taken as

the typical momentum transfer of the process or a value which minimizes the contributions of the loop
diagrams. As compensation, one varies the value of Q over a certain range, such as the typical range
[Q/2, 2Q], to ascertain the renormalization scale uncertainty. This is the simplest scale setting method.
It is often argued that by setting and varying the renormalization scale in this way, one can estimate
contributions from higher-order terms; i.e. a change in the renormalization scale will affect how much of
a result comes from Feynman diagrams without loops, and how much comes from the leftover finite parts
of loop diagrams. Because of its perturbative nature, it is a common belief that those scheme and scale
uncertainties will be reduced after finishing a higher-and-higher order calculation. Especially, because
of the improvement of loop calculation technologies developed in recently years, many high-energy
processes involving heavy particles have been calculated up to next-to-next-to-leading-order (NNLO)
or even higher, which greatly improves our theoretical estimations in comparison with the experimental
data. However, this ad hoc assignment of scale and its range leads to an important systematic error in
the present theoretical and experimental analysis.

Besides the complexity of higher-and-higher order calculations, there are many weak points of this
conventional scale-setting method:

1. Following the discussion below Eq.(1), the fixed-order estimation is renormalization scheme de-
pendent: different choice of renormalization schemes will lead to different theoretical results. In
addition to the ad hoc dependence on the choice of Q,

• It is clearly artificial to guess a renormalization scale and to study its uncertainty by simply
varying µr ∈ [Q/2, 2Q]. Why is the scale uncertainty estimated only by varying a factor of
1/2 or 2, and not, say, 3 times of Q ? For example, Ref. [30] argues that after including the
first and second order corrections to several deep inelastic sum rules which are due to heavy
flavor contributions, the renormalization scale µr should be taken as µr ∼ 6.5m, if taking the
typical scale Q to be the corresponding heavy quark mass m. The variation of Q allows one
to estimate some of the contributions from higher-order terms, however, this only exposes
the {βi}-dependent non-conformal terms, not the entire perturbative series. It also should
be emphasized that the renormalization scale for the heavy-quark loop that appears in the

4



three-gluon coupling depends nontrivially on the virtualities of the three gluons entering the
three-gluon vertex [31].

• Sometimes, there are several choices for the typical momentum transfer of the process, all
of which, according to the arguments of the conventional scale setting, can be taken as the
renormalization scale, such as the heavy-quark mass m, the collision energy of the subpro-
cess

√
s, etc. Which one provides the correct theoretical estimate ? Taking the Bc-meson

hadroproduction as an example, different choices of typical momentum flow will lead to
about 30% error to the total cross-section [32]. Moreover, the idea of the typical momentum
transfer as the renormalization scale only gives us the order of magnitude for the scale and
we do not know which one is ‘optimal’, Q/2, Q, 2Q or any others.

2. There are uncancelled large logarithms as well as the “renormalon” terms in higher orders which
diverge as (n!βn

i α
n
s ). The renormalon divergence was discovered in 1970s [33, 34, 35]. It has been

found that those renormalon terms can give sizable contributions to the theoretical estimates,
such as e+e− annihilation, τ decays, deep inelastic scattering, hard processes involving heavy
quark, etc.; a detailed discussion on the renormalon problem can be found in the review [36]. As
a recent example, for the case of W -boson plus three-jet production at the hadronic colliders, due
to the renormalization terms and the uncanceled large logs, Ref. [37] shows that a poor choice of
the scale using the conventional scale setting method can manifest itself as a strong dependence
on the ratio of next-to-leading-order (NLO) cross section to LO cross section (the so-called K
factor), which can even predict unreasonable negative NLO QCD differential cross-sections in
certain kinematical regions.

3. By taking the Abelian limit Nc → 0 at fixed αem = CFαs with CF = (N2
c − 1)/2Nc, we can

transform the QCD case effectively to the QED case [29, 38]. A self-consistent scale-setting
method should be adaptable to both QCD and QED. This fact can be treated as a criterion
on whether a suggested scale setting is correct or not. Conventional scale setting gives wrong
results when applied to QED processes: As shown above, there is no ambiguity in setting the
renormalization scale in QED. In the GM-L scheme, the renormalization scale is the virtuality of
the virtual photon, which naturally sums all vacuum polarization contributions into the coupling.
There is thus no reason to vary the renormalization scale µGM−L

r by a factor of 1/2 or 2, since it
is already the optimized scale.

4. As more and more data appear, especially because of the running of the high collision energy and
high luminosity Large Hadronic Collider (LHC), we need more accurate theoretical estimates to
suit the needs of those forthcoming high precision data. It would be helpful to know to what
fixed order we can achieve the desired precision. However, the perturbative series does not appear
to converge, when using conventional scale setting. The conventional scale setting appears as
a lucky guess, and we have no strict criteria to ensure the perturbative convergence, which is
especially because of the renormalon terms or uncanceled large logarithms. Taking the top quark
pair production as an example, it is found that the total cross-section at NNLO level for the
(qq̄)-channel, qq̄ → t + t̄, by taking the conventional renormalization scale choice of mt, is about
50% of the NLO cross-section [39, 40]. On the other hand, the experimental result on the tt̄ total
cross section has been measured with a precision ∆σtt̄/σtt̄ ∼ ±7% at the Tevatron [41, 42] and
∼ ±10% at the LHC [43, 44]. Thus, to derive a more precise perturbative estimation, one would
need to do even higher order calculations, at least at the NNNLO level, which however is not
expected to be available in the near future.

In summary, the conventional scale-setting method assigns an arbitrary range and an arbitrary
systematic error to fixed-order pQCD prediction. One may argue that the correct renormalization scale
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µ2opt = t

t0 = Q2
1

t0 = Q2
2

t0 = Q2
3

αem(t)

LO NLO NNLO ∞

· · ·
···

Figure 1: Pictorial representation of the optimized renormalization scale µopt. Taking
electron-muon elastic scattering through one-photon exchange as an example: In the GM-L
scheme, the optimized scale is µ2

opt = t which corresponds to the scale-invariant value αem(t).
As a comparison, the values of α at fixed-orders for different choice of t0 = Q2

i under the
conventional scale setting (i = 1, 2, 3, · · ·) are shown by thin-and-solid curves.

for the fixed-order prediction can be decided by comparing with the experimental data. But this surely
is process dependent and greatly depresses the predictive power of the pQCD theory.

For a general fixed-order calculation, what is the correct “physical” scale or optimized scale? To our
understanding, it should provide a prediction independent of the renormalization scheme and the choice
of initial scale µinit

r . In fact, this is a criteria of the renormalization group. A pictorial representation
of what is the optimized renormalization scale is shown in Fig.(1), where the electron-muon elastic
scattering through one-photon exchange is taken as an illustration. In the GM-L scheme, the optimized
scale µ2

opt = t which corresponds to the initial scale-invariant value αem(t). This optimal scale t is
independent to the choice of initial scale t0; i.e., any choice of t0 will lead to the same scale t (and then
same αem) as shown by Eq.(2). Moreover, by using the proper scale setting method, such as the Brodsky-
Lepage-Mackenzie (BLM) [21] method and the Principle of Maximum Conformality (PMC) [39, 45, 46,
47, 48], the prediction is also scheme independent and the argument of the coupling in different schemes
have the correct displacement. For example, by using the BLM/PMC procedure, one can obtain the
well-known one-loop displacement between the argument of the coupling in the MS scheme relative to
the GM-L scheme [49], αGM−L

em (t) = αMS
em (e−5/3t).

As a comparison, the values of αem at fixed order for different choice of t0 = Q2
i (i = 1, 2, 3, · · ·) are

shown by thin-and-solid curves in Fig.(1). The value of αem strongly depends on the value of (initial)
scale t0 under the conventional scale-setting method. Thus, even if a particular choice of t0 may lead
to a value of αem close to αem(t) using conventional scale setting, this would not be the correct answer.
As one includes higher-and-higher orders, the guessed scale will lead to a better estimate; when doing
the perturbative calculation up to infinite order, any choice of t0 will lead to the correct value αem(t) as
required by the RG invariance. However, if one chooses t0 = t, the complete all-orders result is obtained
from the onset.

Does there exist such an optimized renormalization scale for a general high-energy process in non-
Abelian QCD? If it does exist, how can one set it in a systematic and process-independent way?

The attempt to solve the renormalization scale and renormalization scheme ambiguities has a long
history. Many authors have presented their views on how to find such an optimized scale, which have
served to help clarify the issues involved. In this report, we summarize the principal ideas and results for
each topic which can be served as a guide to the original literature. We first collect the improvements
from a general point of view, not following their development in time but follow the sequence of how the
renormalization scheme and scale questions are understood. Then, we present a detailed introduction on
the BLM [21] and its underlying principle, the PMC [39, 45, 46, 47, 48, 50]. We shall show that the PMC
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provides the solution for solving the renormalization scale and renormalization scheme ambiguities.

In Sec.2 we begin with the RG equation which governs the running (scale) behavior of the QCD
coupling αs(µr). For convenience, we extend the RG equation also to know the evolution of the renor-
malization scheme parameters; i.e. the extended RG equations, which was first suggested by Steven-
son [17, 18, 19, 20], and later improved by Brodsky and Lu [51]. The extended RG equations provide
a convenient way for estimating both the scheme- and scale- dependence of the QCD predictions for
a physical process. Any physical observable is independent of the renormalization scale and renormal-
ization scheme; this is the main property of RG invariance [3, 5, 6, 7, 8]. We utilize the extended RG
equations for a general discussion on this point. The solution for a special case in which all scheme
parameters are set to zero, i.e. the ’t Hooft scheme [52], is also discussed. The advantage of the ’t
Hooft scheme is that its coupling is scheme-independent and it gives a precise definition for the QCD
asymptotic scale under a possible renormalization scheme R; i.e., the scale for the ’t Hooft scheme
associated with the R-scheme Λ

′tH−R
QCD [51].

As a natural deduction of RG invariance, in Sec.3 we discuss the self-consistency requirements, such
as reflexivity, symmetry and transitivity, which must be satisfied by a scale setting method [48, 53, 54].
The transitivity property is especially important for self-consistent scale setting. The fact that the
renormalization group is called a “group” is mainly because of such transitivity property [3, 5, 6].
These self-consistency theoretical requirements can shed light on the reliability of the scale setting
method suggested in the literature.

In Sec.4 we present a brief summary of some typical scale setting methods, such as the Fastest
Apparent Convergence (FAC) or more strictly the RG-improved effective coupling/charge method [13,
14, 15, 16], the Principle of Minimum Sensitivity (PMS) [17, 18, 19, 20], the BLM [21] and the PMC [39,
45, 46, 47]. The FAC and the PMS are designed to improve the perturbative series either by requiring all
higher-order terms vanish [13, 14, 15, 16] or by forcing the fixed-order series to satisfy the RG invariance
at the renormalization point [17, 18, 19, 20]. The BLM and the PMC instead improve the perturbative
series by absorbing only the nf -terms or the {βi}-terms of the series into the argument of the coupling.
Thus, these four scale-setting methods have quite different consequences. It has been found that the
PMS does not satisfy the RG-properties symmetry, reflexivity, and transitivity, so that the relations
among different observables depend on the choice of the intermediate renormalization scheme [48, 53, 54].
Furthermore, the predicted PMS scale for the jet production from e+e−-annihilation does not yield the
correct physical behavior; it anomalously rises without bound for small jet energy [55, 56]. At present,
the BLM is widely adopted in the literature and we will present its features observed and developed
in recent years. The PMC provides the underlying principle for BLM, since it provides a rule to set
the BLM scales up to all orders, and they are equivalent to each other through the PMC - BLM
correspondence principle [46]. Thus, all features observed in the BLM-literature are inherited by PMC.

The main idea of the PMC is that after proper procedures, all non-conformal {βi}-terms in the
perturbative expansion are summed into the running coupling so that the remaining terms in the
perturbative series are identical to that of a conformal theory; i.e. the corresponding theory with
{βi} = {0}. The QCD predictions from PMC are then independent of renormalization scheme, because
the proper displacement of the scales are included. In fact, this can be shown explicitly by considering
a generalization of the conventional MS-scheme for dimensional regularization, the Rδ-scheme, where
a further constant δ from the 1/ǫ poles is subtracted; i.e. 1

ǭ
= 1

ǫ
+ ln(4π)− γE − δ. The δ-terms in the

perturbative series will always accompany {βi}-terms, and thus the elimination of δ-terms is equivalent
to the elimination of {βi}-terms. Therefore the PMC estimate can be achieved directly through a proper
treatment of δ-terms. This leads to a systematic prescription of setting the scales to all-orders, and
opens the opportunity to start a program for automatically setting the PMC scales [50, 57].

It has been found that PMC satisfies all self-consistency conditions. After PMC scale setting, the
divergent “renormalon” series does not appear in the conformal series; thus as in QED, the scale can be
unambiguously set by PMC. The scheme independence can be adopted to derive commensurate scale
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relations among different observables and to find the displacements among the effective BLM/PMC
scales which are derived under different schemes or conventions. The PMC renormalization scale and
the resulting finite-order PMC prediction are both to high accuracy independent of the choice of the
initial renormalization scale µinit

r , consistent with the RG invariance. Even the residual scale-dependence
at fixed order due to unknown higher-order {βi}-terms is substantially suppressed. Since the PMC
eliminates a serious systematic scale-error in pQCD predictions, it greatly improves the precision of
tests of the Standard Model (SM) and the sensitivity to new physics at the colliders. Surely, it is
necessary to compute the higher-order terms of the conformal theory to estimate the true accuracy, a
better understanding of the {βi}-series will lead to a more accurate estimation. It is the main task
of this report to present a detailed introduction to PMC by including all its developments and useful
features, its detailed technologies, and its potential phenomenological applications.

In Sec.5 we present some applications of PMC, such as the total cross-section or the forward-
backward asymmetry for the top-quark pair-hadronic production at the NNLO level. In which, we
show much more subtle points in applying PMC to high energy processes.

In Sec.6 we summarize and present an outlook.

2 Renormalization Group Equations

In addition to the purpose of solving the renormalization scheme and scale dependence of the pQCD
process, another important goal of a scale setting method is to improve the convergence of the pQCD
series. A recent review on the development of the QCD coupling is presented in Ref. [58]. The infrared
behavior of the coupling, in the space-like and time-like regions are discussed using dispersion theory
and analytic perturbation theory in Refs. [59, 60, 61]. Here we will concentrate on the behavior of the
coupling and how to deal with its renormalization scheme dependence, based on the RG equation and
its extended version.

2.1 Renormalization Group Equation and Its Extended Version

Predictions for observables in pQCD are expressed in terms of the renormalized coupling whose values
at any fixed order depends on which renormalization scheme we choose. Conventionally, the scale
dependence of the coupling is controlled by the βR-function,

βR = µ2
r

∂

∂µ2
r

(
αR
s (µr)

4π

)
= −

∞∑

i=0

βR
i

(
αR
s (µr)

4π

)i+2

, (4)

where the superscript R stands for an arbitrary renormalization scheme, such as MS scheme [62], MS
scheme [49], MOM scheme [63], etc.. The βR

i -functions for any MS-like scheme are the same [64].
The various terms in βR

0 , β
R
1 , . . ., correspond to one-loop, two-loop, . . . contributions respectively. In

general, the {βR
i } are scheme-dependent and depend on the quark massm2

f . According to the decoupling
theorem [65], a quark with mass m2

f ≫ µ2
r can be ignored, and we can usually neglect m2

f -terms when
m2

f ≪ µ2
r. Then, for every renormalization scale µr, one can divide the quarks into active ones with

mf = 0 and inactive ones that can be ignored. Within this framework, it is well-known that the first two
coefficients βR

0,1 are universal, which have been calculated in Refs.[1, 2, 66, 67, 68, 69, 70]. Hereafter, we

simply write them as β0 and β1. The {βMS
i }i≥2 functions forMS-scheme up to three and four loops can

be found in the literature [71, 72, 73, 74]. For convenience, we present the results for any semi-simple
Lie gauge group with nf fermions and N colors [72]:

β0 =
11

3
CA − 4

3
TFnf , (5)

8



β1 =
34

3
C2

A − 20

3
CATFnf − 4CFTFnf ,

βMS
2 =

2857

54
C3

A − 1415

27
C2

ATFnf +
158

27
CAT

2
Fn

2
f +

44

9
CFT

2
Fn

2
f −

205

9
CFCATFnf + 2C2

FTFnf ,

βMS
3 = CACFT

2
Fn

2
f

(
17152

243
+

448

9
ζ3

)
+ CAC

2
FTFnf

(
−4204

27
+

352

9
ζ3

)
+

424

243
CAT

3
Fn

3
f

+C2
ACFTFnf

(
7073

243
− 656

9
ζ3

)
+ C2

AT
2
Fn

2
f

(
7930

81
+

224

9
ζ3

)
+

1232

243
CFT

3
Fn

3
f

+C3
ATFnf

(
−39143

81
+

136

3
ζ3

)
+ C4

A

(
150653

486
− 44

9
ζ3

)
+ C2

FT
2
Fn

2
f

(
1352

27
− 704

9
ζ3

)

+46C3
FTFnf + nf

dabcdF dabcdA

NA

(
512

9
− 1664

3
ζ3

)
+ n2

f

dabcdF dabcdF

NA

(
−704

9
+

512

3
ζ3

)

+
dabcdA dabcdA

NA

(
−80

9
+

704

3
ζ3

)
, (6)

where CA, NA and CF , NF are the quadratic Casimir invariants [75] and dimensions of the adjoint and
fermion representation, respectively, TF is the trace normalization of the generators of the fermions, ζ is
Riemann zeta function and dabcdA/F are the invariant quartic tensors. The expressions for the latter in any
semi-simple Lie group can be found in [76]. For the SUC(N)-color-group with fundamental fermions
the invariants read:

TF =
1

2
, CF =

N2 − 1

2N
, CA = N,

dabcdF dabcdF

NA

=
N4 − 6N2 + 18

96N2
, (7)

dabcdF dabcdA

NA
=
N(N2 + 6)

48
,

dabcdA dabcdA

NA
=
N2(N2 + 36)

24
, NA = N2 − 1, (8)

In particular, for the SUC(3)-color-group, we have [72]

β0 = 11− 2

3
nf (9)

β1 = 102− 38

3
nf (10)

βMS
2 =

2857

2
− 5033

18
nf +

325

54
n2
f (11)

βMS
3 ≃ 29243.0− 6964.30 nf + 405.089 n2

f + 1.49931 n3
f (12)

We first present the solution of Eq.(4) at the one-loop level, i.e. the solution with only the first term
keeping in the right-hand-side. The solution is independent of any renormalization scheme R and it
takes the form

αs(µr) =
αs(µ

init
r )

1− β0

4π
ln
(
(µinit

r )2

µ2
r

)
αs(µinit

r )
= αs(µ

init
r )

∞∑

n=0

[
β0
4π

ln

(
(µinit

r )2

µ2
r

)
αs(µ

init
r )

]n
, (13)

where µinit
r stands for an arbitrary initial renormalization scale. This equation governs the one-loop

behavior of the coupling. It implies that one can first adopt any initial renormalization scale µinit
r to

measure the coupling; however after we have summed all {β0}-terms into αs(µ
init
r ), its final value will

not depend on the choice of µinit
r . This is a crucial point, which can be extended to any loops; i.e. if

summing all types of {βR
i }-terms into the αR

s -running through the RG equation, the behavior of αR
s (µr)

will be uniquely fixed and is independent of the choice of µinit
r . The final summed result will be more

9



{ci}

a(τ, {ci})

τ

Figure 2: Pictorial representation of the universal coupling a(τ, {ci}), where τ and {ci} are
independent scheme and scale parameters respectively.

accurate. As will be shown later, this fact agrees with the RG invariance and will be a useful guide for
setting optimal renormalization scales for any fixed-order calculation. On the other hand, if setting

Λ2
QCD = (µinit

r )2 exp

(
− 4π

β0αs(µinit
r )

)
, (14)

one can rewrite αs(µr) in terms of an overall (universal) scale ΛQCD, without any reference to a specific
initial scale µinit

r ,

αs(µr) =
4π

β0 ln
(

µ2
r

Λ2
QCD

) . (15)

The value of the dimensional scale ΛQCD keeps track of the initial parametrization (µinit
r , αs(µ

init
r )) and

is universal and scale invariant; its value is not predicted by the theory but must be extracted from the
measurement of αs at a given reference scale. The value of ΛQCD is commonly believed to be associated
with the typical hadron size; i.e. to the energy range where confinement effects set in. In effect, ΛQCD

is the scale at which the coupling approximated by Eq.(15) diverges (Landau ghost [77]).
As suggested by Stevenson [17, 18, 19, 20], it is convenient to use the first two universal coefficients

β0 and β1 to rescale the coupling and the scale-parameter in Eq.(4); i.e., by rescaling the coupling and
the scale parameters as [51]

aR =
β1

4πβ0
αR
s and τR =

β2
0

β1
lnµ2

r,

one can express the RG equation (4) into a simpler canonical form

βR(a) =
daR

dτR
= −(aR)2

[
1 + aR + cR2 (a

R)2 + cR3 (a
R)3 + · · ·

]
, (16)

where cRi = βR
i β

i−1
0 /βi

1 for i = 2, 3, · · ·, respectively 1.

1Another way to rescale the coupling, which is consistent with the large β0-approximation [78, 79, 80], has also been
suggested in the literature [81]: i.e. setting AR = β0

4π
αR
s , the RG equation (4) changes to

dAR

dτR
= −

[
(AR)2 + dR1 (AR)3 + dR2 (AR)4 + dR3 (AR)5 + · · ·

]
,

where dRi = βR

i /βi+1
0 for i = 1, 2, · · ·.

10



As an extension of the ordinary coupling, one can further define a universal coupling a(τ, {ci}) to
include its dependence on both the scale parameter τ and the scheme parameters {ci}. A pictorial
representation of the universal coupling a(τ, {ci}) is shown in Fig.(2). The universal coupling satisfies
both the scheme and scale evolution equations [17, 18, 19, 20, 51].

Following Eq.(16), the scale evolution equation can be rewritten as

β(a, {ci}) =
∂a

∂τ
= −a2

[
1 + a+ c2a

2 + c3a
3 + · · ·

]
. (17)

The scale-equation (17), similar to Eq.(16), can be used to evolve the universal coupling from one scale
to another. By comparing Eq.(16) with Eq.(17), setting {ci} = {cRi } , there exists a value of τ = τR
for which

aR(τR) = a(τR, {cRi }). (18)

This shows that any coupling aR(τR) can be expressed in terms of a universal coupling a(τ, {ci}). Notice
that the evolution equation (17) contains no explicit reference to QCD parameters such as the number
of colors or the number of flavors. Therefore, aside from its infinite dimensional character, a(τ, {ci}) is
just a mathematical function. Truncation of the {ci}-terms (or {βi}-functions) simply corresponds to
the evaluation of a(τ, {ci}) in a subspace where higher-order {ci}-terms are zero.

The scheme evolution equation is defined as

βn(a(τ, {ci}), {ci}) =
∂

∂cn
a(τ, {ci}). (19)

The computation of second partial derivative

∂2

∂τ∂cn
a(τ, {ci}) =

∂2

∂cn∂τ
a(τ, {ci}) (20)

implies

∂βn(a(τ, {ci}), {ci})
∂τ

=
∂β(a(τ, {ci}), {ci})

∂cn
, (21)

which leads to

β2(a(τ, {ci}), {ci})
∂

∂a(τ, {ci})

(
βn(a(τ, {ci}), {ci})
β(a(τ, {ci}), {ci})

)
= −an+2(τ, {ci}). (22)

Finally, we obtain

βn(a(τ, {ci}), {ci}) = −β(a(τ, {ci}), {ci})
∫ a(τ,{ci})

0

xn+2dx

β2(x, {ci})
, (23)

where a(0, {0}) = ∞ and β(0, {0}) = 0 stand for the boundary conditions. The lower limit of the integral
has been set to satisfy the boundary condition βn(a(τ, {ci}), {ci}) = O(an+1), i.e. a change in cn can only
affect terms of order an+1 or higher [17, 18, 19, 20]. The scheme-equation (23) can be used to relate the
couplings under different schemes by changing {ci}. Equation (23) can be solved perturbatively with the
help of the scale-equation (17), which can be used to estimate how the uncalculated higher-order terms
contribute to the final result. An explicit example for this point will be presented in Sec.4.3.6, where
the value of R(e+e−) at the four-loop level together with its scheme error analysis will be discussed.

11



2.2 Solution of the Scale Equation up to Four-Loop Level

Since any coupling under any renormalization scheme can be related to a universal coupling a(τ, {ci}),
the scale-equation (17) can be solved in a conventional way; i.e. the evolution of the universal running
coupling can be obtained by integrating Eq.(17), which can be rewritten as

(
β2
0

β1
ln

µ2
r

(µinit
r )2

)
=
∫ a(τ,{ci})

a(τ0,{ci})

da

β(a, {ci})
, (24)

where τ0 = (β2
0/β1) ln(µ

init
r )2. Here µinit

r stands for an initial renormalization scale. Up to four-loop
level, it leads to

L = C +
1

a
+ ln a + (c2 − 1) a+

c3 − 2c2 + 1

2
a2 +O(a3), (25)

where C is an arbitrary integration constant and

L =
β2
0

β1
ln

(
µ2
r

Λ2
QCD

)
. (26)

The value of ΛQCD can be extracted from a measurement of the QCD coupling at a given reference
scale or a QCD measure with mass dimensions such as the pion decay constant fπ.

Eq.(25) may be solved iteratively. In fact, up to four loops, it has the form

a(L, {ci}) =
κ1
L

+
κ2
L2

+
κ3
L3

+
κ4
L4

+O
(

1

L5

)
. (27)

Substituting it into Eq.(25), these coefficients κj (j = 1, · · · , 4) can be determined by requiring all the

terms with
(

1
Lj

)
(j < 5) vanish. We finally obtain

a =
1

L
+

1

L2
(C − lnL) +

1

L3

[
C2 + C + c2 − (2C − lnL+ 1) lnL− 1

]
+

1

L4

{
C
(
C2 +

5

2
C + 3c2 − 2

)

−1− c3
2

−
[
3C2 + 5C + 3c2 − 2−

(
3C − lnL+

5

2

)
lnL

]
lnL

}
+O

(
1

L5

)
. (28)

One will find that the above four-loop solution agrees with Ref. [83] after proper parameter transfor-
mations. In fact, the integrated RG equation in Ref. [83] takes the form

L∗ =
1

β∗
0

[
1

(a∗)
+ b1 ln(a

∗) + (b2 − b21)(a
∗) +

(
b3
2
− b1b2 +

b31
2

)
(a∗)2

]
+ C∗, (29)

where the following definitions are adopted

a∗ =
αs

π
, bi =

β∗
i

β∗
0

, L∗ = ln

(
µ2
r

Λ2
QCD

)
, (30)

which are related to our present adopted definitions through the following relations

βj = 4j+1β∗
j (j = 0, 1, · · ·) , a =

β∗
1

β∗
0

a∗ , L =
β∗2
0

β∗
1

L∗ , cR2 =

(
β∗
0

β∗
1

)2

b2 , c
R
3 =

(
β∗
0

β∗
1

)3

b3 . (31)

It is found that by identifying the integration constant C∗ = β1

β2
0

(
C − ln 4β0

β1

)
, the above four-loop solution

(28) agrees with that of Ref. [83].
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The universal coupling has a particularly simple form when all the scheme parameters {ci} are set to
zero (the ’t Hooft scheme [52]). The ’t Hooft scheme is free of higher-order corrections and its running
coupling a

′tH is governed by the simpler RG equation

L
′tH =

1

a′tH
+ ln

(
a

′tH

1 + a′tH

)
, (32)

where

L
′tH =

β2
0

β1
ln

(
µ2
r

(Λ
′tH
QCD)

2

)
(33)

and the integration constant C has been absorbed into the asymptotic scale Λ
′tH
QCD for convenience.

It can be solved perturbatively as described above, being a special case of the solution (28). At the
two-loop level, it however has an analytic solution which can be written as a function of the scale in
terms of the Lambert function W (z) [84], which is defined through the equation, z = W (z) expW (z).

The ’t Hooft coupling presents a formal singularity at L
′tH = 0; i.e. a

′tH ≡ a(0, {0}) = ∞. Inversely,
it provides a precise definition for the asymptotic scale; i.e., the ’t Hooft scale Λ

′tH
QCD, which is defined

to be the pole of the coupling in the ’t Hooft scheme, a
′tH ≡ a(β2

0/β1 ln(µ
2
r/(Λ

′tH
QCD)

2), {0}). Note that

since the absorbed integration constant C is arbitrary, the value of Λ
′tH
QCD is not unique, and there are

infinite number of ’t Hooft schemes, differing only by the value of Λ
′tH
QCD. However, under a specific

renormalization scheme (R-scheme), its asymptotic scale can be fixed to be the ’t Hooft scale associated
with the R-scheme Λ

′tH−R
QCD [51], which enters into both

aR = a
(
β2
0/β1 ln(µ

2
r/(Λ

′tH−R
QCD )2), {cRi }

)
and a

′tH = a
(
β2
0/β1 ln(µ

2
r/(Λ

′tH−R
QCD )2), {0}

)
.

Here the word “associated” means we are choosing the particular ’t Hooft scheme that shares the same
’t Hooft scale with any given R-scheme. In practice, the ’t Hooft scale associated with the R-scheme
Λ

′tH−R
QCD can be fixed by setting the integration constant to be CR. In fact, by taking the same integration

constant CR for both the ’t Hooft scheme and the chosen R-scheme, one can obtain a relation between
Λ

′tH−R
QCD and the asymptotic scale ΛR

QCD for the R-scheme; i.e.

Λ
′tH−R
QCD = exp

(
β1
2β2

0

CR
)
ΛR

QCD. (34)

As a special case, by choosing CMS = ln β2
0/β1 [49, 82], we obtain

Λ
′tH−MS
QCD =

(
β1
β2
0

)−β1/2β2
0

ΛMS
QCD. (35)

Such a relation is consistent with the observation shown in Refs. [17, 18] and has lately been observed

in Refs. [46, 51]. The present definition of ΛMS
QCD is the conventional one, which is associated with the

choice of CMS = ln β2
0/β1 and is originally suggested by Refs. [49, 82]. There are other choices for CMS

together with the choice of ΛMS
QCD [85, 86, 87], which would be helpful in certain cases.

2.3 Renormalization Group Invariance

Grunberg has pointed out that any perturbatively calculable physical quantity can be used to define
an effective coupling, or “effective charge”, by incorporating the entire radiative corrections into its
definition [13, 14, 15, 16]. The effective coupling satisfies the same RG equation as the usual coupling.
Thus, the running behavior for both the effective coupling and the usual coupling are the same if their
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RG equations are calculated under the same choice of scheme parameters. This idea has been discussed
in more detail in Refs. [88, 89]. Such an effective coupling can be used as a reference to define the
renormalization procedure. For example, the effective coupling αR from the total hadronic cross section
in e+e− annihilation can be defined as [90]

Re+e−(Q
2) ≡ R0

e+e−(Q
2)

[
1 +

αR(Q)

π

]
, (36)

where R0
e+e−(Q

2) is the Born result and s = Q2 is the squared e+e− annihilation energy; the effective
coupling αg1 from the Bjorken sum rule for polarized electro-production can be defined as [91]

∫ 1

0
dx
[
gep1 (x,Q2)− gen1 (x,Q2)

]
≡ 1

3

∣∣∣∣∣
gA
gV

∣∣∣∣∣

[
1− αg1(Q)

π

]
, (37)

where Q2 = −q2 and q2 is the momentum transfer squared. An important suggestion is that all effective
couplings must satisfy the RG equation [13, 14, 15, 16]. Different schemes or effective couplings will
differ through the third and higher coefficients of the {βR

i }-functions, which are scheme R dependent.
Thus, any effective coupling can be used as a reference to define the renormalization procedure.

Physical results should be independent of theoretical conventions. The RG invariance states that a
physical quantity should be independent of the renormalization scale and renormalization scheme [3, 5,
6, 7, 8]. Thus it is helpful to use the extended coupling Eq.(18) which contains both the scheme and
scale parameters for the discussion.

2.3.1 Demonstration of Renormalization Group Invariance

The RG invariance shows that if the effective coupling a(τR, {cRi }) corresponds to a physical observable,
the result from calculating in any scheme should be independent of any other scale τS and any other
scheme parameters {cSj }; i.e.

∂a(τR, {cRi })
∂τS

≡ 0 , [scale invariance] (38)

∂a(τR, {cRi })
∂cSj

≡ 0 . [scheme invariance] (39)

Demonstration: We provide an intuitive demonstration for the RG invariance from the extended RG
equations. Given two effective couplings a(τR, {cRi }) and a(τS , {cSi }) defined under two different schemes
R and S, one can expand a(τR, {cRi }) in a power series of a(τS , {cSi }) through a Taylor expansion:

a(τR, {cRi }) = a(τS + τ̄ , {cSi + c̄i})

= a(τS , {cSi }) +
(
∂a

∂τ

)

S

τ̄ +
∑

i

(
∂a

∂ci

)

S

c̄i +
1

2!

[(
∂2a

∂τ 2

)

S

τ̄ 2+

2

(
∂2a

∂τ∂ci

)

S

τ̄ c̄i +
∑

i,j

(
∂2a

∂ci∂cj

)

S

c̄ic̄j


+

1

3!

[(
∂3a

∂τ 3

)

S

τ̄ 3 + · · ·
]
+ · · · , (40)

where τ̄ = τR − τS , c̄i = cRi − cSi and the subscript S next to the partial derivatives means they are
evaluated at the point (τS , {cSi }).

The right-hand-side of Eq.(40) can be regrouped according to the different orders of scheme-parameters
{c̄i}. After differentiating both side of Eq.(40) over τS , we obtain

∂a(τR, {cRi })
∂τS

=
∂(n+1)a(τS , {cSi })

∂τ
(n+1)
S

τ̄n

n!
+
∑

i

∂(n+1)a(τS , {cSi })
∂cSi ∂τ

(n)
S

τ̄n−1c̄i
(n− 1)!

+ · · · , (41)

14



where n stands for the highest perturbative order for a fixed-order calculation. It is noted that Eq.(41)
can be further simplified with the help of RG equations (17,23). If setting n→ ∞, the right-hand-side of
Eq.(41) tends to zero, and we obtain the scale-invariance equation (38). This shows that if a(τR, {cRi })
corresponds to a physical observable (corresponding to the case of infinite perturbative series, n→ ∞),
it will be independent of any other scale τS . Similarly, doing the first derivative of a(τR, {cRi }) with
respect to the scheme-parameter cSj , one can obtain the scheme-invariance equation (39).

In other words, if one uses an effective coupling a(τS , {cSi }) under the renormalization scheme S and
with an initial renormalization scale {τS} to predict the value of another effective coupling a(τR, {cRi }),
the RG invariance (38,39) tell us that

• if we have summed all types of cSi -terms (or equivalently the {βS
i }-terms) into the effective cou-

pling, as is the case of an infinite-order calculation, then our final prediction of a(τR, {cRi }) will
be independent of any choice of initial scale τS and any renormalization-scheme S.

• In any case, one needs to set an initial renormalization scale to initiate a calculation, and the
actual scale may or may not be equal to such initial scale, depending on which scale setting
method we choose. According to Eq.(41), for a fixed-order estimation (i.e. n 6= ∞), there is
some residual initial-scale dependence. This is reasonable: as shown by Eq.(40), for a fixed-order
calculation, the {βS

i }-terms in even higher orders are unknown which however are necessary to
cancel the scale dependence from the one-lower-order terms. Those unknown-terms provide the
scale-error source for the fixed-order estimate under the conventional scale setting method. In this
method, by varying the scale to be within several times of the typical momentum transfer of the
process, one can estimate some of the contributions from the higher-order terms, which however
only exposes the {βS

i }-dependent non-conformal terms, not the entire perturbative series.

If one can find a proper way to sum up all the known-type of {βS
i }-terms into the coupling,

and at the same time effectively suppress the contributions from those unknown-type of {βS
i }-

terms at higher orders, leading to highly convergent perturbative series, such residual initial scale
dependence can be greatly suppressed. Then, even for a fixed-order calculation, one can eliminate
the scale error and get the right estimate for a physical observable.

• If setting all the differences of the renormalization scheme parameters to zero, c̄i ≡ 0 (i = 1, 2, · · ·),
Eq.(40) returns to a scale-expansion series for the coupling expanding over itself but specified at
another scale; i.e.

a(τR, {cRi }) = a(τS , {cRi }) +
∂a(τS , {cRi })

∂τS
τ̄ +

1

2!

∂2a(τS , {cRi })
∂τ 2S

τ̄ 2 +
1

3!

∂3a(τS , {cRi })
∂τ 3S

τ̄ 3 + · · · . (42)

Using the RG scale-equation (17), the right-hand-side of the above equation can be rewritten as
perturbative series of a(τS , {cRi }), whose coefficient at each order is a {βR

i }-series. This, inversely,
tells us which {βR

i }-series controls the running coupling at each perturbative order.

The above discussions are general, which are also suitable for Abelian QED; i.e. by taking the
Abelian limit Nc → 0 at fixed αem = CFαs with CF = (N2

c − 1)/2Nc and Nc the quark’s color number,
we effectively return to the QED case [29, 38].

2.3.2 A Combined Evolution of the Coupling in Scheme and Scale

One can use Eq.(40) together with the scheme and scale evolution equations (17,23) to evolve any
coupling a(τS , {cSi }), either the usual one or the effective one, “adiabatically” into another coupling
a(τR, {cRi }), not only in scale but also in scheme. Following the idea of Ref. [51], we show how this can
be achieved. This can be used to relate any two effective couplings.
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First we expand the coupling a(τR, {cRi }) as a perturbative series of a(τS , {cSi }):

a(τR, {cRi }) = a(τS , {cSi }) + f2a
2(τS , {cSi }) + f3a

3(τS , {cSi }) + f4a
4(τS , {cSi }) + · · · . (43)

This expansion series itself is not accurate if we truncate the series to a fixed perturbative order; i.e.,
if these two schemes R and S are quite different and the two scales τR and τS are also quite different,
then the series might not be convergent. However, it can give us some RG equation improved relations
for the scheme- and scale- dependent parameters among different schemes.

From the scheme and scale evolution equations (17,23), up to order O(a5), we have

(
∂a

∂τ

)

S

= −a2(τS , {cSi })− a3(τS , {cSi })− cS2 a
4(τS , {cSi }) +O(a5),

(
∂2a

∂τ 2

)

S

= 2a3(τS , {cSi }) + 5a4(τS , {cSi }) +O(a5),

(
∂3a

∂τ 3

)

S

= −6a4(τS , {cSi }) +O(a5),

(
∂a

∂c2

)

S

= a3(τS , {cSi }) +O(a5),

(
∂a

∂c3

)

S

=
1

2
a4(τS , {cSi }) +O(a5),

(
∂2a

∂τ∂c2

)

S

= −3a4(τS , {cSi }) +O(a5).

Then, the Taylor expansion of a(τR, {cRi }) over a(τS , {cSi }) as shown by Eq.(40) can be simplified as

a(τR, {cRi }) = a(τS , {cSi })− τ̄ a2(τS , {cSi }) +
(
c̄2 − τ̄ + τ̄ 2

)
a3(τS , {cSi }) +

[
1

2
c̄3 −

(
cS2 + 3c̄2

)
τ̄ +

5

2
τ̄ 2 − τ̄ 3

]
a4(τS , {cSi }) +O(a5). (44)

After an order-by-order matching of Eq.(43) and Eq.(44), we obtain

τR = τS − f2, cR2 = cS2 − f2 − f 2
2 + f3, cR3 = CS

3 − 2f2c
S
2 + f 2

2 + 4f 3
2 − 6f2f3 + 2f4. (45)

Finally, substituting these parameters into the extended RG equations for a(τR, {cRi }), we can obtain
the required accurate scheme and scale behaviors of a(τR, {cRi }).

This finishes the process of deriving the coupling a(τR, {cRi }) at any scale and any scheme from an
initial or known a(τS , {cSi }), which can be summarized in the following :

• Derive the initial scheme parameters of aS (τS , c
S
2 , c

S
3 , ...) by calculating the coefficients of its

fundamental β(aS , {cSi })-functions.

• From Feynman diagram calculation, obtain the expansion series of a(τR, {cRi }) in terms of a(τS , {cSi }),
e.g. to derive the expansion coefficients fi for Eq.(43).

• Use the relations as Eq.(45) to identify the parameters τR, c
R
2 , c

R
3 , ...

• Use the extended scale evolution equation (17), to run aR to any required scale. As a byproduct,
one can adopt the extended scheme evolution equation (23) for an error analysis of aR due to
unknown scheme parameters.

3 Self-Consistency Conditions for a Scale-Setting Method

As has been discussed above, the goal of a scale-setting method is to find an optimal renormalization
scale which can be systematically set in a process independent way. This universality can provide a
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renormalization-scheme independent, initial-scale independent, and also highly convergent perturbative
series. In the literature, it has been suggested that some self-consistent requirements, such as the
reflexivity, the symmetry and the transitivity, can shed light on the reliability of the scale setting
method [48, 53, 54]. These self-consistency requirements have a solid background, which are natural
requirements of the renormalization group (RG) equation and the RG invariance.

If one knows how to set the optimal scale, then one can translate the result freely from one scheme to
another scheme through scale relations [92, 93]. This observation has been emphasized in Ref. [23], where
the scale transformation among different schemes are called “commensurate scale relations” (CSRs).
It shows that even though the expansion coefficients could be different under different renormalization
schemes, after a proper scale setting, one can find a relation between the effective renormalization scales
which ensures that the total result remains the same under any renormalization scheme. For simplicity,
following the suggestion of Refs. [48, 53, 54], we also omit the scheme parameters in the coupling in
the following discussions for the self-consistent requirements of a scale setting method, but will retrieve
them when necessary.

In the following four self-consistency requirements are listed, which follow from the RG equation
and RG invariance:

1. Existence and uniqueness of the renormalization scale µr. Any scale setting method must satisfy
these two requirements. This agrees with our common belief that there does exist an unique
and optimal renormalization scale for a fixed-order estimation. A pictorial representation of the
optimized renormalization scale is shown in Fig.(1). For example, the optimal scale for the Abelian
QED case is set by the GM-L scheme [4].

2. Reflexivity. Given an effective coupling αs(µr) specified at a renormalization scale µr, we can
express it in terms of itself but specified at another renormalization scale µ′

r,

αs(µr) = αs(µ
′
r) + f1(µr, µ

′
r)α

2
s(µ

′
r) + · · · , (46)

where f1(µr, µ
′
r) ∝ ln(µ2

r/µ
′2
r ). Up to infinite orders due the scale-invariance (38), we have

∂αs(µr)/∂ lnµ
′2
r ≡ 0. This, inversely, means that if αs(µr) is known (say, a experimentally

measured effective coupling), and we try to use the above perturbative equation to “predict”
αs(µr) from itself, then any deviation of µ′

r from µr would lead to an inaccurate result due to
the truncation of expansion series. More explicitly, for a fixed-order expansion with the highest
perturbative-order n, from Eq.(41), we obtain

∂αs(µr)

∂ lnµ′2
r

∝
(
lnµ2

r/µ
′2
r

)n

n!

∂(n+1)αs(µ
′
r)

∂(ln µ′2
r )

(n+1)
.

This shows, generally, the right-hand-side of Eq.(46) depends on µ′
r at any fixed order. Thus to

get a correct fixed-order estimate for αs(µr), a self-consistency scale setting must take the unique
value µ′

r = µr on the right-hand-side of Eq.(46). If a scale setting satisfies this property, we say it
is reflexive.

3. Symmetry. Given two different effective couplings αs1(µ1) and αs2(µ2) under two different renor-
malization schemes and at the two renormalization scales µ1 and µ2 respectively, we can expand
any one of them in terms of the other:

αs1(µ1) = αs2(µ2) + r12(µ1, µ2)α
2
s2(µ2) + · · · ,

αs2(µ2) = αs1(µ1) + r21(µ2, µ1)α
2
s1(µ1) + · · · .
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After a general scale setting, we have

αs1(µ1) = αs2(µ
∗
2) + r̃12(µ1, µ

∗
2)α

2
s2(µ

∗
2) + · · · , (47)

αs2(µ2) = αs1(µ
∗
1) + r̃21(µ2, µ

∗
1)α

2
s1(µ

∗
1) + · · · . (48)

Here as a general choice, we have implicitly set the effective scales at NLO-level to be equal to the
LO ones; i.e., the effective scales for the highest-order terms are usually taken as the same effective
scales at the one-lower-order, since they are the scales strictly set by using the known-terms.

Setting µ∗
2 = λ21µ1 and µ∗

1 = λ12µ2, if
λ12λ21 = 1 , (49)

we say that the scale setting is symmetric.

Explanation:

If µ∗
2 = λ21µ1 and µ∗

1 = λ12µ2, we obtain

αs1(µ1) = αs2(λ21µ1) + r̃12(µ1, λ21µ1)α
2
s2(λ21µ1) + · · · (50)

αs2(µ2) = αs1(λ12µ2) + r̃21(µ2, λ12µ2)α
2
s1(λ12µ2) + · · · . (51)

As a combination of Eqs.(50,51), we obtain

αs1(µ1) = αs1(λ12λ21µ1) + [r̃12(µ1, λ21µ1) + r̃21(λ21µ1, λ12λ21µ1)]α
2
s1(λ12λ21µ1) + · · · . (52)

From the reflexivity property, if a scale setting is symmetric, i.e. satisfying Eq.(49), we will obtain

r̃12(µ1, µ
∗
2) + r̃21(µ2, µ

∗
1) = 0, (53)

and vice versa. This shows that the symmetry property (49) and the relation (53) are mutually
necessary and sufficient conditions.

4. Transitivity. Given three effective couplings αs1(µ1), αs2(µ2), and αs3(µ3) under three renormal-
ization schemes, we can expand any one of them in terms of the other; i.e.

αs1(µ1) = αs2(µ2) + r12(µ1, µ2)α
2
s2(µ2) + · · · ,

αs2(µ2) = αs3(µ3) + r23(µ2, µ3)α
2
s3(µ3) + · · · ,

αs3(µ3) = αs1(µ1) + r31(µ3, µ1)α
2
s1(µ1) + · · · .

After a scale setting, we obtain

αs1(µ1) = αs2(µ
∗
2) + r̃12(µ1, µ

∗
2)α

2
s2(µ

∗
2) + · · · , (54)

αs2(µ2) = αs3(µ
∗
3) + r̃23(µ2, µ

∗
3)α

2
s3(µ

∗
3) + · · · , (55)

αs3(µ3) = αs1(µ
∗
1) + r̃13(µ3, µ

∗
1)α

2
s1(µ

∗
1) + · · · . (56)

Setting µ∗
2 = λ21µ1, µ

∗
3 = λ32µ2 and µ∗

1 = λ13µ3, if

λ13λ32λ21 = 1 . (57)

we say that the scale setting is transitive.
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Explanation:

If µ∗
2 = λ21µ1, µ

∗
3 = λ32µ2 and µ∗

1 = λ13µ3, we obtain

αs1(µ1) = αs2(λ21µ1) + r̃12(µ1, λ21µ1)α
2
s2(λ21µ1) + · · · , (58)

αs2(µ2) = αs3(λ32µ2) + r̃23(µ2, λ32µ2)α
2
s3(λ32µ2) + · · · , (59)

αs3(µ3) = αs1(λ13µ3) + r̃31(µ3, λ13µ3)α
2
s1(λ13µ3) + · · · . (60)

As a combination of Eqs.(59,59,60), we obtain

αs1(µ1) = αs1(λ13λ32λ21µ1) + α2
s1(λ13λ32λ21µ1)×

[r̃31(λ32λ21µ1, λ13λ32λ21µ1) + r̃23(λ21µ1, λ32λ21µ1) + r̃12(µ1, λ21µ1)] + · · · . (61)

If a scale setting is transitive, i.e. satisfying Eq.(57), we obtain from the reflexivity property,

r̃12(µ1, µ
∗
2) + r̃23(µ

∗
2, µ

∗
3) + r̃31(µ

∗
3, µ1) = 0, (62)

and vice versa. This shows that the transitivity property (57) and the relation (62) are mutually
necessary and sufficient conditions. The transitivity property shows that under a proper scale
setting method, we have λ21 ≡ λ23λ31, which means that the scale ratio λ21 for any two couplings
αs1 and αs2 is independent of the choice of a intermediate coupling αs3 under any renormalization
scheme. Thus the relation between any two observables is independent of the choice of renor-
malization scheme. In fact, the transitivity property provides the theoretical foundation for the
existence of commensurate scale relations among different physical observables [23]. The transi-
tivity property is essential for self-consistent scale setting, and is a natural requirement from the
RG invariance. It has already been pointed out that the transitivity property is the main reason
why the renormalization group is called a “group” [3, 5, 6]. The transitivity property (57) can be
extended to an arbitrary number of couplings; i.e. if we have n couplings which are related with
similar manner as above, then their transitivity relation is

λ1nλn(n−1) · · ·λ32λ21 = 1. (63)

One may observe that the Symmetry is a special case of Transitivity, since if setting αs3(µ3) ≡
αs1(µ1), we have λ11 ≡ 1 and r̃11(µ1, µ1) ≡ 0 due to the reflexivity, which thus changes the
transitive relation λ13λ32λ21 = 1 into the symmetric relation λ12λ21 = 1.

We present a more intuitive explanation of these requirements based on the universal coupling
a(τ, {ci}) and the extended renormalization group Eqs.(17,23). In the extended RG equations (17,23),
there is no explicit reference to the QCD parameters, such as the number of colors or the number of
active-flavors. Therefore, aside from its infinite dimensional character, a(τ, {ci}) is just a mathematical
function like, say, Bessel functions or any other special functions [51]. In practice, due to the unknown
higher order scheme parameters {ci}, we need to truncate the beta function β(a, {ci}) and solve the
universal coupling a(τ, {ci}) in a finite-dimensional subspace; i.e. we need to evaluate a(τ, {ci}) in a
subspace where higher order {ci}-terms are zero. In principle, this function can be computed to arbitrary
degree of precision, limited only by the truncation of the fundamental β-function. In this formalism,
any two effective couplings can be related by some evolution path on the hypersurface defined by
a(τ, {ci}). In Fig.(3) we illustrate the paths which represent the operations of reflexivity, symmetry
and transitivity. We can pictorially visualize that the evolution paths satisfy all these self-consistency
properties. A closed path starting and ending at the same point A represents the operation of identity.
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{ci}

a(τ, {ci})

τ

A

B

C

D

E F

Figure 3: Pictorial representation of the self-consistency of the scale setting method through
the universal coupling a(τ, {ci}). The point A with a closed path represents the operation
of reflexivity. The paths BC and CB represent the operation of symmetry, and the paths
DF ,FE and DE represent the operation of transitivity.

Since the predicted value does not depend on the chosen path, if the effective coupling at A is aA, after
completing the path we will also end up with an effective coupling aA. Similarly, if we evolve aB at B
to a value aC at C, we are guaranteed that when we evolve aC at C back to the point B, the result will
be aB. Hence, the evolution equations also satisfy symmetry. transitivity follows in a similar manner;
i.e. going directly from D to E gives the same result as going from D to E through a third point F .

In summary, a scale setting method that satisfies uniqueness of the renormalization scale, reflexivity,
symmetry, and transitivity effectively establishes equivalent relations among all the effective couplings,
and thus, among all physical observables.

4 Typical Scale-Setting Methods and Their Properties

According to the RG invariance, physical quantities are renormalization scheme and scale independent.
The exact renormalization scheme independence is respected only approximately for a perturbative
calculation, which is the well-known renormalization scheme ambiguity. A resolution of renormalization
scheme ambiguity is not simply to find a “good expansion parameter for QCD”. In fact, we should
find a method that can provide the same estimate under any renormalization scheme for a fixed order
calculation. There are some suggestions for such purpose, such as FAC [13, 14, 15, 16], PMS [17, 18, 19,
20], BLM [21] and PMC [39, 45, 46, 47, 50], which are also programmed to solve the renormalization
scale ambiguity. A short review of FAC, BLM and PMS can be found in Ref. [94]. Even though
all of them strive to eliminate the renormalization scheme ambiguity, they can lead to quite different
results. For instance FAC and PMS are programmed to directly deal with the nature of the perturbative
series, whose scale is determined by the total correction; BLM and PMC are programmed to improve
the behavior of the coupling by absorbing only the part of the correction that is related to coupling
constant renormalization (i.e. the nf -terms or {βi}-terms) into it, which then naturally improves the
convergence of the perturbative series.

In this section, we make a detailed discussion on the scale setting methods FAC, PMS, BLM and
PMC. We present their ideas and basic properties, and show how the self-consistency conditions, such
as reflexivity, symmetry, and transitivity, are satisfied or broken by these methods.
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4.1 The Fastest Apparent Convergence: FAC Scale-Setting

It is observed that the standard pQCD prediction for a physical quantity σ = f(µr/ΛQCD) usually gives
its asymptotic expansion in powers of 1/ ln (µr/ΛQCD), which, inversely, means (µr/ΛQCD) = f−1(σ).
Based on this fact, FAC uses this fact to select the renormalization scale [13, 14]. The advantage
of dealing with the inverse function f−1(σ) other than the perturbative function f(µr/ΛQCD) lies in
that it allows one to get rid of any ambiguity related to the definition of ΛQCD and µr, since any
redefinition of one of these two scales results only in a trivial overall rescaling of the inverse function
f−1(σ). The inverse function f−1(σ) depends solely on the physical quantity considered, and is therefore
a renormalization scheme independent object 2.

In practice, the FAC scale is determined by requiring all the higher order coefficients in Eq.(1) to be
zero; i.e. Ci(≥1)(µ

FAC
r ) ≡ 0. It is for this reason, Stevenson called it “Fastest Apparent Convergence”

(FAC) [18]. It has been argued by Grunberg [15, 16] and Krasnikov [95] that it is really a renormaliza-
tion group improved effective charge or effective coupling scheme, all the known-type of higher order
corrections can be absorbed into an effective coupling through the RG equation in order to provide
a reliable estimate, and this method is also applicable when there are large higher order corrections.
Here, for simplicity, we follow Stevenson’s naming for the method.

4.1.1 Basic Arguments of FAC

The expansion of f−1(σ) is obtained by introducing an effective coupling ᾱs(µr) of the particular
renormalization scheme where all higher order corrections to σ vanish [13]. If a physical observable in
an arbitrary renormalization scheme can be written as

σ = A+B [αs(µr)]
d
[
1 + σ1(µr)αs(µr) +O(α2

s)
]
, (64)

the effective coupling ᾱs(µr) is defined by the identity

σ = A +B [ᾱs(µr)]
d , (65)

where A and B are general perturbative or non-perturbative quantities predicted in principle by QCD,
d is the αs-order at the Born level and σ1(µr) is the NLO coefficient. Consequently, ᾱs(µr) is the object
effectively extracted from a LO analysis of the experimental data on σ. Next, we require such effective
coupling also to satisfy the conventional RG equation; i.e. putting ρ̄ ≡ ᾱs/(4π), we have

µ2
r

∂ρ̄

∂µ2
r

= β̄(ρ̄) = −β0ρ̄2 − β1ρ̄
3 +O(ρ̄4). (66)

Its solution up to two-loop level is [13, 14]

β0 ln

(
µ2
r

Λ2
QCD

)
=

1

ρ̄
+
β1
β0

ln(β0ρ̄) + c1 +
∫ ρ̄

0
dx

[
1

x2
− β1
β0x

+
β0
β̄(x)

]
. (67)

For example, we can take ΛQCD as ΛMS
QCD which is compensated by the MS value of cMS

1 to give a
scheme independent estimate; i.e.

ρ̄(µr) = ρMS(Q)

[
1 +

(
cMS
1 − β0 ln

µ2
r

Q2

)
ρMS(Q) + · · ·

]
. (68)

2Practically, the inverse function f−1(σ) is only an approximation due to a fixed-order calculation, there is residual
scheme-dependence from the omitted higher order terms.
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The result is independent of the choice of MS. Comparison of Eq.(65) with Eq.(67) yields the inverse
function f−1(σ). A simple two-loop approximation is obtained by dropping the integral in Eq.(65),
giving

β0 ln


 µ2

r

(ΛMS
QCD)

2


 =

1

ρ̄
+
β1
β0

ln(β0ρ̄) + cMS
1 +O(ρ̄), (69)

which equals to the two-loop expression in solution (25) under suitable parameter transformations.
Later on, a more complicated RG equation improved analysis was done by including the three-loop
β2-term [15, 16].

In this way a systematic expansion of (µr/ΛQCD) as a function of ρ̄ (or equivalently, σ) is achieved.
Since dimensional transmutation is implemented in most direct manner, the only free parameter in
Eq.(65) is ΛQCD (the value of c1 is just to compensate the choice of ΛQCD in order to provide a scheme-
independent estimate at the considered perturbative order). Some more points regarding the FAC scale
setting method are [14]:

• When the NLO correction in Eq.(68) is large, the use of Eq.(69) amounts to a resummation of
the most important higher order corrections into Eq.(68): a RG improved perturbation theory is
achieved. This is the main point of FAC.

• From the RG equation, assuming the asymptotic expansion of β̄(ρ̄) is well-behaved, an unam-
biguous criterium for the validity of perturbative theory for each process is given by the condition
that (β1/β0)ρ̄≪ 1. With the help of Eq.(69), this alternatively means

Q ≫ ΛQCD exp

(
c1
2β0

)
exp

{
1

2β0

[
1

ρ̄max
+
β1
β0

ln(β0ρ̄max)

]}
(70)

with ρ̄max ≡ β0/β1.

• The FAC method depends sensitively to which quantity it is applied. For instance, the prediction
for the ratio R = σ1/σ2 of two cross sections σ1 and σ2 depends on whether the RG improvement
is applied separately to σ1 and σ2, or directly to R. The first method is more reliable, since σ1
and σ2 are related directly to Feynman diagrams, whereas R is a more artificial construct; this
point of view also has the advantage of exploiting more completely the information contained in
the expansion of σ1 and σ2.

4.1.2 Properties of FAC

It is straightforward to verify that FAC satisfies all the mentioned self-consistency requirements.

1. The existence and uniqueness of the renormalization scale µr are guaranteed, since the scale-setting
conditions for FAC are often linear equations in lnµ2

r, especially for lower order calculations.

As a simple explanation, if the NLO coefficient C1(µr) for a physical observable, as defined in
Eq.(1), has the form

C1(µr) = A+B lnµ2
r . (71)

The FAC scale is obtained by requiring, C1(µFAC
r ) = 0, which leads to

µFAC
r = exp

(
− A

2B

)
. (72)

2. The FAC requires all ln(µ2
r/µ

′2
r )-terms in Eq.(46) to vanish, thus we obtain µ′

r = µr. Then, the
reflexivity is satisfied by FAC.
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3. Symmetry is trivial. After FAC scale setting, two coefficients r̃12 and r̃21 which are defined in
Eqs.(47,48) satisfy

r̃12(µ1, µ
∗
2) + r̃21(µ2, µ

∗
1) = 0 ,

where µ∗
1 = λ12µ2 and µ∗

2 = λ21µ1. It shows that these two NLO coefficients r̃12 and r̃21 only
differ by a sign. Thus, requiring one of them to vanish is equivalent to requiring the other one to
vanish. Furthermore, due to the reflexivity property, one can easily obtain λ12λ21 = 1.

4. Transitivity is also satisfied by FAC. In FAC the scales are so chosen such that the NLO term
vanishes; i.e. after FAC scale setting, Eqs.(54,55) change to

αs1(µ1) = αs2(µ
∗
2) +O(α2

s2), (73)

αs2(µ2) = αs3(µ
∗
3) +O(α2

s3) (74)

As a combination, we obtain

αs1(µ1) = αs3(µ
∗
3) +O(α2

s3) , (75)

where µ∗
1 = λ13µ3, µ

∗
2 = λ21µ1 and µ

∗
3 = λ32µ2. Notice that this last equation does not contain the

NLO term. Thus, the relationship between µ1 and µ3 is still given by the FAC condition (i.e., no
NLO term), even when we have employed an intermediate scheme. These arguments ensure the
transitive relation, λ31 = λ32λ21, be satisfied.

4.2 The Principle of Minimum Sensitivity: PMS Scale-Setting

An “unphysical” parameter, such as the renormalization scale or the renormalization scheme, means its
value will not affect the true result of a physical observable. For an all-order calculation, it is true due
to the RG invariance. However, for a fixed-order calculation, there is a remaining dependence on the
“unphysical” parameters underlying the conventional scale setting, which depends on the perturbative
convergence of the process.

The PMS scale setting is designed to eliminate the renormalization scheme dependence. Given the
result in some arbitrary initial renormalization scheme, the outcome of PMS is suggested to be a unique
and optimum result, which is scheme independent [17, 18, 19, 20]. It is based on the argument that
if an estimate has to depend on some “unphysical” parameters, then their values should be chosen in
order to minimize the sensitivity of the estimate to small variations of these parameters; i.e. the scheme
and scale must be chosen so as to minimize the sensitivity of the estimation to their small variations.
It has later been argued, cf. Ref. [96], that the perturbative convergence can also be improved by PMS.
However, in practice this is not fulfilled.

More explicitly, the PMS requires the truncated series, i.e. the approximant of a physical observable,
e.g. ρn which is defined in Eq.(1), to satisfy the following RG invariance,

∂ρn
∂τ

=

(
∂

∂τ

∣∣∣∣∣
αs

+ β(αs)
∂

∂αs

)
ρn ≡ 0 (76)

∂ρn
∂βj

=

(
∂

∂βj

∣∣∣∣∣
αs

− β(αs)
∫ αs

0
dα′ α

′j+2

[β(α′)]2
∂

∂αs

)
ρn ≡ 0, (77)

where τ = ln(µ2
r/Λ

2
QCD) and j ≥ 2. Here, we have used the following equation, which is a transformation

of Eq.(23):

∂αs

∂βj
= −β(αs)

∫ αs

0
dα′ α

′j+2

[β(α′)]2
=
αj+1
s

β0

(
1

j − 1
− β1
β0

j − 2

j(j − 1)
αs + . . .

)
. (78)

The functions β(αs), αs, βj and etc. are scheme independent. Here for convenience, we have omitted
the scheme labels in these equations.
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4.2.1 Basic Arguments of PMS

Every renormalization scheme corresponds to a different β(αs)-series, and thus a different (effective)
coupling. The PMS optimization [17, 18, 19, 20] for the perturbative series can be required in the
variables that control such a scheme, e.g. the subtraction point µr and the scheme dependent coefficients
β2, β3, . . .. For definiteness, following Ref. [17, 18, 58, 96], we adopt the process R ≡ σ(e+e− →
hadrons)/σ(e+e− → µ+µ−) for an explanation of PMS. Detailed derivation of the process can be found
in Refs [58, 96]. For self-consistency, we present their main results here, but will transform their
notations to agree with our present conventions.

The quantity Re+e−(s) with an arbitrary choice of µr (for the moment different from the total energy
s) and in an arbitrary renormalization scheme takes the form

Re+e−(s) =


3

∑

f

Q2
f




1 +

αs(µr)

π
+ r2(s)

(
αs(µr)

π

)2

+ r3(s)

(
αs(µr)

π

)3

+ . . .


 , (79)

where Qf stands for the electric charge of f quark. According to PMS, the quantity Re+e−(s) should
be renormalization scheme and renormalization scale independent even at the fixed order; i.e., it is
stationary for the scale parameter τ and the scheme-dependent parameters βi (i ≥ 2). If we neglect the
masses of active quarks, we obtain the scale-invariant and scheme-invariant equations:

(
∂

∂τ
+ β(αs)

∂

∂αs

)
Re+e− = 0 , (80)

(
∂

∂βj
− β(αs)

∫ αs

0
dα′ α

′j+2

[β(α′)]2
∂

∂αs

)
Re+e− = 0 , (81)

where j = 2, 3, . . ., τ = ln(µ2
r/Λ̃

2
QCD). Similar to Eq.(35), Λ̃QCD is related to the conventional ΛMS

QCD

through the following relation

Λ̃QCD =

(
β1
β2
0

)−β1/2β2
0

ΛMS
QCD.

Eqs.(80,81) can be used, first to obtain r2, r3, . . . in an arbitrary renormalization scheme, when we
know this quantities in a specific renormalization scheme, and then to make the optimal choice for τ ,
β2, β3, . . ..

From now on we will use the notation a = αs/π. Replacing (78) in (81), asking that these equations
for a given µ2

r are satisfied for an arbitrary value of a, we obtain differential equations for r2, r3 and
etc.. Restricting to r2, r3 and j = 2, we have

∂r2
∂τ

=
1

4
β0

∂r2
∂β2

= 0

∂r3
∂τ

=
1

2
β0r2 +

1

16
β1

∂r3
∂β2

= − 1

16

1

β0
(82)

Integrating the above equations, we obtain

r2 =
1

4
β0τ + ρ2

r3 =
1

16
β2
0τ

2 +
1

2
β0ρ2τ +

1

16
β1τ −

1

16

β2
β0

+ ρ′3 =

(
r2 +

1

8

β1
β0

)2

− 1

16

β2
β0

+ ρ3 , (83)

where ρ2 and ρ3 are integration constants independent of τ , β2, . . . and are scheme independent. They
can be calculated, e.g. equating β2, r2, r3 to their expressions βMS

2 , rMS
2 , rMS

3 in the MS scheme [97];

24



then, we have

ρ2 = rMS
2 − 1

4
β0 ln

s

Λ̃2
QCD

,

ρ3 = rMS
3 −

(
rMS
2 +

1

8

β1
β0

)2

+
1

16

βMS
2

β0
. (84)

Note that ρ3 turns out to be independent of s, and r2 has the form

r2 = −1

4
β0 ln

s

Λ̃2
QCD

+
1

4
β0τ + rMS

2 , (85)

while r3 depends on s and τ only through r2.

Using the 3-loop expression for the {βi}-functions, we have

τ =
4

β0a
+
β1
β2
0

ln

(
β1a

β0

)
− β1

2β2
0

ln

(
16β0 + 4β1a+ β2a

2

β0

)
+

2β2β0 − β2
1

2β2
0

f(a, β2) (86)

with

f(a, β2) =
1√
D

ln
4β0 +

1
2
a(β1 +

√
D)

4β0 +
1
2
a(β1 −

√
D)

(87)

and D = β2
1 − 4β2β0 . Note that the present complex equation (86) is the strict three-loop solution, as

a simpler estimation, one can use its perturbative expansion (29) to do the following discussion.

Let us make the same replacement in Eqs.(80,81) and truncate Eq.(78) at O(a3). By requiring
Eqs.(80,81) be exactly satisfied, we obtain the following equations

3β0r3 +
1

2
β1r2 +

1

16
β2 +

(
3β1r3 +

1

2
β2r2

)
a

4
+ 3β2r3

a2

16
= 0 , (88)

[
1 +

(
β1
4β0

+ 2r2

)
a

]
I(a, β2)− a = 0 , (89)

where

I(a, β2) =
4β0
D

[
(4β2

1 − 8β2β0)a+ β2β1a
2

16β0 + 4β1a+ β2a2
− 2β2β0 f(a, β2)

]
.

Eq.(86) gives a as a function of τ , and then, Eqs.(88,89) become equations in τ and β2, which determine
the optimal choice of τ̄(s) and β̄2(s) for every s. We obtain an optimized running coupling a(s) through
this way, which together with the optimized values r̄2(s) and r̄3(s), can be used to evaluate the quantity
Re+e−(s). Some more points regarding the PMS scale setting method are:

• Because of the scheme-equation (81), we can obtain the coefficients r2, r3, and etc. under any
renormalization scheme, cf. Eq.(84). This equation is helpful for determining the universal inte-
gration constants ρ2, ρ3, and etc. by using the results derived from the conventional MS-scheme.

• Eqs.(88,89) are general under any renormalization, so the derived formula for the optimized scale
τ̄(s) is also general, different choice of renormalization scheme will lead to different optimized scale,
but the final result for R(e+e−) will be the same. So a scheme independent estimate is obtained
using the PMS. This is the key point of PMS. The optimized scale and hence the optimized
running coupling can be evaluated numerically [96].
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• Because of the scheme-independence of the effective PMS scale τ̄(s), one can obtain a relation
between the effective scales under different renormalization schemes, which could be a commensu-
rate scale relation as suggested by Ref. [23]. However, according to the above derivation, the PMS
scale is determined as an overall effective scale for all the considered perturbative contributions,
so one can not obtain a scale relation as simple as that of BLM or PMC.

• Following the same way, the PMS method can be extended to higher order approximant.

• It has been argued that by using PMS, there is a strong correlation between renormalization
scheme insensitivity and good apparent perturbative convergence [96]. As a naive argument, we
rewrite Eq.(85) as

r2 =

[
rMS
2 − 1

4
β0 ln

s

µ2
r

]
.

It shows that by using the PMS optimized scale, r2 happens to subtract the β0-term into the
coupling, which is similar to the description of BLM and PMC, and then the pQCD convergence
will be improved at this order in a similar way as that of BLM and PMC. In this sense, PMS
is consistent with BLM or PMC. However, for even higher order calculations, e.g. for r3, the
question is much more involved and we have no such simple correspondence.

4.2.2 The Properties of PMS

Unlike the case of FAC, in general, there are no known theorems that guarantee the existence or the
uniqueness of the PMS solution. In some processes there may not be a minimum or a maximum.
Although for practical cases, PMS does provide solutions, and when there are more than one solution
usually only one of them lies in the physically reasonable region [17, 18, 19, 20], these observations alone
do not prove that PMS will be trouble-free for new processes.

To discuss PMS properties in a renormalization scheme-independent way, following the suggestion
of Refs. [48, 53, 54], we adopt the ’t Hooft scheme [52] to define the effective coupling. Under the ’t
Hooft scheme, the RG equation (17) simplifies to

da

dτ
= −a2(1 + a), (90)

whose solution can be written as

τ =
1

a
+ ln

(
a

1 + a

)
. (91)

In the above solution, for convenience, we have redefined τ as
β2
0

β1
ln
(

µ2
r

Λ
′tH2
QCD

)
, where Λ

′tH
QCD is the asymp-

totic scale under the ’t Hooft scheme.
Given two effective couplings a1 and a2 under the ’t Hooft scheme, they are related by the pertur-

bative series
a1(τ1) = a2(τ2) + (τ2 − τ1)a

2
2(τ2) + · · · . (92)

PMS proposes the choice of µ2 (or equivalently, τ2) at the stationary point, i.e.:

da1
dτ2

= 0 =
d

dτ2

[
a2(τ2) + (τ2 − τ1)a

2
2(τ2)

]
. (93)

With the help of the above RG equation, we obtain

1 + a2 =
1

2(τ1 − τ2)
. (94)
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τ2

τ1

τ2 = τ1 − 1
2

Figure 4: The dependence of the PMS scale parameter τ2 as a function the external scale
parameter τ1.

In order to express τ2 in terms of τ1, one must solve the last equation in conjunction with

1

a2
+ log

(
a2

1 + a2

)
= τ2. (95)

In Fig.4 we present the graphical solution of the PMS scale-parameter τ2 as a function of the external
scale-parameter τ1. One may observe two points:

• τ2 ≥ τ1 − 1
2
. Since τ2 6= τ1 in any cases, so PMS explicitly violates reflexivity. For a fixed-order

estimation, when one uses an effective coupling to predict itself, the application of PMS would
lead to an inaccurate result.

• In the large momentum region (τ1 ≫ 1), we obtain a2(τ2) → 0, and

τ2 ≃ τ1 −
1

2
. (96)

Under the same renormalization scheme R, we have the same asymptotic parameter Λ
′tH−R
QCD for

both a1 and a2. Here Λ
′tH−R
QCD is the ’t Hooft scale associated with the R-scheme, where the word

“associated” means we are choosing the particular ’t Hooft scheme that shares the same ’t Hooft
scale with the R-scheme. Then the relation (96) in terms of µ1 and µ2 becomes

µ2 ≃ µ1 exp

(
− β1
4β2

0

)
. (97)

More generally, it is found that after PMS scale setting, the scale displacement between any two
scales µi and µj in the large momentum region is

λij =
µi

µj
≃ exp

(
− β1
4β2

0

)
. (98)

This would mean that

λ12λ21 ≃ exp

(
− β1
2β2

0

)
6= 1, (99)

λ13λ32λ21 ≃ exp

(
−3β1
4β2

0

)
6= 1. (100)
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This shows that the PMS does not satisfy the symmetry and transitivity requirements. Let us point out
that adding the scheme-parameter optimization in PMS does not change any of the above conclusions. It
only makes the solution much more complicated [96]. The inability of PMS to meet these self-consistent
requirements resides in that the derivative operations in general do not commute with the operations of
reflexivity, symmetry and transitivity. This shows the necessity of further careful studies of theoretical
principles underlying PMS [48].

As argued in Sec.3, any truncated perturbative series will explicitly break RG-invariance (38); i.e.
Eq.(38) can only be approximately satisfied for any fixed-order estimation. The precision depends on
to which perturbative order we have calculated, the convergence of the perturbative series, and how
we set the renormalization scale. As shown by Eq.(76), the PMS requires the truncated series, i.e. the
approximant of a physical observable, to satisfy the RG-invariance near µ = µPMS. This provides the
underlying reason for why PMS does not satisfy the reflexivity, symmetry and transitivity properties.
Phenomenological problems of PMS will be discussed in section 4.5.

4.3 BLM Scale-Setting

BLM is designed to improve the pQCD estimate by absorbing the {βi}-terms into the running coupling
using the nf -terms as a guide. The PMC procedure, which we discuss in detail below, provides a rigorous
setting for the BLM procedure. Since the invention of BLM by Brodsky-Lepage-Mackenzie [21] in 1983,
the BLM scale setting method has been widely accepted in the literature for dealing with high energy
processes, such as the e+e− → hadrons, deep inelastic scattering, heavy meson or baryon productions or
decays, the exclusive processes such as pion-photon transition form factors, and etc.. In 1992, Lepage
and Mackenzie showed that the apparent failure of QCD lattice perturbative theory to account for
Monte Carlo measurements of perturbative quantities is a result of choosing the bare lattice coupling
constant as the expansion parameter [98]. As a solution, they suggested an alternative procedure of
BLM for determining the effective scale in lattice perturbation theory, which greatly enhances the
predictive power of lattice perturbation theory. Later on, the reliability/importance of BLM has been
emphasized in Ref. [99], where an interesting feature for the NLO BFKL Pomeron intercept function
ω(Q2, 0) has been found; i.e. after using BLM scale setting, the intercept function ω(Q2, 0) has a very
weak dependence on the gluon virtuality Q2 in comparison with those derived from the conventional
scale setting under the MOM scheme and MS scheme.

In addition, many of the favorable features of BLM have been observed in the literature, which will
be listed in the following subsections. BLM presents a way to resolve the renormalization scheme-scale
ambiguity, which results in a new criterion for the convergence of perturbative expansions in QED/QCD
by unambiguously fixing the perturbative coefficients. In addition to eliminating the renormalization-
scheme dependence, a better convergence has also been observed because of the absence of renormalons.
More importantly, the renormalization scale can be determined without computing all higher-order cor-
rections. Thus, the lower-order or even the LO analysis can be meaningfully compared with experiments.

BLM scale setting is inspired by QED. As has been discussed in the Introduction, the physical
quantity within the QED framework can be expanded in perturbative series as

ρn = C0αp
em(µr) +

n∑

i=1

Ci(µr)α
p+i
em (µr), (p ≥ 0) (101)

where C0 is the tree-level term, Ci stands for the perturbative correction, and p is the power of the
coupling associated with the tree level. For Abelian theory as QED, since the variation of the effective
coupling is due to vacuum polarization alone, the BLM method reduces to the standard criterion that
only vacuum-polarization insertions contribute to the effective coupling. That is, after BLM scale
setting, we have

ρn = C0αp
em(µ

∗
r) + C̃1(µ∗∗

r )αp+1
em (µ∗∗

r ) + C̃2(µ∗∗∗
r )αp+2

em (µ∗∗∗
r ) + · · · , (102)
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where all photon self-energy corrections are absorbed into the couplings by an appropriate (unique)
choice of effective scales µ∗

r, µ
∗∗
r , · · ·. In fact, as will be shown by its underlying principle, PMC, the

BLM scales at different orders are determined by dealing with different {βi}-functions that will emerge
in higher order calculation [39, 45, 46, 47]. Since all dependence upon the number of the light-fermion
flavors (nf ) usually enters through the photon self-energy in low orders, both the effective scales µ∗

r,
· · ·, and the low-order coefficients C̃i are independent of nf . The light-fermion loop corrections serve
mainly to renormalize the coupling constant αem, as expected. Note that different from the previously
introduced FAC and PMS methods, each perturbative order will usually have its own scale within BLM;
there is no reason for running coupling at all orders to have the same scale. In fact, by taking the same
BLM scales for all orders, serious problems occur, cf. Ref. [100].

4.3.1 Basic Arguments of BLM

The BLM scale can be determined order by order in perturbation theory. We take the LO QCD scale
setting as an explanation; i.e., to the first order, the physical observable can be re-expanded as [21]

ρ = C0α
p

s,MS
(µr)

[
1 + (Anf +B)

αs,MS(µr)

π

]
(103)

= C0α
p

s,MS
(µr)

[
1 +

(
−3

2
Aβ0 +

33

2
A+B

) αs,MS(µr)

π

]
, (104)

where µr = µinit
r stands for an initial renormalization scale, which practically can be taken as the typ-

ical momentum transfer of the process. The nf term is due to the quark vacuum polarization and we
adopt the familiar MS-scheme as an illustration. As will be shown later, by taking any other renor-
malization scheme, one can obtain the same estimate for the physical observable through proper scale
displacement [23]. It shows that even though the expansion coefficients could be different under different
renormalization schemes, after BLM scale setting, one can find a relation between the effective renor-
malization scales which ensures that the total result remain the same under different renormalization
schemes.

At the NLO level, all nf terms should be resummed into the coupling. Using the well-known NLO
αs-running formulae

αs,MS(µ
∗
r) =

αs,MS(µr)

1 + β0

4π
αs,MS(µr) ln

µ∗2
r

µ2
r

, (105)

we obtain

ρ = C0α
p

s,MS
(µ∗

r)

[
1 + C∗

1

αs,MS(µ
∗
r)

π

]
, (106)

where

µ∗
r = µr exp

(
3A

p

)
and C∗

1 =
33

2
A+B . (107)

Both the effective scale µ∗
r and the coefficient C∗

1 are nf independent. The term 33A/2 in C∗
1 serves to

remove those contributions which renormalize the coupling constant into the effective coupling. Some
more points of BLM scale setting are listed in the following :

• Using BLM scale setting, one eliminates all nf -terms, so two renormalization schemes that differ
only by an nf -independent rescaling give identical perturbative expansions in αs(µ

∗
r). Strictly

speaking, one absorbs those nf -terms that are related to the renormalization into the coupling
by using the RG equation (4). Thus, the differences between MS and MS, for example, are
irrelevant in this approach. Note that for higher-order calculation, there are nf -terms that are
insensitive to the ultraviolet cutoff and thus have no relation to the β-function of the coupling,
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(a) (b) (c) (d)

Figure 5: Typical n2
f -terms for the electron-muon elastic scattering process at α4

em-order,
where the solid circles stand for the light-lepton loops. Diagrams (a) and (b) are vacuum
polarization contributions to the dressed photon propagator which will be absorbed into
αem(t) as shown by Eq.(2). Diagrams (c) and (d) introduce new type of {βi}-terms and new
PMC scales must be introduced.

such as terms associated with Feynman diagrams with light-by-light quark loops. They should be
identified and kept separate from the BLM scale setting.

• The LO BLM scale is determined solely by the parameter A, which exactly comes from quark
vacuum-polarization insertions. After BLM scale setting, perturbation theory can work well under
high energy processes, such as e+e− → hadrons, deep-inelastic scattering, ηc-decays, heavy (QQ̄)-
potential and etc., it has been found that the LO terms in αs,MS(µ

∗
r) for these processes are by

themselves quite accurate [21].

• Using BLM scale setting, the perturbative expansion will be unchanged in low orders as the
important momenta vary across a quark threshold, since all vacuum-polarization effects due to a
new quark are automatically absorbed into the effective coupling. This means, we can use a naive
LO/NLO αs-running with the fixed active flavor number nf to do the calculation. In fact, after
BLM scale setting, the value of nf can be correctly determined [101].

• Reactions with gluon-gluon coupling are more difficult to analyze because of the quark loops
appear in the higher-order corrections to the gluon-gluon vertex as well as in propagator insertions;
i.e. it is not easy to separate the divergent part of the vertex from the finite process-dependent
part in a unique and general fashion. For example, the BLM scale which appears in the three-
gluon vertex is a function of the virtuality of the three external gluons q21, q

2
2, and q

2
3. It has been

computed in detail in Ref. [31], where, by taking the subprocess gg → g → QQ̄ as an example,
the authors show that when the virtualities of the gluons are very different, the energy scale for
the process should be

µ2
r ∝

q2minq
2
med

q2max

(108)

where |q2min| < |q2med| < |q2max|, q2max stands for the maximal virtuality and etc.. Such scale also
correctly sets the effective number of quarks (nf ) which appear in the β-function controlling the
three-gluon vertex renormalization. This example shows that it is critical to set the renormaliza-
tion scale properly; a prediction based on the guessing scale such as µ2

r ∼ q2max will give misleading
results.

• As has been mentioned in the Introduction, there can be residual initial renormalization scale
dependence due to the unknown higher-order {βi}-terms. For example, for the simpler QED
process of the electron-muon elastic scattering through the one-photon exchange only, there is one
type of {βi}-terms, which can be conveniently summed up to all orders and its renormalization
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scale can be unambiguously set as the virtuality of the exchanged photon as shown by Eq.(2).
When two or more skeleton diagrams are involved, more than one types of {βi}-terms will emerge;
i.e. Fig.(5c,5d) shows the diagrams with two-photon exchange, and there are two types of {βi}-
terms which must be absorbed into two different PMC scales. Because of the unknown higher-order
corrections for these two types of {βi}-terms, there is still residual initial scale dependence.

4.3.2 The Properties of BLM

It is straightforward to verify that BLM satisfies all the self-consistent requirements outlined in Sec.3.

1. The existence and uniqueness of the renormalization scale µr are guaranteed, since the scale
setting conditions for BLM are often linear equations in lnµ2

r. As a simple explanation, if the
NLO coefficient C1(µr) in Eq.(101) has the form

C1(µr) = (a + b nf) + (c + d nf ) lnµ
2
r, (109)

with a, b, c and d are constants free of nf , the LO BLM scale can be set as

lnµBLM
r = − b

2d
+O(αs), (110)

where the omitted higher-order αs-terms will be determined by nf -terms at the NLO-level or even
higher levels.

2. Reflexivity is satisfied. The BLM requires all ln(µ2
r/µ

′2
r )-terms in Eq.(46) to vanish, which are

proportional to nf -terms, thus we obtain

µ′
r = µr .

3. Symmetry is trivial, because after BLM scale setting, we always have

r̃12(µ1, µ
∗
2) = −r̃21(µ2, µ

∗
1) .

That is, those two NLO coefficients only differ by a sign. Thus, requiring one of them to be
nf -independent is equivalent to requiring the other one also to be nf -independent. This argument
ensures the symmetric relation, λ12λ21 = 1, be satisfied after BLM scale setting.

4. Transitivity is also satisfied by BLM. After BLM scale setting, the two coefficients r̃12(µ1, µ
∗
2)

and r̃23(µ
∗
2, µ

∗
3) in the following two series

αs1(µ1) = αs2(µ
∗
2) + r̃12(µ1, µ

∗
2)α

2
s2(µ

∗
2) +O(α3

s2) (111)

and

αs2(µ
∗
2) = αs3(µ

∗
3) + r̃23(µ

∗
2, µ

∗
3)α

2
s3(µ

∗
3) +O(α3

s3) , (112)

should be independent of nf . After substituting Eq.(112) into Eq.(111), we obtain

αs1(µ1) = αs3(µ
∗
3) + [r̃12(µ1, µ

∗
2) + r̃23(µ

∗
2, µ

∗
3)]α

2
s3(µ3) +O(α3

s3) . (113)

We see that the new NLO coefficient [r̃12(µ1, µ
∗
2) + r̃23(µ

∗
2, µ

∗
3)] will also be nf -independent, since

it is the sum of two nf -independent quantities. These arguments ensure the transitive relation,
λ31 = λ32λ21, to be satisfied after BLM scale setting.
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4.3.3 Commensurate Scale Relation in QCD

The BLM prediction is renormalization-scheme independent, which is ensured by the commensurate
scale relation (CSR) [23], i.e. the specific value of the renormalization scale is rescaled according to
the choice of the scheme so that the final result is scheme independent. All perturbatively calculable
observables in QCD, such as the annihilation ratio Re+e−(Q

2), the heavy quark potential, the radiative
corrections to the Bjorken sum rules and etc., can be related to each other at fixed relative scales. The
CSR for the observables A and B in terms of their effective couplings (αA and αB) takes the following
form [23]

αA(QA) = αB(QB)

[
1 + rA/B

αB(QB)

π
+O(α2

B)

]
. (114)

The ratio of the renormalization scales λA/B = QA/QB is so chosen that the coefficient rA/B is inde-
pendent of the number of flavors nf . This guarantees that the effective couplings for the observables
A and B pass through new quark threshold at the same physical scale. The value of λA/B is unique at
LO, and due to the transitivity of BLM, the relative scales must satisfy the relation

λA/B = λA/C λC/B . (115)

This ensures that predictions in pQCD are independent of the choice of an intermediate renormalization
scheme C. In particular, the scale-fixed predictions can be made without reference to theoretically
constructed renormalization schemes such as MS.

As a simple explanation of CSR, let us now consider expanding any observable or effective coupling
αA in terms of αV (corresponding to an arbitrary intermediate renormalization scheme V) up to NLO:

αA(QA) = αV(QA)

[
1 + (CVA +DVA nf )

αV(QA)

π
+O(α2

V)

]
. (116)

Note QA is a formal renormalization scale defined by the physical observable through the effective
coupling αA. According to BLM scale setting, we must shift the scale QA in the argument of αV to the
scale QV = e3DVAQA [21], and

αA(QA) = αV(QV)

[
1 + rA/V

αV(QV)

π
+O(α2

V)

]
, (117)

where rA/V = CVA+(33/2)DVP is the NLO coefficient in the expansion of the observable A in scheme V.
Thus, the ratio for the two relative scales between the observables A and V, λA/V = QA/QV , is fixed by
the requirement that the coefficient rA/V in the expansion of αV is independent of vacuum polarization
corrections. Similarly, we can compute another observable or effective coupling αB as an expansion in
terms of αV :

αB(QB) = αV(QV)

[
1 + rB/V

αV(QV)

π
+O(α2

V)

]
, (118)

where QV = QB/λB/V , and again rB/V must be independent of vacuum polarization contributions.
We can now substitute and eliminate αV(QV), which results in the required LO CSR (114) with

QA/QB = λA/B = λA/V/λB/V and rA/B = rA/V − rB/V . Note also the BLM symmetry property
λA/BλB/A = 1. Alternatively, we can directly compute the commensurate scale QA = λA/BQB by
requiring rA/B to be nf -independent, which is in agreement with the BLM transitivity.

The CSR given in Eq.(114) provides a practical way to test QCD: One can compare two observables
by checking that their effective couplings agree both in normalization and in their scale dependence.
The ratio of commensurate scales λA/B is fixed uniquely: it ensures that both observables A and B pass
through heavy quark thresholds at precisely the same physical point. Calculations are often performed
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Figure 6: Leading order CSRs derived by Ref. [23] for various renormalization schemes that
are defined through corresponding physical observables. Here αV (Q) stands for the effective
coupling defined from the heavy quark potential V (Q2) = −4παV (Q)/Q

2.

most advantageously in MS scheme, but all references to such theoretically-constructed schemes may
be eliminated when comparisons are made between observables. This also avoids the problem that
one need not expand observables in terms of couplings which have singular or ill-defined functional
dependence.

The intermediate renormalization scheme V, which defines an effective coupling αV , can be taken
arbitrarily; i.e., in addition to our familiar MS scheme, any perturbatively calculable physical quantity
can be used to define an effective coupling [13, 14, 15, 16, 88, 89, 90]. In choosing any one of those
schemes to predict another observable, the argument of the effective coupling is displaced from its
(formal) physical value according to CSR, which ensures the final prediction to be independent of
the renormalization scheme. The relative scale for a number of observables, which are summarized in
Ref. [23], is indicated in Fig.(6). Here for clarity, we have set αV(Q) to be the effective coupling αV (Q)
defined from the heavy quark potential V (Q2) = −4παV (Q)/Q

2. An essential feature of this scheme
is that there is no renormalization scale ambiguity, since Q2 = −t, the photon/gluon virtuality, is the
optimized scale in the GM-L scheme.

Because of CSR, there is no difference of which renormalization scheme one chooses to do the
calculation. A tricky point is that one sometimes can find a proper scheme which makes the expression
much more simplified and more convergent. In particular, it has been found that up to light-by-light type
corrections, all terms involving ζ3, ζ5 and π

2 in the relation between the annihilation ratio Re+e− and the
Bjorken sum rule for polarized electroproduction are automatically absorbed into the renormalization
scales [23]. Then, the final perturbative series becomes quite simple:

α̂g1(Q) = α̂R(Q
∗)− α̂2

R(Q
∗∗) + α̂3

R(Q
∗∗∗), (119)

where α̂ = (3CF/4π)α, Q
∗, Q∗∗ and Q∗∗∗ are LO, NLO and NNLO BLM scales accordingly, and the

two effective couplings αR and αg1 are defined in Eqs.(36,37). This equation is called the generalized
Crewther relation. The coefficients in CSR can be identified with those obtained in conformally invariant
gauge theories as proven by Crewther [102, 103, 104, 105, 106].

The CSR between observables can be tested at quite low momentum transfers, even at where pQCD
expansion would be expected to break down [23]. It is likely that some of the higher twist contributions
common to the two observables are also correctly represented by CSR. In contrast, expansions of any
observable in αMS(Q) must break down at low momentum transfer since αMS(Q) becomes singular at
Q = ΛMS. For example, in the ’t Hooft scheme [52] where the higher order βn = 0 for n = 2, 3, ...,

αMS(Q) has a simple pole at Q = Λ
′tH−MS
QCD . The CSR allows one to test QCD without explicit reference

to renormalization schemes such as MS. It is thus reasonable to expect that the perturbative series will
be more convergent when one relates finite observables to each other.
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As a summary, the key point of the CSR lies in that the scale displacement between different
renormalization schemes is unique and does not depend on any intermediate scheme.

The above discussion on CSR is performed at LO level. In general, such scale relation (115) can be
extended to any perturbative order. That is, even though the scale values maybe changed from their LO
values because of the higher-order corrections, the relative relation among the scales must be remained
unchanged due to the transitivity property of the BLM scale setting. As a demonstration, one needs to
clarify the following two points :

• The LO BLM scale itself is a perturbative series with higher perturbative terms coming from a
higher-order calculation of the physical observable, then we need to show that the scale relation
(115) is always right for LO BLM scale after including those higher-order terms.

• We should have similar scale relations for other higher order BLM scales, such as NLO, NNLO
BLM scales.

After we demonstrate the first point, then the second point can be recursively demonstrated, since
according to BLM procedure, if the LO terms have been settled down, we can separate them; while the
remaining higher-order terms can be regarded as NLO correction to those known terms and then the
previous LO procedures apply; and so on so forth, we can extend the LO demonstration procedure to
any perturbative order. In the following, we present a demonstration of how the CSR for the LO BLM
scales is satisfied even by including perturbative contributions up to NNLO.

In practice, most physical observable in pQCD are computed in MS scheme, with the running
coupling fixed at a physical scale of the process. For convenience, we adopt the MS-scheme as the
intermediate scheme. Specifically, up to NNLO, the perturbative series for two effective couplings
α1(Q)/π and α2(Q)/π which correspond to the two physical observables A and B can be written as

α1(Q)

π
=
αMS(Q)

π
+ (A1 +B1nf )

(
αMS(Q)

π

)2

+ (C1 +D1nf + E1n
2
f )

(
αMS(Q)

π

)3

+ · · · (120)

and

α2(Q)

π
=
αMS(Q)

π
+ (A2 +B2nf)

(
αMS(Q)

π

)2

+ (C2 +D2nf + E2n
2
f )

(
αMS(Q)

π

)3

+ · · · . (121)

On the other hand, the effective coupling α1(Q)/π can be directly expressed by α2(Q)/π; i.e.,

α1(Q)

π
=

α2(Q)

π
+ (A12 +B12nf)

(
α2(Q)

π

)2

+ (C12 +D12nf + E12n
2
f )

(
α2(Q)

π

)3

+ · · · . (122)

As a combination of Eqs.(120,121,122), the coefficients A12, B12, C12, D12 and E12 read

A12 = A1 − A2, (123)

B12 = B1 − B2, (124)

C12 = C1 − C2 − 2(A1 − A2)A2, (125)

D12 = D1 −D2 − 2(A1B2 + A2B1) + 4A2B2, (126)

E12 = E1 − E2 − 2(B1 −B2)B2, (127)

When taking the NNLO perturbative contributions into account to the physical observable, the LO
BLM scale will have an NLO term. Following the standard BLM procedure, which will be shown in the
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following subsection, we obtain three LO BLM scales QLO
1 , QLO

2 and QLO
12 from Eqs.(120,121,122) :

QLO
1 = Q exp

[
3B1

2T
+

9β0
8T 2

(
B2

1 − E1

) αMS(Q)

π
+O

(
α2
MS

π2

)]
(128)

QLO
2 = Q exp

[
3B2

2T
+

9β0
8T 2

(
B2

2 − E2

) αMS(Q)

π
+O

(
α2
MS

π2

)]
(129)

QLO
12 = Q exp

[
3B12

2T
+

9β0
8T 2

(
B2

12 −E12

) αMS(Q)

π
+O

(
α2
MS

π2

)]
, (130)

where in QCD, CA = 3, T = 1/2, CF = 4/3. Setting λA/V = QLO
1 /Q, λB/V = QLO

2 /Q and λA/B =
QLO

12 /Q, we obtain the required scale relation :

λA/B = λA/V /λB/V = λA/V λV/B,

where we have used the above relations (123-127) for B12 and E12. Here, the second step is due to the
symmetric relation λB/V λV/B = 1. This finishes our demonstration for the first point.

4.3.4 An Analytic Extension of MS-Scheme

As has been discussed in Sec.2, in conventional MS-scheme, the {βi}-functions depend on the active
number of “massless” quarks (nf ), which is usually a step function of the renormalization scale µr; i.e.,
the quark masses do not enter into the {βi}-functions since the running coupling is mass independent
due to the decoupling theorem [65].

An important property of BLM scale setting, is that the active number of flavors nf which goes into
the β-function can be correctly determined by including the quark mass effect. As has been argued by
Refs. [59, 60, 61, 101, 107, 108, 109], there are a number of reasons to construct an analytic extension
of the coupling under MS-scheme, such as :

• The comparison of αs determined from different experiments and at different momentum scales is
an essential test of QCD. One source of error is the neglect of quark masses and in the subsequent
running of αs from the conventional reference scale, the Z-boson mass.

• Lattice calculation for the heavy quarkonium spectra provides a most precise determination of αs

at low momentum scales, cf.Refs. [110, 111, 112, 113, 114]. It is important to know how finite
quark mass effects enter into the αs running to lower and higher energy scales with as small error
as possible.

• Finite mass threshold effects in supersymmetric grand unified theories are important when ana-
lyzing the running and unification of couplings over very large ranges, which has been discussed
in Refs. [115, 116, 117].

An analytic extension of the coupling under the MS-scheme which incorporates the finite-mass

quark threshold effects has been suggested in Ref. [101], which is called as M̃S-scheme. Such an
extension is obtained by connecting the coupling under the conventional MS-scheme to the analytic
and physically-defined V -scheme through the CSR derived from BLM; i.e.

α̃MS(Q) = αV (Q
∗) +

2NC

3

α2
V (Q

∗∗)

π
+ · · · , (131)

where the commensurate scales Q∗ and Q∗∗ are given by [101]

Q∗ = Q exp
[
5

6
+O

(
αV

π

)]
, (132)

Q∗∗ = Q exp
[(

105

128
− 9

8
ζ3

)
CF

NC
+
(
103

192
+

21

16
ζ3

)
+O

(
αV

π

)]
. (133)
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Figure 7: The continuous ñf,MS(Q) in the analytic extension of theMS-scheme as a function
of the physical scale Q [101]. For reference the continuous nf is also compared with the
conventional procedure of taking nf to be a step-function at the quark-mass thresholds.

Here for the V -scheme, we mean that its effective coupling αV (Q) is defined from the heavy quark
potential V (Q2) = −4παV (Q)/Q

2. There is no renormalization scale ambiguity in αV -scheme, since
Q2 = −t, the photon/gluon virtuality, is the optimized scale in the GM-L scheme which automatically
sums up all vacuum polarization contribution into the coupling (at high order αV is infrared sensitive,
so it is difficult to adopt as a standard QCD running coupling). Through a proper way, the V -scheme
automatically includes the effects of finite quark masses in the same manner that lepton mass appear

in Abelian QED [101]. So the extended M̃S-scheme can also include the quark masses by relating the
MS-scheme to V -scheme through CSR. Note in deriving the LO scale Q∗, the αV correction to Q∗ is
of less importance for our present analysis, so we do not write it out.

Taking the logarithmic derivative of CSR given by Eq. (131) with respect to lnQ, we can obtain the

{βMS}-like function, which at LO level gives the following relation between the continuous ñf,MS and
nf,V for various quarks :

ñf,MS(Q) = nf,V (Q
∗) ≃


1 +

5

ρi exp
(
5
3

)




−1

, (134)

where ρi = Q2/m2
i [for reference, the quark masses (in GeV) we used are mu = 0.004, md = 0.008,

ms = 0.200, mc = 1.5, mb = 4.5 and mt = 175 ]. Adding all flavors together gives the total ñf,MS(Q)
which is shown in Fig.(7). For reference, the continuous nf is also compared with the conventional
procedure of taking nf to be a step-function at the quark-mass thresholds. The figure shows clearly
that there are hardly any plateaus at all for the continuous ñf,MS(Q) in between the quark masses.
Thus, there is really no scale below 1 TeV where ñf,MS(Q) can be approximated by a constant. We
also note that if one would use any other scale than the BLM-scale for ñf,MS(Q), the result would be to
increase the difference between the analytic nf and the standard procedure of using the step-function
at the quark-mass thresholds.

Numerically, it is found that taking finite quark mass effects analytically into account in the running,
rather than using a fixed nf between thresholds, leads to effects of the order of one percent for the
one-loop running coupling, with the largest differences occurring near thresholds [101]. These small
differences are somewhat important for observables that are calculated by neglecting quark masses and
could in principle turn out to be significant in comparing low and high energy measurements of the strong
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coupling. Moreover, the advantage of the modified scheme α̃MS-scheme is that it provides an analytic
interpolation of conventional dimensional regularization expressions by utilizing the mass dependence of
the physical αV -scheme. In effect, quark thresholds are treated analytically to all orders in m2

i /Q
2; i.e.,

the evolution of our analytically extended coupling in the intermediate regions reflects the actual mass
dependence of a physical effective charge and the analytic properties of particle production in a physical
process. Just as in Abelian QED, the mass dependence of the effective potential and the analytically-

extended M̃S-scheme reflects the analyticity of the physical thresholds for particle production in the
crossed channel. Furthermore, the definiteness of the dependence in the quark masses automatically

constrains the renormalization scale. Alternatively, one could connect M̃S-scheme to another physical
coupling such as αR defined from e+e− annihilation.

By utilizing the BLM scale setting, based on the massless nf contribution, the analytic extension
of the MS-scheme correctly absorbs both massless and mass dependent quark contributions from QCD
diagrams, such as the double bubble diagram, into the running coupling. This gives the opportunity to
convert a calculation made in the MS-scheme with massless quarks into an expression which includes
quark mass corrections from QCD diagrams. In addition one can use this procedure to analytically
discriminate the dependence of the coupling on time-like and space-like arguments.

4.3.5 BLM Scale-Setting up to Four-Loop Level

Based on the main idea of BLM, the method can be extended to higher orders in a systematic way,
only one should be careful of how to deal with the nf -series at each perturbative order consistently.
Practically, in doing the BLM extension, the following points must be respected; i.e.,

• All nf -terms, which are associated with the β-function in the renormalization of the coupling
constant, must be absorbed into the coupling, while those nf -terms that have no relation to the
β-function should be identified and kept separate. After BLM scale setting, the perturbative
series for the physical observable becomes a conformal series, all non-conformal terms should be
absorbed into the effective coupling in a consistent manner.

• There are always new nf -terms (corresponding to new {βi}-terms) emerging at each perturbative
order, so we should introduce new BLM scales at each perturbative order so as to absorb all nf -
terms into the coupling consistently. There is no strong reason to use a unified effective scale for
all perturbative orders. In fact, as has already been pointed out in Ref. [100] that if taking only
one effective BLM scale for the whole perturbative series, one can not fix all unknown parameters
uniquely even at the NLO level, since one does not have enough constraints to achieve the goal.

• The BLM scales themselves should be a RG-improved perturbative series [21, 46, 39, 47, 23, 100].
The length of the perturbative series for each BLM scale depends on how many new nf -terms (or
{βi}-terms) we have from the higher-order calculation and to what perturbative order we have
performed.

As a combination of these points, it is interesting to find that the BLM scale setting leads to the
correct expansion coefficients in the “conformal limit”. This inversely shows that the later developed
PMC scale setting is more essential, since, as will be shown in the following sections, by dealing with the
perturbative series according to {βi}-terms, the results are optimized and unique, which also provide
an unambiguous principle to set the BLM scale up to all perturbative orders.

In the literature, several ways for extending the BLM method beyond the NLO have been suggested,
such as the dressed skeleton expansion, the large β0-expansion, the BLM expansion with an overall
renormalization scale, the sequential BLM (seBLM), an extension over the sequential BLM (xBLM)
and etc. [78, 79, 80, 81, 100, 106, 118, 119, 120, 121, 122, 123]. However it can be found that the
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Figure 8: The finite electron-loop light-by-light diagrams contributing to the muon’s anoma-
lous magnetic moment [124]. Three more are obtained by reversing the direction of the
electron loop.

purpose of most of these references is just to eliminate the nf -terms (mostly by introducing an overall
effective BLM scale for all perturbative orders), but they do not respect all the above listed points
simultaneously, so even though they do make some improvements in understanding BLM, the criticism
of BLM made in some of these references are incorrect due to improper understanding/use of BLM.
Especially, they can not obtain the most important BLM feature that the BLM prediction should be
independent of the choice of initial renormalization scale. If a method to extend the BLM setting
up to all orders still depends on the choice of initial renormalization scale, then one will still have a
(transferred) renormalization scale uncertainty, which is, in principle, not an essential improvement of
the conventional scale setting method.

On the other hand, the correct and unambiguous way to the BLM scales up to the two-loop level
has been suggested by Brodsky and Lu in 1995 [23], and recently such way has been improved up
to four-loop level [46]. These two references, especially the second reference, can be used as a useful
guidance for setting BLM scales up to any perturbative order. To be a useful reference and to clarify
some misunderstandings of BLM in the literature, we present the technical details in the following.

Generally, separating the nf -terms explicitly at each perturbative order, the pQCD prediction for a
physical observable ρ can be rewritten as

ρ = r0
[
ans (Q) + (A1 + A2nf )a

n+1
s (Q) + (B1 +B2nf +B3n

2
f )a

n+2
s (Q)+

(C1 + C2nf + C3n
2
f + C4n

3
f )a

n+3
s (Q) + · · ·

]
(135)

where as(Q) = αs(Q)/π and the overall tree-level parameter r0 is scale-independent and is free of as(Q).
Here, Q stands for the initial renormalization scale, n(≥ 1) stands for the initial αs-order at the tree
level. After BLM scale setting, all nf -terms in the perturbative expansion can be summed into the
running coupling. Here, we shall concentrate on those processes in which all nf -terms are associated
with the {βi}-terms. There are nf -terms coming from the Feynman diagrams with the light-by-light
quark loops which are irrelevant to the ultra-violet cutoff in higher-order processes. However, we should
remind that there may still be large higher-order corrections not associated with renormalization; an
important example in QED case is the electron-loop light-by-light contribution to the sixth-order muon
anomalous moment, its Feynman diagrams are shown by Fig.(8), which is of order (α/π)3 ln(mµ/me)
and is sizable [124].

The BLM scales for the pQCD prediction of ρ can be determined in a general scheme-independent
way. The generalization of the BLM procedure to higher order assigns a different renormalization
scale for each order in the perturbative series, which can be fixed order-by-order. We can shift the
initial renormalization scale Q into effective ones until we fully absorb those higher-order terms with
nf -dependence into the running coupling. According to the following steps, one can set the BLM scales
up to NNLO :
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• The first step is to set the effective scale Q∗ at LO

ρ = r0
[
ans (Q

∗)+ Ã1a
n+1
s (Q∗)+ (B̃1+ B̃2nf )a

n+2
s (Q∗)+ (C̃1+ C̃2nf + C̃3n

2
f)a

n+3
s (Q∗)+ · · ·

]
. (136)

• The second step is to set the effective scale Q∗∗ at NLO

ρ = r0
[
ans (Q

∗) + Ã1a
n+1
s (Q∗∗) +

˜̃
B1a

n+2
s (Q∗∗) + (

˜̃
C1 +

˜̃
C2nf )a

n+3
s (Q∗∗) + · · ·

]
, (137)

• The final step is to set the effective scale Q∗∗∗ at NNLO

ρ = r0
[
ans (Q

∗) + Ã1a
n+1
s (Q∗∗) +

˜̃
B1a

n+2
s (Q∗∗∗) +

˜̃̃
C1a

n+3
s (Q∗∗∗) + · · ·

]
. (138)

When performing the scale shifts Q → Q∗, Q∗ → Q∗∗ and Q∗∗ → Q∗∗∗, we eliminate the nf -terms
associated with the {βi}-terms completely. At the same time, we also have to modify the coefficients,
since the net changes to the coefficients are proportional to {βi}-functions. Note that to set the effective
scale for an+3

s , one needs even higher order information and here, as has been discussed previously, a
sensible choice is Q∗∗∗, since this is the renormalization scale after shifting the scales up to NNLO. The
effective renormalization scales up to NNLO can be written as

ln
Q∗2

Q2
= ln

Q∗2
0

Q2
+
xβ0
4

ln
Q∗2

0

Q2
as(Q) +

y

16

(
β2
0 ln

2 Q
∗2
0

Q2
− β1 ln

Q∗2
0

Q2

)
a2s(Q) +O(a3s) (139)

ln
Q∗∗2

Q∗2
= ln

Q∗∗2
0

Q∗2
+
zβ0
4

ln
Q∗∗2

0

Q∗2
as(Q) +O(a2s) (140)

ln
Q∗∗∗2

Q∗∗2
= ln

Q∗∗∗2
0

Q∗∗2
+O(as) (141)

where the effective scales Q∗,∗∗,∗∗∗
0 are determined so as to eliminate A2nf , B̃2nf and

˜̃
C2nf -terms com-

pletely, the parameters x and z are used to eliminate the B3n
2
f and the C̃3n

2
f terms respectively, and

the parameter y is used to eliminate the C4n
3
f -term. It is found that

ln
Q∗2

0

Q2
=

6A2

n
, ln

Q∗∗2
0

Q∗2
=

6B̃2

(n + 1)Ã1

, ln
Q∗∗∗2

0

Q∗∗2
=

6
˜̃
C2

(n + 2)
˜̃
B1

(142)

and

x =
3(n+ 1)A2

2 − 6nB3

nA2
(143)

y =
(n+ 1)(2n+ 1)A3

2 − 6n(n+ 1)A2B3 + 6n2C4

nA2
2

(144)

z =
3(n+ 2)B̃2

2 − 6(n+ 1)Ã1C̃3

(n + 1)Ã1B̃2

(145)

If x = 0, or y = 0, or z = 0, this shows that there is no new {βi}-terms that will change the value of
the effective BLM scale. The exponential form shows that after BLM scale setting, it will not change
the properties of the initial choice of scale; i.e. its space-like and time-like nature will not be changed.
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The step-by-step coefficients are listed in the following

Ã1 = A1 +
33

2
A2 ,

˜̃
B1 = B̃1 +

33

2
B̃2 ,

˜̃̃
C1 =

˜̃
C1 +

33

2

˜̃
C2 (146)

B̃1 =
1

4n

[
1089(n+ 1)A2

2 + 153nA2 + 66(n+ 1)A1A2 + (4B1 − 1089B3)n

]
(147)

B̃2 =
−1

4n

[
66(n+ 1)A2

2 + 19nA2 + 4(n+ 1)A1A2 − 4n(B2 + 33B3)

]
(148)

C̃1 =
1

64A2n2

[
− 40392C4n

3 + 143748A2
4(3 + 5n+ 2n2) + 8A2n

2(8C1 + 35937C4 +

5049B3n)− 13464A2
3n(n2 − 3n− 7) + 72A1A2(1 + n)(34A2n− 242B3n+

121A2
2(3 + 2n)) + 3A2

2n(2857n+ 352B1(2 + n)− 95832B3(3 + 2n))

]
(149)

C̃2 =
1

192A2n2

[
22392C4n

3 − 52272A2
4(3 + 5n+ 2n2)− 24A2n

2(−8C2 +

6534C4 + 933B3n)− 48A1A2(1 + n)(19A2n− 132B3n+ 66A2
2(3 + 2n)) +

A2
2n(−5033n− 192B1(2 + n) + 3168B2(2 + n) + 52272B3(8 + 5n)) +

24A2
3n(−1871 + n(−627 + 311n))

]
(150)

C̃3 =
1

576A2n2

[
− 2736C4n

3 + 4752A2
4(3 + 5n+ 2n2) + 144A2n

2(4C3 + 198C4 +

19B3n)− 912A2
3(n3 − 4n) + 288A1A2(1 + n)(−2B3n+ A2

2(3 + 2n))

−A2
2n(−325n + 576B2(2 + n) + 9504B3(5 + 3n))

]
(151)

˜̃
C1 =

1

4(n+ 1)Ã1

[
33(n+ 2)B̃2(2B̃1 + 33B̃2) + (n + 1)(153B̃2 + 4C̃1 − 1089C̃3)Ã1

]
(152)

˜̃
C2 =

−1

4(n+ 1)Ã1

[
2(n+ 2)B̃2(2B̃1 + 33B̃2) + (n + 1)(19B̃2 − 4(C̃2 + 33C̃3))Ã1

]
(153)

One may observe that even though the perturbative coefficients at the final step Ã1,
˜̃
B1 and

˜̃̃
C1 are

different, the formulas in deriving them are similar, which shows clearly that the BLM scale setting can
be done in a recursive way. In deriving the above NNLO formulae, the following equation is implicitly
adopted, i.e. the value of as at any scale Q∗ can be obtained from its value at the scale Q,

as(Q
∗) = as(Q)−

β0
4
ln

(
Q∗2

Q2

)
a2s(Q) +

1

42

[
β2
0 ln

2

(
Q∗2

Q2

)
− β1 ln

(
Q∗2

Q2

)]
a3s(Q) +O(a4s). (154)

For even higher-order corrections, we should use the αs running behavior derived from Eq.(42) to do
the calculation, since it shows which {βi}-terms should be kept in the αs-expansion series.

All perturbative coefficients Ai, Bi, Ci and etc. are renormalization-scheme dependent, so different
renormalization schemes lead to different BLM scales Q∗,∗∗,∗∗∗; however the final result for ρ should
be scheme independent due to CSRs among different observables. Calculating the observable ρ by its
corresponding effective coupling and changing as to be another effective coupling, starting from Eq.(135)
and following the same procedures, one can naturally obtain the CSRs up to NNLO. Moreover, by using
the relations between Q∗,∗∗,∗∗∗ and Q, one can find the needed scale displacement among the effective
scales which are derived under different schemes or conventions so as to ensure the scheme-independence
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of the observables. For example, from the relation between Q∗ and Q, one can easily obtain the well-
known one-loop relation for the coupling [21], αMS

s (e−5/3Q2) = αGM−L
s (Q2).

4.3.6 Example of BLM scale setting for Re+e−(Q) at the Four Loop Level

Table 1: Coefficients for the perturbative expansion of Re+e−(Q) before and after BLM scale
setting.

nf = 3 nf = 4 nf = 5

A 1.6401 1.5249 1.4097
B -10.2840 -11.6857 -12.8047
C -106.8960 -92.9124 +2κ/15 -80.0075 +κ/33

Ã 0.0849 0.0849 0.0849
˜̃
B -23.2269 -23.3923 -23.2645
˜̃̃
C 82.3440 82.3440 +2κ/15 82.3440+κ/33

Measurements of the cross sections for electro-positron annihilation into hadrons provides one of
the most precise determination of αs. The explicit expression for Re+e−(Q) up to α4

s-order under the
MS-scheme can be found in Refs. [125, 126, 127]. One finds

Re+e−(Q) = 3
∑

q

e2q

[
1 +

(
aMS(Q)

)
+ A

(
aMS(Q)

)2
+B

(
aMS(Q)

)3
+ C

(
aMS(Q)

)4
]
, (155)

where

A = 1.9857− 0.1152nf ,

B = −6.63694− 1.20013nf − 0.00518n2
f − 1.240η,

C = −156.61 + 18.77nf − 0.7974n2
f + 0.0215n3

f + κη.

Here η =
(∑

q eq
)2
/
(
3
∑

q e
2
q

)
, eq is the electric charge for the active flavors. The coefficient κ is yet

to be determined, whose contribution will be further suppressed by η, so we set its value to zero in
the following numerical calculation 3. The values of A, B and C for nf = 3, 4 and 5 are presented in
Table 1. At the present perturbative order, all nf -terms in the above equation should be absorbed into
αs. After applying BLM up to NNLO, we obtain

Re+e−(Q) = 3
∑

q

e2q

[
1 +

(
aMS
s (Q∗)

)
+ Ã

(
aMS
s (Q∗∗)

)2
+
˜̃
B
(
aMS
s (Q∗∗∗)

)3
+
˜̃̃
C
(
aMS
s (Q∗∗∗)

)4
]
, (156)

where all the coefficients and effective scales can be calculated with the help of the formulae listed in

the Sec.4.3.5. The coefficients are presented in Table 1, slight differences for
˜̃
B and

˜̃̃
C with varying nf

are caused by the charge-dependent parameter η.
From the experimental value, re+e−(31.6GeV ) = 3

11
Re+e−(31.6GeV ) = 1.0527 ± 0.0050 [130], we

obtain
Λ

′tH−MS
QCD = 412+206

−161MeV , ΛMS
QCD = 359+181

−140MeV. (157)

3 Recently, κ has been calculated by Refs. [128, 129], which will slightly affect our estimations and its UV-finite
nf -dependent terms will not affect our BLM treatment.
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With the help of the four-loop coupling (28), we obtain αMS
s (MZ) = 0.129+0.009

−0.010. It is consistent with

the values obtained from e+e− collider; i.e., αMS
s (MZ) = 0.13±0.005±0.03 by the CLEO Collaboration

[131] and αMS
s (MZ) = 0.1224 ± 0.0039 from the jet shape analysis [132]. One may observe that a

smaller central value of the world average for αMS
s (MZ) also results from the measurements of τ -decays,

Υ-decays, the jet production in the deep-inelastic-scattering processes, and from heavy quarkonia based
on the unquenched QCD lattice calculations [133]. A larger ΛMS leads to a larger αMS

s (MZ), and vice

versa. For example, if we set αMS
s (MZ) to the present world average, we obtain

Λ
′tH
MS

|nf=5 = 245+9
−10 MeV , ΛMS|nf=5 = 213+19

−8 MeV.

It is found that after BLM scale setting, the perturbative expansion of Re+e−(Q = 31.6 GeV) becomes

more convergent. In particular, we find Q∗ = (0.757± 0.008)Q which leads to aMS
s (Q∗)/aMS

s (Q) =
1.060± 0.004. This conclusion is consistent with that of Ref.[100].

4.4 The Principle of Maximum Conformality: PMC Scale-Setting

Since its invention in 1983, the BLM scale setting has achieved much success in dealing with high
energy processes. As an extension of BLM scale setting, a program to deal with higher order nf -terms
associated with renormalization up to NNLO level has been proposed in Ref. [100], which suggests that
one can expand the effective scale itself as a perturbative series. Later on, an enhanced discussion of
this suggestion up to NNLO level has been presented in Ref. [23], where the n2

f -term at the NNLO is
first identified with β2

0-term and then is absorbed into the running coupling 4. However, BLM in its
previous form is difficult to be applied to even higher order calculations; i.e. it is not clear how to deal
with the nf -term, the n2

f -term, etc. in those higher order corrections in its original version [21].
The two most important question for extending the BLM scale setting consistently and unambigu-

ously up to any perturbative order are: 1) how to deal with the nf -series in the perturbative coefficients
at each order in an unambiguous way, and what is the underlying principle? 2) how to set the pertur-
bative series in the BLM scales themselves in a consistent order-by-order manner? It has been found
that the Principle of Maximum Conformality (PMC) provides the foundations underlying BLM scale
setting [39, 45, 46, 47, 48, 50, 134, 135]. It inherits all the favorable features of BLM, and it provides the
answer for solving the above two points. Ref. [45] gives one suggestion, where one can use a single global
PMC scale at LO by proper weighting the separate scales for each skeleton graph, such as t-channel or
s-channel, to deal with the pQCD cross-section. Later on, the PMC scales were shown to be related
to the BLM scales in the NNLO analysis through a particular matching of the nf -terms to {βi}-terms,
called the PMC-BLM correspondence principle [46]. Recently, taking PMC as a first principle a new
scale setting method was presented, which provides a systematic all-orders method to set the effective
scales and in a way, which can be readily automatized [50].

4.4.1 Basic Arguments of PMC

The purpose of the running coupling in any gauge theory is to sum all terms involving the βR-function.
Here, we show the scheme dependence in the β-function explicitly, the superscript R stands for an
arbitrary renormalization scheme. In fact, when the renormalization scales at each perturbative order
are set properly within PMC, all non-conformal {βR

i } 6= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in perturbative
series are then identical to that of a conformal theory; i.e., the theory with {βR

i } ≡ 0. Through this

4Strictly speaking, it has been observed that such n2
f -term together with the nf -term at the same order should be

rearranged into a proper linear combination of β1-term and β2
0-term. The β2

0-term is then absorbed into the LO BLM
scale and the β1-term is absorbed into the NLO BLM scale accordingly [46].
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Shift scale of αs to µ
PMC
R to eliminate {βR

i } − terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinitR ; arbitrary initial renormalization scale

Identify {βR
i } − terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinitR and scheme at fixed order

Figure 9: A “flow chart” which illustrates the PMC procedure.

treatment, the divergent “renormalon” series of order (αn
s (β

R
i )

nn!) does not appear in the conformal
series. Thus as in QED, the renormalization scales are determined unambiguously by PMC.

A “flow chart” which illustrates the PMC procedure is presented in Fig.(9). The PMC provides an
unambiguous and systematic way to set the optimized renormalization scale up to all orders. We first
arrange all the coefficients, which are usually in nf -power-series at each perturbative order, into {βR

i }-
terms or non-{βR

i }-terms. Then, we absorb all {βR
i }-terms into the running coupling. Note that in

practice we can directly deal with nf -terms of the coefficients without changing them into {βR
i }-terms,

and eliminate the nf -terms from the highest power to none also in an order-by-order manner; the results
are the same due to the PMC-BLM correspondence principle [46]. Different types of {βR

i }-term will be
absorbed into different PMC scales, and the PMC scales themselves will be a perturbative expansion
series in αs. After these procedures, all non-conformal {βR

i }-terms in the perturbative expansion are
summed into the running coupling so that the remaining terms in the perturbative series are identical
to that of a conformal theory; i.e., the corresponding theory with {βR

i } ≡ {0}.
As a simple explanation of PMC, for the coefficient C1(µr) of the pQCD expansion (101) at the NLO

level, we have

C1(µr) = C10(µr) + C11(µr)nf = C̃10(µr) + C̃11(µr)β0 (158)

where µr stands for an arbitrary initial renormalization scale, the coefficients C10(µr) and C11(µr) are
nf -independent, C̃10 = C10 + 33

2
C11, and C̃11 = −3

2
C11. The LO PMC scale µPMC,LO

r is then set by the
condition

C̃11(µPMC,LO
r ) = 0. (159)

This prescription ensures that, as in QED, vacuum polarization contributions due to the light-fermion
pairs are absorbed into the running coupling.

4.4.2 PMC - BLM Correspondence Principle

A procedure for setting PMC scale at LO has been suggested in Ref. [45], which is adaptable to any
NLO calculations. Its idea is to distinguish the nonconformal terms from the conformal terms by the
variation of the cross section with respect to ln(µinit

r )2 (µinit
r stands for some initial renormalization

scale). Given the analytic form of the hard process amplitude or cross section as a series in αs(µ
init
r ),

one can identify the LO PMC scale through the following way:
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1. There is only one type of βR-function, i.e. β0, emerges at the NLO level. The variation of the
cross section with respect to ln(µinit

r )2 can be used to distinguish the conformal terms versus the
nonconformal terms.

2. The identified nonconformal terms always have the form β0 ln
(
p2ij/(µ

init
r )2

)
where p2ij = pi · pj are

scalar product invariants (i 6= j) which enter the hard subprocess. In practice, these terms can
be identified as coefficients of nf ; i.e., the flavor dependence arising from the light-quark loops
associated with coupling constant renormalization.

3. The scale is then shifted from µinit
r to µPMC

r in order to eliminate the non-conformal terms in the
new perturbative series. Thus, when the scale is correctly set, the coefficients of αs(µ

PMC
r ) become

independent of β0 and ln(µPMC
r )2. The series is then identical to that of the conformal theory

where {βR
i } = 0.

At LO, there is only the β0-term, and the nonconformal terms always have the form of β0 ln(µ
init
r )2, so

one can determine the nonconformal terms exactly following the above procedures. However, at higher
orders, the ln(µinit

r )2-terms usually appear in a power series as β0 ln(µ
init
r )2, β1 ln(µ

init
r )2, β2

0 ln
2(µinit

r )2,
etc.. So this method is no longer adaptable to deal with the higher-order corrections, because the
derivative with respect to a single ln(µinit

r )2 cannot distinguish all the emerged {βR
i }-terms.

As noted above, the purpose of the running coupling in any gauge theory is to sum up all terms
involving the βR-function, conversely, one can find all the needed {βR

i }-terms at any relevant order from
the general expansion (154). This fact should be respected in constructing the perturbative {βR

i }-series
in both the PMC scales and the perturbative coefficients of a physical observable. Furthermore, using
this fact and also the known relation between {βR

i } and nf , one can obtain the PMC scales from the
BLM scale setting method. This is the PMC and BLM correspondence principle [46]. Since {βR

i }
(i ≥ 2) are scheme-dependent, the PMC and BLM correspondence depends on the renormalization
scheme beyond the two-loop level 5.

More explicitly, up to NNLO, the physical observable ρ defined in Eq.(135) can be re-expanded in
{βR

i }-series as,

ρ = r0
[
ans (Q) + (A0

1 + A0
2β0)a

n+1
s (Q) + (B0

1 +B0
2β1 +B0

3β
2
0)a

n+2
s (Q)

+(C0
1 + C0

2β
R
2 + C0

3β0β1 + C0
4β

3
0)a

n+3
s (Q)

]
. (160)

The results for PMC can be naturally obtained from the BLM scale setting through the following unique
parameter correspondence; i.e.,

A1 = A0
1 + 11A0

2 (161)

A2 = −2

3
A0

2 (162)

B1 = B0
1 + 102B0

2 + 121B0
3 (163)

B2 = −2

3
(19B0

2 + 22B0
3) (164)

B3 =
4

9
B0

3 (165)

C1 = C0
1 +

2857

2
C0

2 + 1122C0
3 + 1331C0

4 (166)

C2 = − 1

18
(5033C0

2 − 3732C0
3 − 4356C0

4) (167)

5It is noted that another suggestion to extend the BLM to all perturbative orders have been given in Refs. [81, 106, 136],
which is close but different than PMC. At each perturbative order additional {βR

i }-terms are considered. One then
introduces new free parameters to make the correspondence between nf -terms and {βR

i }-terms.
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C3 =
1

54
(325C0

2 + 456C0
3 + 792C0

4) (168)

C4 = − 8

27
C0

4 (169)

which are obtained by comparing the Eqs.(135,160) and the four-loop {βR
i }-terms under theMS scheme

(R =MS), whose expressions have been given in Eqs.(9,10,11,12).

4.4.3 A Systematic All-Orders Method for PMC Scale-Setting

Recently another way, i.e. a systematic all-orders method, to set the PMC scales has been suggested
in Ref. [50]. In comparison to the method of using PMC - BLM correspondence principle, this new
method has the advantage that the explicit αs-expansion of the effective scales is avoided and the scheme
independence can be derived without introducing the commensurate scale relation. Moreover, the new
scale setting processes is easier to automatize.

The starting point for this method is to introduce a generalization of the conventional schemes used
in dimensional regularization, where logarithmically divergent integrals are regularized by the following
transformation of the integration measure:

∫
d4p→ µ2ǫ

∫
d4−2ǫp , (170)

where µ is an arbitrary mass scale. Divergences are then separated as 1/ǫ poles, which can be absorbed
into redefinitions of the couplings. The choice of subtraction defines the renormalization scheme and can
be chosen at the theorist’s convenience. The arbitrary mass scale becomes the initial renormalization
scale µinit

r of the running couplings constants. In the minimal subtraction (MS) scheme one absorbs
the 1/ǫ poles appearing in loop integrals which come in powers of

ln

(
µinit
r

)2

Q2
+

1

ǫ
+ c ,

where Q is some typical scale and c is the finite part of the integral. The widely usedMS-scheme differs
from the MS-scheme by an additional subtraction of the term ln(4π)− γE together with the 1/ǫ pole.

One can generalize this by subtracting a constant −δ in addition to the standard subtraction
(ln 4π − γE) of the MS-scheme. This amounts to redefining the renormalization scale by an expo-

nential factor; i.e.
(
µinit
r

)2
=
(
µinit
r

)2
exp(ln 4π − γE − δ). In particular, the MS-scheme is recovered for

δ = ln 4π − γE. Another particular Rδ-scheme suggested in the literature is the G-scheme [64, 137],
which is obtained for δ = −2. The δ-subtraction defines an infinite set of renormalization schemes
called δ-Renormalization (Rδ) schemes; i.e.

R0 = MS , Rln 4π−γE = MS , R−2 = G . (171)

Moreover, since all Rδ schemes are connected by scale-displacements, e.g. µ2
δ2

= µ2
δ1
exp(δ2 − δ1) for

any two Rδ-schemes Rδ1 and Rδ2 [57], the β-function of the QCD coupling αs in any Rδ-scheme is the
same. In this subsection we use for brevity the notations a = αs/4π and β as the coupling β-function
in any Rδ-scheme.

It is found that the δ-terms in the perturbative series will always accompany {βi}-terms, and thus
the elimination of δ-terms is equivalent to the elimination of {βi}-terms. Therefore the PMC estimate
can be achieved directly through a proper treatment of δ-terms. This leads to a systematic prescription
of setting the scales to all-orders, and opens the opportunity to start a program for automatically setting
the PMC scales.
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More explicitly, using this generalization, it was shown that a physical observable in any Rδ-scheme
reads:

ρδ(Q
2) = C0 + C1a1(µ1) + (C2 + β0C1δ1) a22(µ2) +

[
C3 + β1C1δ1 + 2β0C2δ2 + β2

0C1δ21
]
a33(µ3) (172)

+
[
C4 + β2C1δ1 + 2β1C2δ2 + 3β0C3δ3 + 3β2

0C2δ22 + β3
0C1δ31 +

5

2
β1β0C1δ21

]
a44(µ4) +O(a5) .

where µi ≡ Qeδi/2, the initial scale is for simplicity set to µinit
r = Q and we defined Ci(Q) = Ci. An

artificial index is introduced on each a and correspondingly on each δ to keep track of which coupling
each δ term is associated with. The more general expansion with higher tree-level power in a can be
readily derived [57] and does not change the conclusions and results.

The expression in Eq.(172) exposes the pattern of {βi}-terms in the coefficients at each order. Since
there is nothing special about a particular value of δ, one concludes that some of the coefficients of
the {βi}-terms are degenerate; e.g. the coefficient of β0a(Q)

2 and β1a(Q)
3 can be set equal. Thus, the

Rδ-scheme not only illuminates the {βi}-pattern, but also exposes a special degeneracy of coefficients
at different orders. Therefore, for any scheme, the expression for ρ can be put to the form:

ρ(Q2) = r0,0 + r1,0a(Q) + [r2,0 + β0r2,1] a
2(Q) +

[
r3,0 + β1r2,1 + 2β0r3,1 + β2

0r3,2
]
a3(Q)

+
[
r4,0 + β2r2,1 + 2β1r3,1 +

5

2
β1β0r3,2 + 3β0r4,1 + 3β2

0r4,2 + β3
0r4,3

]
a4(Q) +O(a5) (173)

where ri,0 are the conformal parts of the perturbative coefficients; i.e. ri = ri,0+O({βi}). In particular,
it follows that r0,0 = C0 and r1,0 = C1, while the higher order coefficients Ci≥2 are identified with the full
brackets. The artificial indices on ai and δi in Eq.(172) reveals how the {βi}-terms must be absorbed
into the running coupling. The different δk’s keep track of the power of the 1/ǫ divergence of the
associated diagram at each loop order in the following way: the δpka

n-term indicates the term associated
to a diagram with 1/ǫn−k divergence for any p. Grouping the different δk-terms one, recovers in the
NC → 0 Abelian limit the dressed skeleton expansion [29]. Resumming the series according to this
expansion thus correctly reproduces the QED limit of the observable and matches the conformal series
with running couplings evaluated at effective scales at each order.

Using this information from the δk-expansion, it can be shown that the order ak(Q) coupling must
be resummed into the effective coupling ak(Qk), given by:

r1,0a(Q1) = r1,0a(Q)− β(a)r2,1 +
1

2
β(a)

∂β

∂a
r3,2 + · · ·+ (−1)n

n!

dn−1β

(d lnµ2)n−1
rn+1,n ,

r2,0a
2(Q2) = r2,0a

2(Q)− 2a(Q)β(a)r3,1 +

[
a(Q)

dβ

d lnµ2
+ β(a)2

]
r4,2 + · · ·+∆

(n−1)
2 (a)rn+2,n ,

...

rk,0a
k(Qk) = rk,0a

k(Q) + rk,0 k a
k−1(Q)β(a)

{
Rk,1 +∆

(1)
k (a)Rk,2 + · · ·+∆

(n−1)
k (a)Rk,n

}
, (174)

which defines the PMC scales Qk, and where we introduced

Rk,j = (−1)j
rk+j,j

rk,0
, (175)

∆
(1)
k (a) =

1

2

[
∂β

∂a
+ (k − 1)

β

a

]
, (176)

∆
(2)
k (a) =

1

3!


β
∂2β

∂a2
+

(
∂β

∂a

)2

+ 3(k − 1)
β

a

∂β

∂a
+ (k − 1)(k − 2)

β2

a2


 . (177)

...
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Eq.(174) is systematically derived by replacing the lnj Q2
1/Q

2 by Rk,j in the logarithmic expansion of
ak(Qk) up to the highest known Rk,n-coefficient in pQCD. The resummation can be performed iteratively
using the RG equation for a and leads to the effective scales for an NNNLO prediction:

ln
Q2

k

Q2
=

Rk,1 +∆
(1)
k (a)Rk,2 +∆

(2)
k (a)Rk,3

1 + ∆
(1)
k (a)Rk,1 +

(
∆

(1)
k (a)

)2
(Rk,2 −R2

k,1) + ∆
(2)
k (a)R2

k,1

. (178)

The final pQCD prediction for ρ after setting the PMC scales Qi then reads

ρ(Q2) = r0,0 + r1,0a(Q1) + r2,0a
2(Q2) + r3,0a

3(Q3) + r4,0a
4(Q4) +O(a5) , (179)

Here Q4 remains unknown, since it requires the knowledge of r5,1 in the coefficient of a5. It is noted
that in contrast to the PMC-BLM correspondence principle, in this method, all effective PMC scales
are resummed at once, instead of a step-wise process. Moreover, the effective scales naturally become
functions of the coupling through the β-function, in principle, to all orders.

This method systematically sums up all known non-conformal terms, in principle to all-orders, but
is in practice truncated due to the limited knowledge of the β-function. It is easy to see that the LO
values of the effective scales are independent of the initial renormalization scale. This follows since
taking µinit

r 6= Q, we must replace Rk,1 → Rk,1 + lnQ2/(µinit
r )2 and thus the LO effective scales read,

lnQ2
k,LO/(µ

init
r )2 = Rk,1 + lnQ2/(µinit

r )2, where µinit
r cancels and Eq.(178) at LO is recovered. More

generally the effective scales do not depend on the initial renormalization scale at any order if the
β-function is known. In practice, since the β-function is not known to all orders, there is residual
renormalization scale dependence, which however is highly suppressed. The effective scales contain all
the information of the non-conformal parts of the initial pQCD expression for ρ in Eq.(173), which is
exactly the purpose of the running coupling.

In a conformal theory, where {βi} = {0}, the δ-dependence vanishes in Eq.(172). Therefore, by
absorbing all {βi} dependence into the running coupling, we obtain a final result independent of the
initial choice of scale and scheme. It is found that the use of Rδ scheme allows us to put this on rigorous
grounds. From the explicit expression in Eq.(172) it is easy to confirm that

∂ρδ
∂δ

= −β(a)∂ρδ
∂a

. (180)

The scheme-invariance of the physical prediction requires that ∂ρδ/∂δ = 0. Therefore the scales in the
running coupling must be shifted and set such that the conformal terms associated with the β-function
are removed; the remaining conformal terms are by definition renormalization scheme independent. The
numerical value for the prediction at finite order is then scheme independent as required by the renor-
malization group. The scheme-invariance criterion is a theoretical requirement of the renormalization
group; it must be satisfied at any truncated order of the pertubative series, and is different from the
formal statement that the all-orders expression for a physical observable is renormalization scale and
scheme invariant; i.e. dρ/dµinit

r = 0. The final series obtained corresponds to the theory for which
β(a) = 0; i.e. the conformal series. This demonstrates the concept of PMC to any order, which states
that all non-conformal terms in the perturbative series must be resummed into the running coupling.

4.4.4 Systematic All-Orders PMC Scale Setting for Re+e−(Q)

We take Re+e−(Q) as an example to show how to do the PMC scale setting by using the systematic
all-orders method. The perturbative series matches the generic form of Eq.(173). It can be derived by
analytically continuing the Adler function, D, into the time-like region [128, 129]:

Re+e−(s) =
1

2πi

∫ −s+iǫ

−s−iǫ

D(Q2)

Q2
dQ2 , (181)
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with D given by: D(Q2) = γ(a) − β(a) d
da
Π(Q2, a), where γ is the anomalous dimension of the vector

field and Π is the vacuum polarization function. They can be written as perturbative expansions:

γ(a) =
∞∑

n=0

γna
n , Π(Q2, a) =

∞∑

n=0

Πn(Q
2)an . (182)

It is then easy to show that to order a4 the perturbative expression for Re+e−(Q) in terms of γn and Πn

reads (we suppress the Q dependence of Πi in the following to simplify the notation):

Re+e−(Q) = γ0 + γ1a(Q) + [γ2 − β0Π1] a
2(Q) +

[
γ3 + β1Π1 + 2β0Π2 − β2

0

π2γ1
3

]
a3(Q) (183)

+

[
γ4 + β2Π1 + 2β1Π2 + 3β0Π3 −

5

2
β0β1

π2γ1
3

− 3β2
0

π2γ2
3

− β3
0π

2Π1

]
a4(Q) +O(a5) .

This expression has exactly the form of Eq.(173), with the coefficients:

ri,0 = γi (i ≥ 1), ri,1 = Πi−1 (i ≥ 2), ri,2 = −π
2

3
γi−2 (i ≥ 3), ri,3 = −π2Πi−3 (i ≥ 4). (184)

The γi-coefficients contain Nf -terms in the dimensional regularization schemes, but since they are
independent of δ to any order, they are kept fixed in the scale-setting procedure. The expression for the
coefficient γi and Πi can be found in Refs. [128, 129], while the four-loops β-function is given in Ref. [72].
Now we can set the effective scales Q1, Q2 and Q3 up to the NNNLO. By convention, the argument
of a is space-like; however, the π2-terms appearing in Re+e− can be avoided by using a coupling with
time-like argument, leading to a more convergent series [138]. The last unknown scale can in this case
be estimated [57]. It turns out that Q4 ∼ Q which is the value we have used. The final result with five
active flavors reads:

3

11
Re+e−(Q) = 1 +

αs(Q1)

π
+ 1.84

(
αs(Q2)

π

)2

− 1.00

(
αs(Q3)

π

)3

− 11.31

(
αs(Q4)

π

)4

, (185)

which is explicitly free of any Rδ scheme and scale ambiguities up to strongly suppressed residual ones.
To find numerical values for the effective scales, we must determine the asymptotic scale, ΛQCD.

From the experimental value, re+e−(31.6 GeV ) = 3
11
Re+e−(31.6 GeV ) = 1.0527±0.0050 [130], we obtain

Λ
′tH−MS
QCD = 481+255

−193 MeV , ΛMS
QCD = 419+222

−168 MeV. (186)

The asymptotic scale of Rδ can be taken to be the same for any δ, since they share the same β-
function. The effective scales are found to be: Q1 = 1.3 Q, Q2 = 1.2 Q and Q3 ≈ 5.3 Q. These values
are independent of the initial renormalization scale up to some residual dependence coming from the
truncated β-function. The final PMC result for Re+e−(Q) as a function of the initial renormalization
scale µinit

r are shown in Fig.(10), which demonstrates the initial scale-invariance of the final prediction up
to strongly suppressed residual dependence. In Fig.(10), the shaded region is the experimental bounds
with the central value given by the thin dashed line. As a comparison, we also show the result before
PMC scale setting, which however is very sensitive to the choice of the initial renormalization scale.

For completeness, we use our final result to predict the QCD coupling at the scale of the Z-boson
mass, MZ : αs(MZ) = 0.132+0.010

−0.011. This value is consistent with that of subsection 4.3.6.
We have checked against the QED case, where Re+e− can be seen as the imaginary part of the QED

four loop 1PI vacuum polarization diagram by the optical theorem, and find in this case nearly complete
renormalization scale independence of all three scales to NNNLO due to the small value of the coupling.
Numerically, we obtain for three (lepton) flavors:

1

3
Re+e−→ℓ

QED (Q) = 1 + 0.24αe(Q1)− 0.08αe(Q2)
2 − 0.13αe(Q3)

3 + 0.05αe(Q4)
4 , (187)
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Figure 10: The PMC result for Re+e−(Q) as a function of the initial renormalization scale µinit
r

(solid line), demonstrating the initial scale-invariance of the final prediction, up to strongly
suppressed residual dependence. The shaded region is the experimental bounds [130] with
the central value given by the dotted line. We also show the result before scale setting
(dashed line), which is very sensitive to the choice of the initial renormalization scale.

where αe = e2/4π and {Q1

Q
, Q2

Q
, Q3

Q
} = {1.1, 0.6, 0.5}. It is straightforward to apply our present analysis

to the τ -decay into hadrons ratio [139],Rτ = στ→ντ+hadrons/στ→ντ+ν̄e+e−, a similar observation has been
found [57].

4.4.5 Discussion on the Factorization and Renormalization Scale Dependence

When one applies the PMC scale setting to renormalizable hard subprocesses, the initial and final quark
and gluon lines are taken to be on-shell so that the amplitude of the hard subprocess is gauge invariant.
Thus, the application of PMC to hard subprocesses does not involve the factorization scale, and no
single or double logarithms which involve the factorization scale enter.

H1

H2

i

j

fi/H1
(x1, µf)

fj/H2
(x2, µf)

σ̂ij
X

Figure 11: Diagram for calculating the total cross-section of a general hadroproduction
process, H1H2 → X , where X stands for any final states. It is obtained from the convolution
of the partonic subprocess cross-section σ̂ij with the parton distribution functions.

However, for a general hadronic production process such asH1H2 → X (X stands for any final state),
which is graphically shown by Fig.(11), we need to be careful of how to set both the renormalization
scale and the factorization scale consistently. It is important for any correct scale setting method to
derive the full renormalization and factorization scale dependent terms. The two scales are independent
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quantities. The factorization scale is even necessary even in the theory where the coupling does not
run. The factorization scale is introduced to identify the domain where the initial and final quarks and
gluons can be treated as on-shell partons. The total cross-section for a hadronic production process can
be generally written as

σH1H2→X =
∑

i,j

∫ ∫
dŝds

Sŝ
fi/H1

(x1, µf) fj/H2
(x2, µf) σ̂ij(s,M,R), (188)

where x1 = ŝ/S and x2 = s/ŝ. The subprocess cross section σ̂ij depends on the renormalization scale
µr and the factorization scale µf , with the definitions M = µ2

f/Q
2 (Q stands for some typical energy

scale 6) and R = µ2
r/µ

2
f . Here S denotes the hadronic center-of-mass energy squared and s = x1x2S is

the subprocess center-of-mass energy squared. The functions fi/H1,2
(xα, µf) (α = 1, 2) are the parton

distribution functions (PDFs) describing the probability to find a parton of type i with a momentum
fraction between xα and xα + dxα in the hadron H1,2.

The factorization scale is the scale entering PDF and the fragmentation functions. It is common
and simple practice to identify the factorization scale with the renormalization scale, i.e. µf ≡ µr, and
then to deal with the process following the same way as that of renormalization scale. The factorization
scale should be chosen to match the nonpertubative bound-state dynamics with perturbative DGLAP
evolution [140, 141, 142]. This could be done explicitly using nonperturbative models such as AdS/QCD
and light-front holography where the light-front wavefunctions of the hadrons are known, a recent
report of which can be found in Ref. [143]. To fix one’s attention on the elimination of renormalization
dependence, one can fix the factorization scale µf to be the value that can eliminate large logs, such as
setting µf ≡ Q.

It is important to derive the full renormalization and factorization scale dependence, especially
those terms from µf 6= µr (or R 6= 1), in order to achieve the renormalization scale independence in a
consistent way.

As a first step, one can use the fact that the total hadronic cross-section is independent of the
factorization scale, to derive the first derivative of the subprocess cross-section over the factorization
scale, µ2

f
d

dµ2
f

σ̂ij(s,M, 1); i.e. to retrieve the factorization scale dependence of the subprocess from

σ̂ij(s, 1, 1) by fixing µr = µf (or R = 1). For convenience, we rewrite Eq.(188) to a simpler notation
with the direct-product symbol ⊗:

σH1+H2→X =
∑

ij

fi/H1
(µf)⊗ σ̂ij(s,M, 1)⊗ fj/H2

(µf). (189)

The physical hadronic total cross-section will not depend on µf ,

µ2
f

∂

∂µ2
f

σH1+H2→H+X ≡ 0, (190)

which leads to the equation

0 ≡
∑

ijk

fi/H1
(µf)⊗

[
as(µf)Pik ⊗ σ̂kj(s,M, 1) + µ2

f

∂

∂µ2
f

σ̂ij(s,M, 1) + as(µf)σ̂ik(s,M, 1)⊗ Pkj

]
⊗fj/H2

(µf),

(191)
where as = αs/4π and we have implicitly used the DGLAP evolution equation [140, 141, 142],

µ2
f

∂

∂µ2
f

fi/H1
(µf) = as(µf)

∑

j

[
Pij ⊗ fj/H1

(µf)
]
. (192)

6For examples, Q = mH for Higgs production, Q = mt for top-quark pair production and etc., so as to eliminate the
large logs.
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The splitting functions up to three loops can be found in Refs. [140, 141, 142, 144, 145]. Equation (191)
should hold for an arbitrary µf , therefore, the expression in the square brackets should be identically
zero for any choice of i and j partons, which inversely yields the following “evolution equation” for the
subprocess cross-section :

µ2
f

∂

∂µ2
f

σ̂ij(s,M, 1) =
∂

∂ lnµ2
f

σ̂ij(s,M, 1) = −as(µf)
∑

k

[
Pik ⊗ σ̂kj(s,M, 1) + σ̂ik(s,M, 1)⊗ Pkj

]
. (193)

We can solve Eq.(193) through an order-by-order manner using the partonic cross-sections σij(s, 1, 1)
as the boundary condition. Initially we can set µr = µf = Q (M = R = 1). The splitting function can
be expanded as

Pij(Q) =
as(Q)

4
P

(0)
ij (Q) +

a2s(Q)

42
P

(1)
ij (Q) +

a3s(Q)

43
P

(2)
ij (Q) + · · · . (194)

Then we obtain

σij(s,M, 1) = σij(s, 1, 1) +

(
∂

∂ lnµ2
f

σ̂ij(s,M, 1)

)

M=1

LM +
1

2!




∂2
(
∂ lnµ2

f

)2 σ̂ij(s,M, 1)




M=1

L2
M + · · ·

(195)
where LM = lnµ2

f/Q
2.

As a second step, one can adopt the RG equation to retrieve σ̂ij(s,M,R) from σ̂ij(s,M, 1). This
step can be done by directly replacing the coupling at the renormalization scale µf to µr; i.e. using the
following formula,

as(µ
2
f) = as(µ

2
r) +

β0
4
ln
µ2
r

µ2
f

a2s(µ
2
r) +

1

16

{
β2
0 ln

2 µ
2
r

µ2
f

+ β1 ln
µ2
r

µ2
f

}
a3s(µ

2
r) +O(a4s), (196)

where as = αs/π. The full renormalization and factorization scale dependence for the splitting function
can be retrieved by using this equation; i.e. [145],

Pij(µr, µf) =
as(µr)

4
P

(0)
ij (µf) +

a2s(µr)

42

[
P

(1)
ij (µf)− β0 ln

µ2
f

µ2
r

P
(0)
ij (µf)

]
+

a3s(µr)

43

[
P

(2)
ij (µf) + β2

0 ln
µ2
f

µ2
r

P
(0)
ij (µf)− β1 ln

µ2
f

µ2
r

P
(0)
ij (µf)− 2β0 ln

µ2
f

µ2
r

P
(1)
ij (µf)

]
+ · · · .(197)

One can then apply e.g. PMC to set the renormalization scale for the splitting function.
The above two procedures can be extended up to any perturbative order. After doing these two steps,

one can obtain the required σ̂ij(s,M,R) with full renormalization and factorization scale dependence.

4.5 A Comparison of FAC, PMS and BLM/PMC

As shown above, because the scale setting methods, such as FAC, PMS and BLM/PMC, have quite
different starting points, they can give strikingly different results in practical applications. For example,
Kramer and Lampe have analyzed the application of the FAC, PMS, and BLM/PMC methods for the
prediction of jet production fractions in e+e− annihilation in pQCD [55, 56]. Usually, jets are defined by
clustering particles with invariant mass less than

√
ys, where y stands for the resolution parameter and√

s is the total center-of-mass energy. Physically, one expects the renormalization scale µr to reflect the
invariant mass of the jets, that is, µr should be of order

√
ys. For example, in the analogous problem

in QED, the maximum virtuality of the photon jet which sets the argument of the running coupling αs
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Figure 12: The scale µr/
√
s according to the BLM/PMC, PMS, FAC and the usual√

y-procedures for the three-jet rate in e+e− annihilation, as computed by Kramer and
Lampe [55, 56]. Notice the strikingly different behavior of the BLM/PMC scale from the
PMS and FAC scales at low y. The PMS and FAC scales increase at low jet virtuality, which
is the incorrect physical behavior.

cannot be larger than
√
ys. Thus one expects µr to decrease as y → 0. However, as shown by Fig.(12),

the scales chosen by the FAC and PMS methods do not reproduce this physical behavior: The predicted
scales µPMS

r and µFAC
r rise without bound at small values for the jet fraction y. This shows that the

FAC and PMS can not get the right physical behavior in this limit, since they have summed physics
into the running coupling not associated with renormalization. On the other hand, the BLM/PMC
scale has the correct physical behavior as y → 0. Since the argument of the running coupling becomes
small using the BLM/PMC method, standard pQCD theory in αs will not be convergent in the low y
domain [146]. In contrast, the scales chosen by PMS and FAC give no sign that the perturbative results
break down in the soft region.

The real power of FAC is the concept of the effective charge, which allows one to define a scheme
defined from a physical observable. As we described, the commensurate scale relations can be used to
relate one effective charge to another. Furthermore, we list the main differences for PMS and BLM/PMC
in the following:

• The PMS chooses the renormalization scale such that the first derivative of the fixed-order cal-
culation with respect to the scale vanishes, However, this criterion of minimal sensitivity gives
predictions which are not the same as the conformal prediction. As shown in Ref. [96], by using
the PMS together with the scheme-equations (23) and the scheme-independent equation (39), the
renormalization scheme dependence can be reduced to a certain degree through an order-by-order
manner. But there are still residual scheme dependence due to unknown higher order corrections,
and in principle, the PMS prediction depends on the choice of renormalization scheme 7, and it
disagrees with QED scale setting in the Abelian limit. Most important, the PMS does not satisfy
the RG-properties symmetry, reflexivity, and transitivity, so that relations between observables
depend on the choice of the intermediate renormalization scheme. Hence, when we successively
express one effective charge in terms of others, PMS would lead to inconsistent scale choices.

7It is hard to estimate the contributions from those unknown higher-order terms within the framework of PMS. While
for BLM/PMC, such dependence can be analyzed by using the extended renormalization group [51].
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• At the present the BLM has been widely accepted for dealing with high energy processes. The
PMC, being the principle underlying BLM, sums all {βi}-terms in the fixed-order prediction into
the running coupling, leaving the conformal series. The PMC is equivalent to BLM through
the PMC-BLM correspondence principle. It satisfies all the RG-properties, such as reflexivity,
symmetry, and transitivity. The PMC prediction is thus scheme-independent, and it automatically
assigns the correct displacement of the intrinsic scales between schemes. The variation of the
prediction away from the PMC scale exposes the non-zero {βi}-dependent terms. The PMC
prediction does have small residual dependence on the initial choice of scale due to the truncated
unknown higher order {βi}-terms, which will be highly suppressed by proper choice of PMC scales.

5 Applications of PMC

In this section, we present some recent examples for the PMC scale setting. Some more subtle points
in using the PMC scale setting are presented, which are useful references for future applications.

5.1 Top-Quark Pair Total Cross Section at the NNLO Level

The total top-pair production cross-section σtt̄ has been measured at the Tevatron with a precision
∆σtt̄/σtt̄ ∼ ±7% [41, 42] and the two LHC experiments have reached similar sensitivity [43, 44]. The-
oretically, the total cross-section for the top-pair production has been calculated up to NLO within
the MS-scheme in Refs. [147, 148, 149, 150, 151, 152]. Large logarithmic corrections associated with
the soft gluon emission have been investigated and resummed up to next-to-next-to-leading-logarithmic
corrections [149, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163]. These results provide the
foundation for deriving a more precise estimation by using PMC.

5.1.1 Basic Formulas

According to Eq.(188), The total top-pair production cross-section can be written as:

σH1H2→tt̄+X =
∑

i,j

1

S

S∫

4m2
t

ds

S∫

s

dŝ

ŝ
fi/H1

(x1, µf) fj/H2
(x2, µf) σ̂ij(s, αs(µr), µf) , (198)

where x1 = ŝ/S, x2 = s/ŝ. The top-quark mass mt is the mass renormalized in the on-shell (pole-mass)
scheme. Setting s = 4m2

t (S/4m
2
t )

y1 and ŝ = s(S/s)y2, we can transform the two-dimensional integration
over s and ŝ into an integration over two variables y1,2 ∈ [0, 1], which can be calculated by using the
improved VEGAS program [164, 165, 166]. The partonic cross-section σ̂ij can be decomposed in terms
of dimensionless scaling functions fij . Up to NNLO, it takes the form

σ̂ij =
1

m2
t

{
f 0
ij(ρ,Q)a

2
s(Q) + f 1

ij(ρ,Q)a
3
s(Q) + f 2

ij(ρ,Q)a
4
s(Q)

}
, (199)

where ρ = 4m2
t/s, as(Q) = αs(Q)/π and (ij) = {(qq̄), (gg), (gq), (gq̄)} stands for the four production

channels respectively. Q stands for the typical energy scale of the process. When applying PMC to
the renormalizable hard subprocesses which enter the pQCD leading-twist factorization procedure, the
initial and final quark and gluon lines are taken to be on-shell so that the hard subprocess amplitude is
gauge invariant. Thus, the application of PMC to hard subprocesses does not involve the factorization
scale. It is convenient to fix the factorization scale µf ≡ Q. In principle this uncertainty can be removed
if one knows the bound state wave function. As for the initial renormalization scale µinit

r , we also set
its value to be Q.
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The scale functions f 0,1,2
ij (ρ,Q) can be directly read from the HATHOR program [161]. According

to the PMC scale setting, we need to find the explicit terms that are nf - or n2
f - dependent, which

should be absorbed into the αs- running. The QCD Coulomb-type correction may also provide sizable
contributions in the threshold region [167, 168], so terms that are proportional to π/v or (π/v)2 (v =√
1− ρ, the heavy quark velocity) should be treated separately [169]; i.e., we need to introduce new

PMC scales for the Coulomb type terms. Then, the NLO and NNLO scaling functions can be rearranged
as

f 1
ij(ρ,Q) = [A1ij +B1ijnf ] +D1ij

(
π

v

)
(200)

f 2
ij(ρ,Q) =

[
A2ij +B2ijnf + C2ijn

2
f

]
+ [D2ij + E2ijnf ]

(
π

v

)
+ F2ij

(
π

v

)2

. (201)

Substituting them into Eq.(199), the partonic cross-section σ̂ij changes to

m2
t σ̂ij = A0ija

2
s(Q) +

{
[A1ij +B1ijnf ] +D1ij

(
π

v

)}
a3s(Q) +

{[
A2ij +B2ijnf + C2ijn

2
f

]
+ [D2ij + E2ijnf ]

(
π

v

)
+ F2ij

(
π

v

)2
}
a4s(Q), (202)

where A0ij = f 0
ij(ρ,Q).

The PMC scales can be determined in a general scheme-independent way as described in Sec.4.3.5.
We shift the renormalization scale Q to absorb the {βi}-dependent terms, using the nf -dependence as
a guide:

m2
t σ̂ij = A0ija

2
s(Q

∗
1) +

[
Ã1ij

]
a3s(Q

∗∗
1 ) +

[
˜̃A2ij

]
a4s(Q

∗∗
1 ) +

(
π

v

)
D1ij

[
2κ

1− exp(−2κ)

]
a3s(Q

∗
2),(203)

where κ =
D̃2ij

D1ij
as(Q

∗
2) +

F2ij

D1ij

(
π
v

)
as(Q

∗
2). Q

∗,∗∗
1 are LO and NLO PMC scales for the usual part and Q∗

2

is the LO PMC scale for the Coulomb part. For the usual part, the two PMC scales Q∗,∗∗
1 satisfy

ln
Q∗2

1

Q2
=

3B1ij

A0ij
+

9B2
1ij − 12A0ijC2ij

8A0ijB1ij
β0

(
3B1ij

A0ij

)
as(Q), ln

Q∗∗2
1

Q∗2
1

=
2B̃2ij

Ã1ij

, (204)

where the coefficients are [39]

Ã1ij =
2A1ij + 33B1ij

2
, ˜̃A2ij =

2Ã2ij + 33B̃2ij

2
, (205)

Ã2ij =
1

8A0ij

[99B1ij(2A1ij + 33B1ij) + A0ij(8A2ij + 306B1ij − 2178C2ij)] , (206)

B̃2ij =
1

4A0ij

[4A0ij(B2ij + 33C2ij)−B1ij(19A0ij + 6A1ij + 99B1ij)] . (207)

While for the Coulomb part, we have adopted the Sommerfeld-Gamow-Sakharov rescattering for-
mula [170, 171, 172] to sum up the higher-order π/v terms. The overall factor (π/v) before D1ij

shall be canceled by a v1-factor from the phase space. Its LO PMC scale Q∗
2 satisfies

ln
Q∗2

2

Q2
=

2E2ij

D1ij
(208)

and the coefficient
D̃2ij = (2D2ij + 33E2ij)/2. (209)

Since the channels (ij) = {(qq̄), (gg), (gq), (gq̄)} are distinct and non-interfering, their PMC scales
should be set separately.
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Figure 13: PMC coefficients of the (qq̄) channel versus the subprocess collision energy
√
s.

mt = 172.9 GeV.

• For (qq̄) channel, all the coefficients A0qq̄, A1qq̄ and etc. are non-zero. Following PMC scale setting,

the nf -terms that are associated with the {βMS
i }-terms are absorbed into the αs-coupling:

– When performing the scale shift Q → Q∗
1, the first type of {βR

i }-terms B1qq̄ and C2qq̄ are
eliminated. Part of B2qq̄ which contains the same type {βR

i }-term is also absorbed into αs

running. The remaining part of B2qq̄ is compensated by A1qq̄ and B1qq̄ to ensure that the first
type of {βR

i }-terms are absorbed into αs -coupling exactly, which results in a new variable
B̃2qq̄. Because (B1qq̄/A0qq̄) shows a monotone increase with the increment of collision energy√
s, Q∗

1 shall show the same trend versus
√
s.

– When performing the scale shift Q∗
1 → Q∗∗

1 , the second type of {βi}-terms, i.e. B̃2qq̄ are
eliminated. As shown by Fig.(13), the value of B̃2qq̄ is always negative and Ã1qq̄ has a
minimum value in lower

√
s, then one can find that the NLO PMC scale Q∗∗

1 shall be
suppressed to a certain degree in comparison to Q.

– The Coulomb type correction provides a distinct contribution to the total cross-section in the
threshold region, which should be treated separately from the usual part. Similarly, when
performing the scale shift Q→ Q∗

2 for the Coulomb type contribution, E2qq̄ is eliminated.

• For (gg) channel, we have C2gg = 0, while other coefficients A0gg, A1gg and etc. are non-zero. It
can be treated in a similar way as the (qq̄) channel. It is found that in distinction to the q + q̄
case, both 2B̃2gg/Ã1gḡ and 3B1gg/A0gḡ are close to zero, and thus its LO and NLO PMC scales
(Q∗

1 and Q∗∗
1 ) become close to Q with appropriate modifications due to

√
s.

• For (gq) or (gq̄) channel, we have A0
ij = 0, D1gq = 0, E2gq = F2gq ≡ 0, which shows that the

Coulomb type corrections start only at the NNLO order. We only need to set one LO PMC scale
for these two channels. That is,

m2
t σ̂ij = [A1ij ] a

3
s(Q) +

{
[A2ij +B2ijnf ] + [D2ij ]

(
π

v

)}
a4s(Q)

= A1ija
3
s(Q

∗
3) +

[
Ã2ij

]
a4s(Q

∗
3) +D2ij

(
π

v

)
a4s(Q),

where (ij) = (gq) or (gq̄), Ã2ij = A2ij + 33B2ij/2 and lnQ∗2
3 /Q

2 = 2B2ij/A1ij .
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Table 2: Total cross-sections for the top-pair production before and after PMC scale setting
for

√
s = 1.96 TeV. mt = 172.9 GeV and the central CT10 as the PDF [173].

before PMC scale setting after PMC scale setting
LO NLO NNLO total LO NLO NNLO total

q + q̄ (pb) 4.989 0.975 0.489 6.453 4.841 1.756 -0.063 6.489
g + g (pb) 0.522 0.425 0.155 1.102 0.520 0.506 0.148 1.200
g + q (pb) 0.000 -0.0366 0.0050 -0.0316 0.000 -0.0367 0.0050 -0.0315
g + q̄ (pb) 0.000 -0.0367 0.0050 -0.0315 0.000 -0.0366 0.0050 -0.0316
sum (pb) 5.511 1.326 0.654 7.492 5.361 2.188 0.095 7.626

Table 3: Total cross-sections for the top-pair production before and after PMC scale setting
for

√
s = 14 TeV. mt = 172.9 GeV and the central CT10 as the PDF [173].

before PMC scale setting after PMC scale setting
LO NLO NNLO total LO NLO NNLO total

q + q̄ (pb) 73.45 9.00 5.16 87.58 69.33 21.08 -2.98 86.96
g + g (pb) 487.52 262.96 49.87 800.68 485.51 303.69 37.35 835.41
g + q (pb) 0.00 9.30 7.69 17.00 0.00 9.37 7.69 16.97
g + q̄ (pb) 0.00 0.02 1.92 1.95 0.00 -0.03 1.92 17.06
sum (pb) 560.96 281.29 64.63 907.20 554.84 334.11 43.98 941.26

5.1.2 Numerical Analysis for the Total Cross Section

To do the numerical calculation, we adopt mt = 172.9± 1.1 GeV [28] and the CTEQ PDFs of version
2010, i.e. CT10 [173] 8. The combined PDF and αs uncertainty are set by using different PDF sets
determined by varying αs(mZ) ∈ [0.113, 0.230]. At present, to keep our attention on the renormalization
scale, we set as usual, µf ≡ mt. As initial choice, we set µinit

r = mt. After PMC scale setting, the
PMC scales are usually different from mt, so one must use the formulas listed in Sec.4.4.5 to get
the full renormalization and factorization scale dependence before applying PMC. This point is very
important for the later initial-scale-independent analysis. In the literature, the full renormalization
and factorization scale dependence for the top-quark pair production up to NNLO can be found in
Refs. [156, 161].

We first present the total cross-sections for the top-quark pair production using the PMC scale
setting by fixing all the input parameters to their central values. The results are presented in Tables 2
and 3, where for comparison, the total cross-sections for the conventional scale setting method (µr ≡ mt)
are also presented.

• Tables 2 and 3 show that the pQCD convergence is improved after PMC scale setting. This is
due to the fact that we have resummed the universal and gauge invariant higher-order corrections
associated with the {βMS

i }-terms into the LO and NLO -terms by suitable choice of PMC scales.
It is also the reason why after PMC scale setting, the total cross-section σtt̄ is increased by ∼ 2%
at the Tevatron and ∼ 4% at the LHC. This small change in the total cross-section after PMC
scale setting means that the naive choice of µr ≡ mt is a viable approximation for estimating the
total cross-section.

8The CT10 is a global fit for general-purposes based on a partly NNLO fit to data. Only very recently, the CTEQ
group released the CT10NNLO version, and a similar quality of agreement with the fitted experiment data sets in the
NNLO fit as those of NLO had been observed [174]. Since the change of CT10 to CT10NNLO only leads to very small
numerical differences, we adopt our previous choice of CT10 to do the analysis.
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Figure 14: PMC scales versus the sub-process collision energy
√
s for the top-quark pair

production up to
√
s = 7 TeV, where we have set the initial renormalization scale µinit

r = Q.
Here Q = mt = 172.9 GeV.

• Since different channels have quite different behaviors, it is necessary to use different PMC scales
for each channel. The PMC scales are functions of

√
s, whose behaviors up to

√
s = 7 TeV are

presented in Fig.(14). Because of the behaviors of the PMC coefficients, the LO PMC scale for the
(qq̄)-channel increases with

√
s and is much larger than mt for large

√
s. As a result, its LO cross-

sections at the Tevatron and LHC are decreased by 3%− 5% relative to the standard guess under
the conventional scale setting. Because |B1gg/A0gg| ≪ 1, the LO PMC scale for the (gg)-channel
is slightly different from mt and its LO cross-section remains almost unchanged. It is noted that
there is a dip for the NLO scale of the (qq̄)-channel, which is caused by the fact that the NLO
conformal term Ã1qq̄ reaches its smallest value and hence the factor B̃2qq̄/Ã1qq̄ reaches its highest
negative value when

√
s ≃ [

√
2 exp(5/6)]mt ∼ 563 GeV; this results in an exponential suppression

to the NLO scale. The NLO PMC scale for the (qq̄)-channel is smaller than mt by about one order
of magnitude in low x-region. As a result, its NLO cross-section will be considerably increased;
i.e. it is a factor of two times larger than its value derived from the conventional scale setting.
As for the (gg)-channel, its NLO PMC scale slightly increases with

√
s, but it is smaller than

mt for
√
s ≪ 1 TeV, so that its NLO cross-sections at the Tevatron and LHC are increased by

15%− 20%.

• There is residual initial renormalization scale dependence because of the unknown-higher-order
{βMS

i }-terms. Because the PMC scales themselves must be a perturbative series of αs, the residual
initial renormalization scale uncertainty can be greatly suppressed due to the fact that those
higher-order {βMS

i }-terms are absorbed into the PMC scales’ higher-order terms. We define a
ratio RPMC

Q to show how the change of initial renormalization scale affects the PMC scales; i.e.

RPMC
Q =

µPMC
r |µinit

r =Q

µPMC
r |µinit

r =mt

, (210)

where µPMC
r |µinit

r =Q stands for the PMC scales determined under the condition of µinit
r = Q, which

is Q∗
1 (LO scale for the non-Coulomb part), Q∗∗

1 (NLO scale for the non-Coulomb part) or Q∗
2

(LO scale for the Coulomb part) respectively. In Fig.(15), the ratios for the dominant qq̄- and gg-
channels are presented. In order to amplify the differences, we take three disparate scales to draw
the curves, i.e. Q = 10mt, 20mt and

√
s respectively.

As shown in Fig.(15), the LO PMC scale Q∗
2 for the Coulomb-term in both channels are unchanged

under different choice of Q. Among these choices, Q =
√
s usually gives the largest deviation from

the case of Q = mt. The residual initial scale dependence for the (gg)-channel is small, RPMC
Q ∼ 1,

57



2000 4000 6000 8000 10000 12000 14000
0.1

1

10

100

R
Q

P
M

C

 Q=10mt

 Q=20mt

 Q=   s

 

 

s (GeV)

R
Q

PMC; LO; Non-Coulomb

10*R
Q

PMC; NLO; Non-Coulomb

100*R
Q

PMC; LO; Coulomb (qq)-channel

2000 4000 6000 8000 10000 12000 14000

1

10

100

 Q=10mt

 Q=20mt

 Q=  s

 

 

R
Q

P
M

C

s (GeV)

100*R
Q

PMC; LO; Coulomb

10*R
Q

PMC; NLO; Non-Coulomb

R
Q

PMC; LO; Non-Coulomb

(gg)-channel

Figure 15: The ratio RPMC
Q =

µPMC
r |

µinitr =Q

µPMC
r |

µinitr =mt

versus the sub-process collision energy
√
s up to

14 TeV, where Q = 10mt, 20mt and
√
s respectively. Here mt = 172.9 GeV. These results

show that the renormalization scales for tt̄ production determined by PMC scale setting at
finite order is insensitive to the choice of very disparate initial scales.

Table 4: Dependence on the initial scale of the total tt̄ production cross-sections (in unit:
pb) at the Tevatron and LHC. Here mt = 172.9 GeV and the central CT10 as the PDF [173].
The number in the parenthesis shows the Monte Carlo uncertainty in the last digit.

PMC scale setting Conventional scale setting
Q = mt/4 Q = mt Q = 4mt µr ≡ mt/2 µr ≡ mt µr ≡ 2mt

Tevatron (1.96 TeV) 7.620(5) 7.626(3) 7.623(6) 7.742(5) 7.489(3) 7.199(5)
LHC (7 TeV) 171.6(1) 171.8(1) 171.7(1) 168.8(1) 164.6(1) 157.5(1)
LHC (14 TeV) 941.8(8) 941.3(5) 941.4(8) 923.8(7) 907.4(4) 870.9(6)

only for the LO non-Coulomb PMC scale Q∗
1, it has sizable effect. As an example, for the case of

Q =
√
s, its Q∗

1 deviates from that of Q = mt by ∼ 1% at
√
s = 7 TeV, and it is raised only up

to ∼ 7% at
√
s = 14 TeV. In the case of the (qq̄)-channel, the residual scale dependence of the

LO/NLO PMC scale for the non-Coulomb part is somewhat larger; i.e. the deviation is about
12% for the case of Q =

√
s at

√
s = 2 TeV, and the deviation reaches up to ∼ 60% at

√
s = 14

TeV. (We expect that this dependence on Q will be greatly reduced at NNNLO.) However in such
high collision region (

√
s > 2 TeV), the total cross-sections are highly suppressed by the parton

luminosities and their values are almost unchanged by using very different initial scales.

Total cross-sections with several typical initial renormalization scale µinit
r = Q are presented in

Table 4. At the NNLO level, it is found that the residual scale uncertainty to the total cross-
section is less than 10−3 by setting Q = 4mt or Q = mt/4. In fact, even by setting Q = 20mt

and
√
s, such residual scale uncertainty is still less than 10−3 [47]. As a comparison, we also

present the results for the conventional scale setting in Table 4; by varying the renormalization
scale within the region of [mt/2, 2mt], we obtain a large renormalization scale-uncertainty

(
+3%
−4%

)

at the Tevatron and LHC, which agrees with the previous results derived in the literature, c.f.
Refs. [155, 156]. This shows that the renormalization scale uncertainty is greatly suppressed and
essentially eliminated using PMC at the NNLO level.

• We can analyze the combined PDF and αs uncertainty by using different CTEQ PDF sets, i.e.
CT10 [173], which are global fits of experimental data with varying αs(mZ) ∈ [0.113, 0.230]. As
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Figure 16: Total cross-section σtt̄ for the top-pair production, with or without PMC scale
setting, versus top-quark mass. The experimental data are adopted from Refs. [41, 42, 43, 44].

for the total cross-section after PMC scale setting, we obtain

σTevatron, 1.96TeV = 7.626+0.705
−0.610 pb (211)

σLHC, 7TeV = 171.8+19.5
−16.2 pb (212)

σLHC, 14TeV = 941.3+83.3
−77.1 pb (213)

where the errors are caused by the PDF+αs uncertainty. Here a larger PDF+αs error than that
of Refs. [156, 158] is due to the choice of PDFs with a wider range of αs(mZ). If taking the present
world average αs(mZ) ≃ 0.118± 0.001 [28], we will obtain a much smaller PDF+αs error; i.e.

σTevatron, 1.96TeV = 7.626+0.143
−0.130 pb (214)

σLHC, 7TeV = 171.8+3.8
−3.5 pb (215)

σLHC, 14TeV = 941.3+14.6
−15.6 pb (216)

• The total cross-section σtt̄ is sensitive to the top-quark mass, and it is found that the total cross-
sections decrease with the increment of top-quark mass. After PMC scale setting, by varying
mt = 172.9± 1.1 GeV [28], we predict

σTevatron, 1.96TeV = 7.626+0.265
−0.257 pb (217)

σLHC, 7TeV = 171.8+5.8
−5.6 pb (218)

σLHC, 14TeV = 941.3+28.4
−26.5 pb (219)

where the errors are caused by the top-quark mass uncertainty. In Fig.(16) we present the total
cross-section σtt̄ as a function of mt, where σtt̄ with or without PMC scale setting are shown
explicitly. After PMC scale setting, the value of σtt̄ is more closer to the central value of the
experimental data [41, 42, 43, 44], which shows a better agreement with the experimental data.

As a summary, after PMC scale setting, we obtain the following points:

• A larger value for σtt̄ is obtained, which agrees with the present Tevatron and LHC experimental
data well. This is achieved because we have resummed the universal and gauge invariant higher-
order corrections which are associated with the running of the coupling into the LO- and NLO-
terms by using suitable PMC scales.
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• After PMC scale setting, a more convergent pQCD series expansion is obtained and the resulting
LO- and NLO- terms are conformally invariant and do not depend on the choice of renormalization
scheme. The slight change of PMC scales will lead to large effects due to the explicit breaking of
the conformal invariance [39].

• In principle, the PMC scale and the resulting renormalized amplitude is independent of the choice
of the initial renormalization scale. The residual scale-uncertainty will be greatly suppressed
when the PMC scales have been set suitably. Then, the usual renormalization scale uncertainty
∆σtt̄/σtt̄ ∼

(
+3%
−4%

)
at the Tevatron and LHC is greatly suppressed or even eliminated by PMC

scale setting.

5.2 Top-Quark Pair Backward-Forward Asymmetry

The top-quark pair forward-backward asymmetry which originates from charge asymmetry physics [175,
176] has been studied at the Tevatron and LHC. Two options for the asymmetry have been used for
experimental analysis; i.e. the tt̄-rest frame asymmetry

Att̄
FB =

σ(ytt̄t > 0)− σ(ytt̄t < 0)

σ(ytt̄t > 0) + σ(ytt̄t < 0)
(220)

and the pp̄-laboratory frame asymmetry

App̄
FB =

σ(ypp̄t > 0)− σ(ypp̄t < 0)

σ(ypp̄t > 0) + σ(ypp̄t < 0)
, (221)

where ytt̄t (ypp̄t ) is the top quark rapidity in the tt̄-rest frame (pp̄-laboratory frame).

The CDF and D0 collaborations have found comparable values in the tt̄-rest frame: Att̄,CDF
FB =

(15.8 ± 7.5)% [177] and Att̄,D0
FB = (19.6 ± 6.5)% [178]. The asymmetry in the pp̄-laboratory frame

measured by CDF is App̄,CDF
FB = (15.0 ± 5.5)% [177]. The CDF collaboration has also measured the

dependence of Att̄
FB with respect to the tt̄-invariant mass Mtt̄: the asymmetry increases with Mtt̄, and

Att̄
FB(Mtt̄ > 450 GeV) = (47.5 ± 11.4)% [177]. The measured asymmetries are much larger than the

usual SM estimates for the top quark forward-backward asymmetries. The NLO QCD contributions
to the asymmetric tt̄-production yield Att̄

FB ≃ 7% and App̄
FB ≃ 5% [179, 180, 181, 182, 183], which are

about 2σ-deviation from the above measurements. For the case of Mtt̄ > 450 GeV, using the MCFM
program [184], one obtains Att̄

FB(Mtt̄ > 450 GeV) ∼ 8.8% which is about 3.4σ-deviation from the data.
A recent reevaluation of the electroweak correction raises the QCD asymmetries by at most 20%: i.e.
Att̄

FB(A
pp̄
FB) ∼ 9% (7%) [185, 186] and Att̄

FB(Mtt̄ > 450 GeV) ∼ 12.8% [186]. The large discrepancies
between the SM estimates and the data have aroused interest, because of the possibility for probing
new physics beyond the SM. However, these comparisons are based on the conventional scale setting
for choosing the renormalization scale. In the following, we will show how the use of PMC can greatly
improve our estimates within the SM.

5.2.1 Basic Formulas

Numerical results for the top-quark pair production at the Tevatron and LHC have been presented in
Sec.5.1. We will compare the total cross-sections derived from PMC scale setting and the conventional
scale setting. We emphasize two points in addition to the ones listed in the above subsection:

• At the Tevatron, the top-quark pair production is dominated by the (qq̄)-channel which provides
about 85% contribution to the total cross-section. The (qq̄)-channel due to interference of the one
gluon and two gluon intermediate states is asymmetric at the NLO level, which leads to sizable
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top-quark forward-backward asymmetry at the Tevatron. In addition, emission of real gluons gives
an asymmetry. In contrast, one finds that the dominant channel at the LHC is the symmetric
(gg)-channel, so the top-quark forward-backward asymmetry from other channels will be greatly
diluted at the LHC; i.e., this asymmetry becomes small which agrees with the CMS and ATLAS
measurements [187, 188].

• More specifically, at the lowest order, the two channels qq̄ → tt̄ and gg → tt̄ do not discriminate
the final top-quark and top-antiquark, so their differential distributions are symmetric for the
hadronic production. At the NLO level, either the virtual or real gluon emission will cause sizable
differences between the differential top-quark and top-antiquark production, thus leading to an
observable top-quark forward-backward asymmetry. At the Tevatron, the asymmetric channels
are (qq̄)-, (gq)- and (gq̄)- channels accordingly. Table 2 shows the total cross-sections of the (gq)
and (gq̄) channels are quite small, less than 1% of that of (qq̄)-channel, so their contributions to
the asymmetry can be safely neglected.

Writing the numerator and the denominator of the two asymmetries AFB defined by Eqs.(220,221)
in powers of αs, we formally obtain

AFB =
α3
sN1 + α4

sN2 +O(α5
s)

α2
sD0 + α3

sD1 + α4
sD2 +O(α5

s)

=
αs

D0

[
N1 + αs

(
N2 −

D1N1

D0

)
+ α2

s

(
D2

1N1

D2
0

− D1N2

D0

− D2N1

D0

)
+ · · ·

]
, (222)

where the Di-terms stand for the total cross-sections at certain αs-order and the Ni-terms stand for the
asymmetric cross-sections at certain αs-order. The terms up to NLO (D0, D1, N1) have been calculated,
whereas only parts of D2 and N2 are currently known [147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161].

As shown in Table 2, using conventional scale setting, the relative importance of the denomina-
tor terms is [α2

sD0 : α
3
sD1 : α

4
sD2 ∼ 1 : 18% : 12%], and the numerator terms for the asymmetric (qq̄)-

channel satisfy [α3
sN1 : α

4
sN2 ∼ 1 : 50%]. Since at present the NNLO numerator term N2 is not available,

as a first approximation, we treat these asymmetric terms to have the same relative importance as their
total cross-sections; i.e. (α3

sN1)qq̄ : (α
4
sN2)qq̄ ∼ (α3

sD1)qq̄ : (α
4
sD2)qq̄. Thus, the N1D1/D0 term and the

N2 term have the same importance. Then, to be consistent, one has to keep only the first term in
Eq.(222); i.e. dealing with only the so-called LO asymmetry [176, 179, 185, 186]: AFB = N1

D0
αs.

On the other hand, after PMC scale setting, we have [α2
sD0 : α

3
sD1 : α

4
sD2 ∼ 1 : 41% : 2%] and the

numerators for the asymmetric (qq̄)-channel becomes [α3
sN1 : α

4
sN2 ∼ 1 : 3%]. It shows that, after PMC

scale setting, the NNLO corrections for both the total cross-sections and the asymmetric part are lowered
by about one order of magnitude. Therefore, the NNLO-terms N2 and D2 can be safely neglected in
the calculation, and we can obtain an accurate asymmetry at the NNLO level:

AFB =
αs

D0

[
N1 − αs

(
D1N1

D0

)
+ α2

s

(
D2

1N1

D2
0

)]
.

Furthermore, it is natural to assume that those higher-order terms Ni and Di with i > 2 after PMC
scale setting will also give negligible contribution; the above asymmetry can thus be resummed to a
more convenient form:

AFB =
α3
sN1

α2
sD0 + α3

sD1
. (223)

Furthermore, as shown in Refs. [176, 185, 186], the electromagnetic and weak contributions Ñ0,1 provides
an extra ∼ 20% increment for the asymmetry; thus the electromagnetic contribution provides a non-
negligible fraction of the QCD-based antisymmetric cross-section with the same overall sign. Then, our
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final formula to calculate the asymmetry changes to

AFB =
α3
sN1 + α2

sαÑ1 + α2Ñ0

α2
sD0 + α3

sD1
. (224)

Based on the above considerations, the top-quark forward-backward asymmetry after PMC scale
setting can be written as

Att̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄+X(µ

PMC
r )

[
σ(qq̄)
asy

(
µPMC
r ; ytt̄t > 0

)
− σ(qq̄)

asy

(
µPMC
r ; ytt̄t < 0

)]
, (225)

App̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄+X(µ

PMC
r )

[
σ(qq̄)
asy

(
µPMC
r ; ypp̄t > 0

)
− σ(qq̄)

asy

(
µPMC
r ; ypp̄t < 0

)]
, (226)

where according to Eq.(224): σtot
H1H2→tt̄+X is the total hadronic cross-section up to NLO; σ(qq̄)

asy stands for
the asymmetric cross-section of the (qq̄)-channel which includes the above mentioned O(α3

s), O(α2
sα)

and O(α2) terms. In the denominator for the total cross-section up to NLO, for each production
channel, we need to introduce two LO PMC scales which are for the Coulomb part and non-Coulomb
part accordingly, and one NLO PMC scale for the non-Coulomb part. While in the numerator, we
only need to know the NLO PMC scale µPMC,NLO

r for the (qq̄)-channel, since it is the only asymmetric
component.

It is interesting to observe that there is a dip for the NLO scale µPMC,NLO
r of the (qq̄)-channel when√

s ≃ [
√
2 exp(5/6)]mt ∼ 563 GeV, which, as shown in Sec.5.1, is caused by the correlation among the

PMC coefficients for NLO and NNLO terms. More specifically, it is found that

µPMC,NLO
r = exp

(
B̃2qq̄

Ã1qq̄

)
µPMC,LO
r = exp

(
B̃2qq̄

Ã1qq̄

)
exp

(
3B1qq̄

2A0qq̄

+O(αs)

)
µinit
r , (227)

where the coefficients are defined through the standard PMC scale setting, cf. Eq.(202). As shown in
Fig.(13), the value of B̃2qq̄ is always negative and Ã1qq̄ has a minimum value at small

√
s. Quantitatively,

the NLO PMC scale µPMC,NLO
r for the (qq̄)-channel is considerably smaller than mt in small

√
s-region.

The NLO cross-section of the (qq̄)-channel will thus be greatly increased; it is a factor of two times
larger than its value derived under conventional scale setting, as shown by Table 2.

5.2.2 Numerical Analysis for the Backward-Forward Asymmetry

The PMC asymmetries Att̄,PMC
FB and App̄,PMC

FB can be compared with the asymmetries calculated using
conventional scale setting. For definiteness, we apply PMC scale setting to improve Hollik and Pagani’s
results [186], and we obtain

Att̄,PMC
FB =




σtot,HP
H1H2→tt̄X

σtot,PMC
H1H2→tt̄X








αs

3
(
µPMC,NLO
r

)

αHP
s

3 (µconv
r )

Att̄,HP
FB |O(α3

s) +
αs

2
(
µPMC,NLO
r

)

αHP
s

2 (µconv
r )

Att̄,HP
FB |O(α2

sα) + Att̄,HP
FB |O(α2)



(228)

App̄,PMC
FB =




σtot,HP
H1H2→tt̄X

σtot,PMC
H1H2→tt̄X








αs

3
(
µPMC,NLO
r

)

αHP
s

3 (µconv
r )

App̄,HP
FB |O(α3

s) +
αs

2
(
µPMC,NLO
r

)

αHP
s

2 (µconv
r )

App̄,HP
FB |O(α2

sα) + App̄,HP
FB |O(α2)



(229)

Here µconv
r stands for the scale set by conventional scale setting and the symbol HP stands for the

corresponding values of Ref. [186]; i.e. for µconv
r = mt, it shows [186]: σ

tot,HP
H1H2→tt̄X = 5.621 pb and

Att̄,HP
FB |O(α3

s)
= 7.32% Att̄,HP

FB |O(α2
sα)

= 1.36% Att̄,HP
FB |O(α2) = 0.26%

App̄,HP
FB |O(α3

s) = 4.85% App̄,HP
FB |O(α2

sα) = 0.90% App̄,HP
FB |O(α2) = 0.16%

where
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Table 5: Total cross-sections (in unit: pb) for the top-quark pair production at the Tevatron
with pp̄-collision energy

√
s = 1.96 TeV. For conventional scale setting, we set the scale

µr ≡ Q. For PMC scale setting, we set the initial scale µinit
r = Q and then apply the

PMC procedure. Here we take Q = mt = 172.9 GeV and use the MSRT 2004-QED parton
distributions [189] as the PDF.

Conventional scale setting PMC scale setting
LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 4.890 0.963 0.483 6.336 4.748 1.727 -0.058 6.417
(gg)-channel 0.526 0.440 0.166 1.132 0.524 0.525 0.160 1.208
(gq)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332
(gq̄)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332

sum 5.416 0.985 0.659 7.402 5.272 2.176 0.112 7.559

Figure 17: Dominant cut diagrams for the nf -terms at the α4-order of the (qq̄)-channel,
which are responsible for the smaller effective NLO PMC scale µPMC,NLO

r , where the solid
circles stand for the light-quark loops.

• Att̄,HP
FB |O(α3

s) and A
pp̄,HP
FB |O(α3

s) stand for the pure QCD asymmetry at the α3
s-order under the tt̄-rest

frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(α2

sα) and A
pp̄,HP
FB |O(α2

sα) stand for the combined QED and weak with the QCD asymmetry
at the α2

sα-order under the tt̄-rest frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(α2) and A

pp̄,HP
FB |O(α2) stand for the pure electroweak asymmetry at the α2-order under the

tt̄-rest frame and the pp̄ lab frame, respectively.

Total cross-sections for the top-quark pair production at the Tevatron with pp̄-collision energy
√
s =

1.96 TeV and with the same parameters of Ref. [186] are given in Table 5. In the formulas (228,229),

we have defined an effective coupling αs

(
µPMC,NLO
r

)
for the asymmetric part, which is the weighted

average of the QCD coupling for the (qq̄)-channel; i.e. in using the effective coupling αs

(
µPMC,NLO
r

)
,

one obtains the same (qq̄)-channel NLO cross-section as that of αs(µ
PMC,NLO
r )9.

It is noted that the NLO-level asymmetric part for (qq̄)-channel only involves the NLO PMC scale for

the non-Coulomb part, so the effective coupling αs

(
µPMC,NLO
r

)
can be unambiguously determined. We

obtain a smaller effective NLO PMC scale µPMC,effective
r ≃ exp(−9/10)mt ∼ 70 GeV, which corresponds

to αs

(
µPMC,NLO
r

)
= 0.1228. It is larger than αHP

s (mt) ≃ 0.098 [185, 186]. This effective NLO PMC

scale is dominated by the non-Coulomb nf -terms at the α4
s-order, which are shown in Fig.(17). In these

diagrams, the momentum flow in the virtual gluons possess a large range of virtualities. This effect for

9In principle, one could divide the cross-sections into symmetric and asymmetric components and find PMC scales
for each of them. For this purpose, one needs to identify the nf -terms or the n2

f -terms for both the symmetric and
asymmetric parts at the NNLO level separately.
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Figure 18: Comparison of the PMC prediction with the CDF data [177] for the tt̄-pair
forward-backward asymmetry for the whole phase-space. The Hollik and Pagani’s results
(HP) [186] using conventional scale setting are presented for a comparison. The result for
D0 data [178] shows a similar behavior.

NLO PMC scale µPMC,effective
r can be regarded as a weighted average of these different momentum flows

in the gluons, which can be softer than the nominal scale, mt. Finally, we obtain

Att̄,PMC
FB ≃ 12.7% ; App̄,PMC

FB ≃ 8.39% . (230)

Thus after PMC scale setting, the top-quark asymmetry under the conventional scale setting is in-
creased by ∼ 42% for both the tt̄-rest frame and the pp̄-laboratory frame. This large improvement is
explicitly shown in Fig.(18), where Hollik and Pagani’s results which are derived under conventional
scale setting [186] are presented for comparison.

Another possible effect from QCD can be the lensing effect of the final state interactions of the t and
t̄ with the beam spectators. The same diagrams causes Sivers single-spin asymmetry and diffractive
deep inelastic scattering10.

The CDF collaboration has found that when the tt̄-invariant mass, Mtt̄ > 450 GeV, the top-
quark forward-backward asymmetry Att̄

FB(Mtt̄ > 450 GeV) is about 3.4 standard deviations above
the SM asymmetry prediction under the conventional scale setting [184]. After applying PMC scale

setting, we have σtot,PMC
H1H2→tt̄X(Mtt̄ > 450 GeV) = 2.406 pb and αs

(
µPMC,NLO
r

)
= 0.1460 with µPMC,NLO

r ∼
exp(−19/10)mt ≃ 26 GeV. Then, we obtain

Att̄,PMC
FB (Mtt̄ > 450 GeV) ≃ 35.0% , (231)

which is increased by about 1.7 times of the previous one Att̄,HP
FB (Mtt̄ > 450 GeV) = 12.8% [186]. Our

present prediction is only about 1σ-deviation from the CDF data, which is shown in Fig.(19). This
shows that, after PMC scale setting, the discrepancies between the SM estimate and the present CDF
and D0 data are greatly reduced.

5.3 Sum rules for special moments of the deep-inelastic structure functions

Deep-inelastic structure functions obey a series of sum rules for special moments, such as the Adler sum
rule [190], the unpolarized Bjorken sum rule [191], the Gross-Llewellyn Smith (GLS) sum rule [192],

10We thanks Benjamin von Harling and Yue Zhao for conversions on this possibility.
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Figure 19: The PMC prediction of Att̄
FB(Mtt̄ > 450 GeV) and the corresponding CDF

data [177] for the tt̄-pair forward-backward asymmetry for Mtt̄ > 450 GeV. The Hollik and
Pagani’s results (HP) [186] using conventional scale setting are presented for a comparison.

the polarized Bjorken sum rule [193], the Gerasimov-Drell-Hearn sum rule [194, 195], the Burkhardt-
Cottingham sum rule [196], the Efremov-Teryaev-Leader sum rule [197], the Ellis-Jaffe sum rule [198],
the Gottfried sum rule [199] and etc., all of which are of interest for experimental tests. A brief
description of those sum rules can be found in Ref.[200]. The Bjorken sum rule and the GLS sum rule
obey the well-known Crewther relations [102, 103, 104, 105, 201, 202, 203, 204, 205], which through
the Adler function can be used to expose their conformal parts. As has been shown in Sec.4.3.3, one
can obtain the generalized Crewther relation by using the commensurate scale relation among them.
It is shown [57] that both sum rules after PMC scale setting have perturbative expansions that match
exactly the inverse of the anomalous dimension, γ−1, and is what one expects in a conformal field theory.

The Bjorken sum rule expresses the integral over the spin distributions of quarks inside of the nucleon
in terms of its axial charge times a coefficient function CBjp:

Γp−n
1 (Q2) =

∫ 1

0
[gep1 (x,Q2)− gen1 (x,Q2)]dx =

gA
6
CBjp(a) +

∞∑

i=2

µp−n
2i (Q2)

Q2i−2
, (232)

where gep1 and gen1 are the spin-dependent proton and neutron structure functions, gA is the nucleon
axial charge as measured in neutron β decays. The sum in the second line of Eq.(232) describes the
nonperturbative power corrections (higher twists) which are inaccessible for pQCD. Focusing on the
perturbative part, we define

CBjp(Q2) = 1− 3CF a(Q
2) +

∞∑

n=2

C̃n a(Q
2)n . (233)

The GLS sum rule,
1

2

∫ 1

0
F νp+ν̄p
3 (x,Q2)dx = 3nfC

GLS(a) , (234)

relates the lowest moment of the isospin singlet structure function F νp+ν̄p
3 (x,Q2) to a coefficient CCLS(as),

which appears in the operator product expansion of the axial and vector non-singlet currents. We are
again only considering the perturbative contribution and define

CGLS(Q2) = 1− 3CF a(Q
2) +

∞∑

n=2

Cna(Q
2)n. (235)
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The Adler function can be written in terms of the vector field anomalous dimension, γ, and the
vacuum polarization function, Π, as follows [206, 207]

D̄(Q2) = κ−1D(Q2) = γ(a)− β(a)
d

da
Π(Q2, a) . (236)

where β(a) is the β-function of the running coupling and we defined the normalized Adler function
D̄ with κ = dF

∑
f Q

2
f and dF is the dimension of the quark color representation. The (generalized)

Crewther relation [105, 203, 204, 205] states that there exist a relation between the two sum rules
through the Adler function D(Q2) as follows :

˜̄D(Q2)CBjp(a) = 1 +
β(a)

a
K̃(a) , (237)

K̃(a) = a K̃1 + a2 K̃2 + a3 K̃3 + . . . (238)

and

D̄(Q2)CGLS(a) = 1 +
β(a)

a
K(a) , (239)

K(a) = aK1 + a2K2 + a3K3 + . . . (240)

The tilde on D̄ and K indicates the expressions without the light-by-light type terms, and the term
proportional to the β-function describes the deviation from the limit of exact conformal invariance, with
the deviations starting at order a2.

Both sum rules have been explicitly computed to four loops and shown to obey the generalized
Crewther relations [201, 202] 11. We can use the Crewther relations to extract the conformal and
non-conformal parts of CBjp and CGLS [57]. Denoting the power expansion of D̄ by

D̄(Q2) = 1 +
∞∑

n=1

dna(Q
2)n , (241)

and expanding its inverse perturbatively gives us

CGLS(a) = 1− d1a + a2
[
d21 − d2 − β0K1

]
+ a3

[
2d1d2 − d31 − d3 + β0 (d1K1 −K2)− β1K1

]

+a4
[
d41 + d22 − d4 − 3d21d2 + 2d1d3 + β1 (d1K1 −K2) + β0

(
−d21K1 + d1K2 + d2K1 −K3

)
− β2K1

]
(242)

The expression for CBjp is the same after putting tildes on the coefficients. The di are given in terms
of γi, Πi and βi as follows:

d1 = γ1 = 3CF (243)

di≥2 = γi +
i−2∑

k=0

(i− 1− k)βkΠi−1−k . (244)

We use this to find the degenerate ri,j coefficients of Eq.(173).

r2,1 = −K1 − Π1 , (245)

r3,1 = −K2

2
− Π2 +

(
K1

2
+ Π1

)
γ1 , (246)

r4,1 = −K3

3
− Π3 + (K2 + 4Π2)

γ1
3

−
(
K1

3
+ Π1

)
γ21 + (K1 + 2Π1)

γ2
3

(247)

r4,2 =
1

3
(K1Π1 +Π2

1) (248)

r3,2 = 0 , r4,3 = 0 (249)

11There is a recent claim [208] that the existing four-loop coefficient of the Bjorken sum rule [201, 202] is missing some
singlet-diagram contributions. This is relevant only for the explicit evaluation of K̃3, and does not change the results of
this section.

66



The degeneracy allows us to resum the series as described earlier. The final result is:

CGLS(a) = 1− a(Q1)γ1 + a(Q2)
2 (γ21 − γ2) + a(Q3)

3 (−γ31 + 2γ2γ1 − γ3)

+a(Q4)
4 (γ41 − 3γ2γ

2
1 + 2γ3γ1 + γ22 − γ4) +O (a5) , (250)

exposing the ri,0 coefficients. This expression is simply the inverse of the anomalous dimension:

CGLS(a) = γ−1(Q1, Q2, Q3, . . .) , (251)

where we used that γ0 = 1. The argument of γ−1 on the right hand side indicate the effective scales at
each order in perturbation theory, once the inverse is Taylor expanded. All the above expressions apply
to the Bjorken sum rules, with the coefficients replaced by the ones with tilde. In particular,

CBjp(a) = γ̃−1(Q̃1, Q̃2, Q̃3, . . .).

Since, the Adler function itself is after PMC scale setting simply given by the anomalous dimension:

D(Q) = γ(Q1, Q2, Q3, . . .) (252)

and correspondingly for D̃, the Crewther relations can be expressed as

˜̄D(Q̃)CBjp(µ) = γ̃(Q̃1,Q̃2,...)
γ̃(µ̃1,µ̃2,...)

= 1 (253)

D̄(Q)CGLS(µ) = γ(Q1,Q2,...)
γ(µ1,µ2,...)

= 1 (254)

where the last equality follows due to conformality.

6 Summary

Because of the RG invariance (38,39), the predictions for a physical observable must be independent
of the renormalization scheme and the initial scale. The results cannot depend on which scheme the
theorist chooses; e.g. MS-scheme, MOM-scheme, etc. Note that the conventional MS-scheme is
somewhat artificial. One can introduce a more general MS-like renormalization scheme, Rδ-scheme,
by further absorbing an arbitrary constant δ into 1/ǫ pole, i.e. 1

ǫ
+ ln(4π) − γE − δ. Physical results

cannot depend on the choice of δ.
At a fixed-order the dependence on the renormalization scheme and initial scale choice leads to large

uncertainties for perturbative QCD predictions. The problem is compounded in multi-scale processes.
The conventional scale setting procedure assigns an arbitrary range and an arbitrary systematic error
to fixed-order pQCD predictions. As we have discussed in this review, this ad hoc assignment of the
range and associated systematic error is unnecessary and can be eliminated by a proper scale setting
as the PMC.

The extended RG equations, which includes the dependence on the scheme parameters, provide a
convenient way for estimating both the scheme and scale dependence of the perturbative predictions
for a physical process. It provides a way for the running coupling to run reliably either in scale or in
scheme. With the help of the extended RG equations, we have presented a general demonstration for
the RG invariance. Furthermore, this formalism provides a platform for a reliable error analysis, and it
also provides a precise definition for the QCD asymptotic scale under any renormalization R-scheme,
Λ

′tH−R
QCD , which is defined as the pole of the strong coupling in the ’t Hooft scheme associated with

R-scheme.
Several scale setting methods have been proposed in the literature: FAC, PMS, BLM and PMC.

The FAC (Fastest Apparent Convergence) use the scale to contract the prediction to one term. The
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PMS (Principle of Minimum Sensitivity) chooses the scale at the point of minimum variation. The
BLM (Brodsky-Lepage-Mackenzie) and PMC (Principle of Maximum Conformality) procedures shift
all {βi}-terms into the argument of the running coupling. Based on the extended RG equation, we
have discussed the self-consistency conditions for a scale setting method, which include the existence
and uniqueness of the renormalization scale, reflexivity, symmetry, and transitivity. These properties
are natural requirements of RG invariance. We have shown that the FAC and BLM/PMC satisfy
these requirements, whereas the PMS does not. The PMS is designed to be renormalization-scheme
independent; however it violates the symmetry and transitivity properties of the renormalization group,
and does not reproduce the Gell Mann-Low scale for QED observables. In addition, the application
of PMS to jet production from the e+e− → qq̄g gives unphysical results; i.e. its PMS scale rises
without bound for small jet energy, since it sums physics into the running coupling not associated
with renormalization. This implies the necessity of further careful studies of the theoretical principles
underlying PMS.

Among these scale setting methods, the advantages of PMC are clear. In PMC, the same procedure is
valid for both space-like and time-like arguments; in particular, this leads to a well-behaved perturbative
expansion, since all the large {βi}-dependent terms on the time-like side involving π2-terms are fully
absorbed into the running coupling. Through the PMC - BLM correspondence, the PMC and the BLM
are equivalent to each other. Thus the features of BLM scale setting are also adaptable to PMC.

For convenience, we summarize the dominant features of PMC in the following:

• It keeps the information of the higher order corrections but in a more convergent perturbative
series. After PMC scale setting, the divergent “renormalon” series with n!-growth disappear, so
that a more convergent perturbative series is obtained.

• Its estimation is renormalization-scheme independent, because after PMC scale setting,

– the resulting expressions are conformally invariant and thus do not depend on the choice of
renormalization scheme;

– one obtains the proper scale-displacements among the PMC scales derived for different
schemes or conventions;

– one also obtains CSRs connecting observables and schemes. For example, by using the PMC
procedure, one can obtain the well-known one-loop displacement between the argument of
the coupling in the MS scheme relative to the GM-L scheme, αGM−L

em (t) = αMS
em (e−5/3t) [49],

which ensures the estimates under the MS-scheme and GM-L scheme are the same.

These features become clear using the Rδ-scheme. The δ-terms always accompany nonconformal
β-dependent terms, and thus the elimination of δ-terms by shifting the scale of the running
coupling is equivalent to the elimination of {βi}-terms. The PMC estimate can therefore also be
achieved through a proper treatment of δ-terms. This new way for PMC scale setting can be
readily programmed for automatically setting the PMC scales to all orders [50, 57].

• The PMC provides a systematic way to set the optimized renormalization scale for a fixed-order
calculation. In principle, the PMC needs an initial value to initialize renormalization scale. It is
found that the estimates of PMC are to high accuracy independent of the initial renormalization
scale; even the PMC scales themselves are in effect independent of the initial renormalization scale
and are ‘physical’ at any fixed order. This is because the PMC scale itself is a perturbative series
and those unknown higher-order {βi}-terms will be absorbed into the higher-order terms of the
PMC scale, which is strongly power suppressed.

• By applying the PMC scale setting to the known Gross-Llewellyn Smith sum rule and the polarized
Bjorken sum rule up to four-loop level, one can improve the precision of these two sum rules, and

68



the perturbative convergence is greatly improved. Furthermore, one can obtain the generalized
Crewther relation by using the commensurate scale relation between them.

• The Gross-Llewellyn Smith and the polarized Bjorken sum rules provide ideal platforms to check
the conformal properties of the series after the PMC scale setting. More explicitly, by using
the Rδ-scheme, we have found that by using the results for these two sum rules up to four-loop
level, both sum rules after PMC scale setting have perturbative expansions that exactly match
the inverse of the anomalous dimension, γ−1, which is in accordance with what one expects in a
conformal field theory [57].

• By applying PMC to the top-quark pair hadroproduction up to NNLO level, it has been found
that the PMC scales and the resulting finite-order total cross-sections are both to high accuracy
independent of the choice of an initial scale [39, 47, 135]. After PMC scale setting, the top
quark forward-backward asymmetries at the Tevatron are : Att̄

FB ≃ 12.5%, App̄
FB ≃ 8.28% and

Att̄
FB(Mtt̄ > 450 GeV) ≃ 35.0% [135]. These predictions deviate approximately 1 σ from the CDF

and D0 measurements. The large discrepancy of the top quark forward-backward asymmetry
between the standard model estimate and the data is thus greatly reduced.

• A PMC analysis for the charmonium production processes, e+ + e− → J/ψ(ψ′) + χcJ with (J =
0, 1, 2), has been given in Ref. [209]; it shows that the scale uncertainty for both the polarized and
the unpolarized cross sections are greatly suppressed even at the NLO level.

• The PMC is adoptable for the QED case. In the Abelian limit NC → 0 at fixed α = CFαs with
CF = (N2

c − 1)/2Nc [29, 38], the PMC also agrees with the standard Gell Mann-Low procedure
for setting the renormalization scale in QED. Any method used in perturbative QCD must be
applicable to QED in the NC → 0 limit, since they share the same Yang-Mills Lagrangian.

The elimination of the renormalization scale ambiguity and the scheme dependence using the PMC
procedure will not only increase the precision of QCD tests, but it will also increase the sensitivity of
collider experiments to new physics beyond the SM. The PMC procedure can be advantageously applied
to the entire range of perturbatively-calculable QCD and Standard Model processes, eliminating an
unnecessary systematic error.
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