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High multiplicity processes at NLO with BlackHat and Sherpa H. Ita and D. Maitre

1. Introduction

The production of a massive vector boson in association jgithis an important process
at hadron colliders. The cross sections are large, the ®w@atrelatively clean, and they form
significant backgrounds to many interesting physics sgynBecause these processes are so well
understood, both experimentally and theoretically, theywadely used to validate or test new tools
and methods.

The last few years have seen continued progress in the Ipatitte description of high-multi-
plicity processes. The next-to-leading order (NLO) QCDrections for'W + 4-jet production at
hadron colliders were completed in 201} [[IL, 2], followed bg talculation of the same process
with aW boson replaced by Z boson [B]. At this conference we have shown preliminary re-
sults for thew + 5-jet process. All these fixed-order QCD predictions havenbabtained using
of BLACKHAT [f]] and SHERPA [B[J6[]7[]8]. There has also been a lot of pragirshe com-
putation of processes with\W andZ boson accompanied by jets at NLO accuracy, matched to a
parton shower (see e.g. references in f¢f. [9]). For suctpagations the high-multiplicity virtual
matrix elements in QCD are a key ingredient, some of whiclelmacome available only recently.
The production ofV + 2 jets has been computed using aMC@NI[P [9]. Virtual matrements
provided by BACKHAT have been used by different groups for such computations. Sherpa
implementation of the MC@NLJT10] approach computéboson production in association to up
to three jets[[41] using virtual matrix elements from refid,[18]. The POWHEG BOX[[14, 1.5]
has been used recently to compute the 2-jet process at NLO, matched with a parton shower
[Ld], with the virtual matrix element§ TL¥,]18] also empldyia ref. [L9].

NLO predictions improve the leading order (LO) results in@as ways. NLO results show a
reduced dependence on the unphysical renormalizatioreatatization scales, as compared to LO
results. This improvement becomes more significant as thioauof jets and, thus, the order in the
strong couplingds, increases. Further benefits include a better descripfiomt@l and final state
radiation. The shapes of many kinematical distributiomsheatter described at NLO. The precision
offered by NLO calculations is needed for both the signallzackground processes. ‘Data-driven’
methods very often rely on theory input for cross sectioiwsain order to extrapolate backgrounds
from a control region into a signal region for the same precesto extrapolate from one process
to a related process. NLO computations can also improventfmrétical precision for such ratios.

We address here several new developments in fixed-order [h{puatations of vector-boson
production. First, we discuss the production of a massiveoveboson in association with four
jets at NLO as a signal at the LHC. Next, we discuss an apjaitaif NLO computations of
vector-boson production to background estimation in $emrdor supersymmetry. Finally, we
report on some technical developments that have been iamganigredients in our latest multi-jet
computations.

*Speaker.
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2. W+ 4-jet and Z + 4-jet predictions

We present results here fo¥ + 4-jet andZ + 4-jet production, for which we have used
BLACK HAT [f] for both the virtual matrix elements and real-emissioatrix elements. SHERPA][5,
B.[1.[8] was used for the remaining pieces (Born and subtractas well as for the integration over
the phase space. For both processes, the calculation otdhemission tree amplitudes is ex-
tremely challenging. In BACKHAT, they are computed using on-shell recursion relatipris #20]
well as compact analytic formulae given in refs ][R, 22].

In figure[1 we display the transverse-momentyry)(distribution of the first, second, third and
fourth jets inZ + 4-jet events, with the decay to a lepton pair included. Wehsed; /2 as a cen-
tral choice for both the factorization scale and renormalization scaj#, whereH; = EZ + 5, p;

andEZ = /M2 + (pg'® )% The sum runs over all partons. A detailed list of the cutsaligorithm
and parameters can be found in réf. [3]. To suppress thealdptuoton component, we apply a

cut on the lepton invariant mass, requiring 66 GeWle.- < 116 GeV. Although the interference
betweenZ boson and photon exchange is very small with this cut, weudelit for complete-
ness. For the virtual part we use a leading-color approxamatvhich has been demonstrated in
refs. [13[IP[R] to be good to about three percent, as disdussther in sectiof 4.2.

In the top pane of figurf 1, the blue and black curves are theatér© and NLO predictions,
respectively. In the middle pane the ratio is taken with eespo the central NLO result. Scale
variation bands are displayed in orange for the LO and in doaythe NLO result. They are
obtained as the envelope from varying= ur = pr by factors of ¥2, 1/+/2, 1,+/2 and 2 around
the central scale value. The bottom pane displays the reti®@ + 4-jet distributions with respect
to theW= + 4-jet ones, both at leading order and next-to-leading otderontrast to the individual
distributions, the ratios do not suffer from large NLO ceotiens. The shape of th&/W™ ratio is
explained by the dominance of the valence distributiongtiquéarly u(x), at largex. TheZ has a
significant coupling to the quark, while theN~— couples only to the quark, among the valence
quarks. As the jepy increases, parton-distribution functions (PDF’s) of leighare probed, where
u(x)/d(x) rises. Thez /W ratio is flat because both th# andZ couplings are dominated by the
coupling to the same(x) PDF. These sorts of ratios are very useful in data-drivernoust

The shape differs significantly between the central LO an@Nkedictions for they distri-
butions of the first, second and third jets. The scale vanas, as expected, much smaller at NLO
than itis at LO.

3. Z/yratios

The production of jets in association withZaboson that decays into a neutrino pair is an
irreducible background for missing energy plus jets (MESeRrches. Missing energy signals arise
from the production of new particles that escape the deteciobserved. A typical example is the
lightest supersymmetric particle (LSP)Raparity conserving models of supersymmetry. As it is
an irreducible background, the impact of the— vv) +jets processes (METZJ) must be estimated
carefully. Typically data-driven methods are used withyatios provided by theory. There are
several strategies to estimate this background (see &sg[%,[24 [26] 6]), using related processes
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Figure 1: Distribution in pr for the first, second, third and fourth jetsZn+ 4-jet events.

in which the production of th& boson and its subsequent decay into neutrinos is replaced by
more accessible signature:

e Z (—1l)+jets. The advantage of this process is that the productioardics are very similar
to the one in the neutrino process. However, the statissicgmaller tharz — vv by a
factor of six for each lepton flavor, and is further reducedthms experimental acceptance
and identification efficiency for each charged lepton.

e W (— lv)+jets. This process has a cross section higher by a factox,dbst suffers from
contamination fronit, and potentially, from the new physics one aims to measure.

e y+jets. Replacing th& decay to neutrinos by a photon yields a cross section higharféc-
tor of four to five, but the production dynamics are differant a reliable theory prediction
is needed to obtain a solid conversion factor.

Here we present NLO calculations of the ratios needed foplioton-based estimation strat-
egy. The CMS collaboration has studied and ugefl [23V24joson and photon production in
association with jets to estimate METZJ backgrouridk [2, P&ioton production in association
with jets has also been studied in rdf.][25] and used by theAS lcollaboration [37] in their
data-driven estimates of the METZJ background.

Partonic calculations involving photons develop infrasetyularities when the photon is emit-
ted collinear to a quark. These divergences can be avoideuixysing a standard cone isolation
for the photon. However, this strategy requires the use ofgrhfragmentation functions which
are extracted from data and are not known very preciselytifan@pproach, proposed by Frixione
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Figure 2: Ratio of thepr distribution of the first jet iz + 2-jet andy+ 2-jet production. The dotted blue
line represents the LO ratio, the solid black line the NLQutgsvhile the ME+PS result is represented by
the dashed red line.

[Pg], removes the need for the fragmentation functions $ulifficult to implement in an experi-
mental measurement. For the estimation of the ratip-pf2 jets toZ + 2 jets we use the Frixione
isolation. We estimate the difference between this ismtatind the CMS cone isolation using a
code by Gordon and Vogelsar|g][29] and JetPlhok[[30, 31]. Wetliatthe difference between the
standard cone isolation and Frixione’s isolation is smaailil decreases as the transverse energy
of the photon increases, which is the case of interest farghidy. For more details we refer to

ref. [B2).

The estimation of uncertainties on our result for the ratassfor most NLO predictions for
ratios) is difficult. The commonly used method of varying tkeormalization and factorization
scales yields a very small estimate, because most of the-depkendence is correlated between the
numerator and denominator. A similar effect occurs for tBd-ferror propagation. To estimate
the error, we computed the ratio using the matrix-elemeatichred-to-parton-shower (ME+PS)
method of SHERPA. We took the difference between the NLO abd-RE ratios as an estimate
of the uncertainty of our result. An example of such a rato cluts relevant to a CMS search using
the 2010 LHC data[J24], is shown in Figule 2 as a function of pheof the first jet. The NLO
and ME+PS predictions for théto y ratio track each other well across the whole range opjet
Other observables exhibit similar behavipr][32], leadimghte conclusion that the photon-plus-jets
process gives a good handle on the» vv background.

We have recently extended this computatipn [33] to the rati@ + 3-jet to y+ 3-jet pro-
duction. This work was also instigated by the CMS collatioraff3] to help them estimate the
uncertainty in th&Z — vv background to new physics searches, in particular for thesioingent
cuts used in analyzing the 2011 LHC d4fa] [26]. We have condpthiie ratio of the two processes
for different sets of cuts on two kinematic variable§™ andME TS, HI* is defined as the sum
of the transverse energy of jets with > 50 GeV andn| < 2.5, while MET® is defined as the
modulus of the vectorial sum of the transverse momenta géteevith pr > 30 GeV andn| < 5.

The scal& of the cuts orH#etS andMET®in the analysis is large enough that one may worry
about large logarithms of the form 169/pT"). One way of assessing whether these logarithms
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are large is to look at the ratio @+ 3 jets overZ + 2 jets. A value too close to one could result
from large logarithms spoiling the perturbative expansibigure[B shows this ratio as a function
of HF™ andHI®' — MET#, In regions where this ratio is close to one, we cannot be ot
the validity of the perturbative expansion. Such largeatffenay nonetheless largely cancel out
in Z+jetsk+jets ratios, leaving those predictions reliable in spit¢hem. It is worth noting that
the validity of the NLO prediction in these regions, where fherturbative expansion might be
unreliable, can be tested experimentally by measuring matads in they+ jets samples.

We find that the theoretical uncertainty on the conversiamwéen photons and bosons is
less than 10% for events with either two or three associatsl @llowing the photon channel to
provide an excellent determination of the Standard ModsbmgEr + jets background.

4. Color Automation

Scattering processes at hadron colliders are dominatdulsirong interactions. The previously-
discussed processes of vector-boson production in atisocigith jets are typical examples. For
events with kinematics in the perturbative regime, crosti@es and distributions can be predicted
from first principles, allowing detailed comparisons betwéheory and experiment. To this end we
focus on the precise perturbative description of the itevas of colored partons within quantum-
field theory.

The Lagrangian interaction terms of colored fields makeupleative computations very chal-
lenging. A successful computational strategy disentantijie various dynamical degrees of free-
dom, such as kinematics, spin and color quantum numbergjeteat algorithms can then be de-
vised to deal efficiently with the components of the compaiat This approach is realized in
many matrix-element generators and has been particulseffulfor recent multi-jet computations
at NLO. Alternatively, one can treat color simultaneousiytvihe kinematic variableg [B4]. This
method, implemented as a Berends-Giele recurgidn [35inigas to methods used in other auto-
mated LO computation$ [B6,]3[7,]38] 39].

In BLACKHAT we separate color and kinematic degrees of freedom eariyverthen compute
color-ordered tree- and loop-level objects, so-calledhjiive amplitudes. These amplitudes are
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assembled into the full matrix elements only at the end ofcitiputation. The required color
weights and interference matrix are precomputed. We usemah-shell and unitarity techniques
in order to compute the color-ordered building blocks: taeeplitudes and, subsequently, loop
amplitudes.

Focusing on these particular color-ordered objects hasrakebenefits. First of all, these
components have a simpler analytic structure than the faplidéude; for example, they depend
on a reduced set of kinematic invariants. This property iesghat a smaller number of unitarity
cuts needs to be computed in an on-shell approach. The simmpddytic structure also leads to
improved numerical stability of the amplitudes.

The second main benefit of the color-ordered approach isttban be exploited to yield sig-
nificant efficiency gains in the numerical phase-space iat&m [I]. If we consider the number
of quark flavorsn; to be of the same order as the number of coNysand take the limit as both
become large, then the color-summed (virtual) cross sectim be expanded in powers ofNZ.
The 1/N2-suppressed terms are numerically quite small. Thus, foreal fintegration error, fewer
evaluations are needed for these parts of the cross settianis, for most phase-space points only
a small subset of all color-ordered amplitudes must be céeapunamely those that contribute to
the leading-color term in the cross section.

In this talk we discuss a method to automate the color-ocdapproach in loop computations.
The key question is: how we can express generic matrix elemasninear combinations of color-
ordered objects. We also discuss the quantitative impastilnieading-color terms on differential
cross sections. In particular, we consider the distrilbbutbthe fourth jetpr in the state-of-the-art
NLO results folW + 4-jet production [I3[]1[]2].

4.1 Partial amplitudes from primitive amplitudes.

The standard “trace-based” color decomposition of a onp-lRCD amplitude is into a set
of color structures involving traces or open stringNefx N. SU(N.) generator matrice$%, one
for each external gluon. The open strings terminate on fongaeal indices corresponding to the
external quarks and antiquarks in the process. The coeifscad these color structures are called
partial amplitudes. The partial amplitudes are in turnttitoim color-ordered primitive amplitudes,
but the precise relations can be laborious to determineaiyémeral case. The aim of this section
is to describe an algorithnf][2] for determining these relzdi

For many specific processes, the decomposition of the aperwtrix elements and the color-
summed virtual cross sections in terms of primitive ampksiis well known. The explicit color
decompositions of alirmatrix elements of purely gluonic processes can be founef 40 [4]1]
and the ones with a single of quark line in rdf.][42]. Furthere; the decomposition of the four-
quark amplitude was given in ref§. [43] {7], 18] and that ofte-quark process with an additional
gluon in [44,[4b]. The decomposition of QCD scattering atoglés with six and seven partons,
including either four or six quarks, have been given onlergly, using the algorithm reviewed
here [3].

The algorithm is based on analyzing Feynman diagrams airditherent color information.
We consider a specific subprocess in QCD. We generate theefutif Feynman diagrams of the
colored loop amplitude. Next, we associate a linear contioinaf Feynman diagrams to partial
amplitudes. To this end, we dress Feynman diagrams withr amddrices and sum over repeated
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(internal) color indices. Partial amplitudes are definedaficients of particular products of color
matrices. Feynman diagrams are associated with a giveialpariplitude if they contribute to its
defining color structure. Simple factors (powersNyf signs and integers) are generated by the
color-index summation, and these factors enter the reldie@ween each Feynman diagram and
each partial amplitude to which it contributes.

In a second step, we associate a linear combination of Faykimgrams with primitive am-
plitudes. To do this, we again dress Feynman diagrams witr omatrices; however, this time we
associate adjoint representation color charges to quarket as gluons. Again we sum over the
internal color indices. We define the primitive amplitudestze leading-color single-trace partial
amplitudes[[40] for a given cyclic ordering of the externkians and (adjoint) quarks. A primitive
amplitude is thus associated with the Feynman diagramstmtibute to a particular single-trace
color structure. For further details, and refinements wheadidg with quark lines, we refer the
reader to the original literaturg [40,]41) 4R, 2].

Once we have the explicit expressions of both the partiallitudps and the primitive ampli-
tudes in terms of linear combinations of Feynman diagranescan manipulate these two sets of
equations. We express the partial amplitudes in terms optimeitive amplitudes by solving the
linear set of equations to eliminate the explicit dependemt the individual Feynman diagrams.
In this step, we observe a redundancy of the linear equatienkave to solve. This redundancy
implies that certain linear combinations of primitive aitydes add up to zero. That is, we find
non-trivial relations between primitive amplitudes. Thuge may find a set of equivalent color
decompositions of a given partial amplitude.

We point out some key features of the implementation of thevalalgorithm. Because it is
based on Feynman diagrams, the algorithm is limited in partaltiplicity due to the rapid growth
in the number of diagrams. (However, the algorithm only ldset performed once and for all for a
given process, not each time an amplitude is evaluated.) nfetfat there is no serious obstruction
to carrying out the decomposition for processes with up ghteéxternal partons. Processes with
zero or two external quarks are computationally the modieniging; however, explicit formulas
are known for these cases. In addition, it turns out that nthagrams (e.g. diagrams involving
four-gluon interactions) may be dropped from the startificantly reducing the computational
load. For an efficient implementation, we find it conveniemtuse QGRAF[[46] for diagram
generation and the computer algebra package FQRM [47] fonsng over internal color indices.

We conclude this section with a brief discussion of the refest between primitive ampli-
tudes, which appear as a byproduct of the above algorithmovAmultiplicity, one can identify
the anti-symmetry of the color-ordered gluon-quark-quaekex as the origin of the relations be-
tween primitive amplitudes. Explicit examples of this may found in ref. [R]. The relations
obtained between primitive amplitudes can be used to opéiroaching, and thus, how long the
subleading-color contributions take to evaluate numbyicdinally, it seems likely that under-
standing the relations between primitive amplitudes wéllphto establish alit formulae for the
color decompositions. We have not explored this directiother.

4.2 Quantitative impact of subleading-color terms.

We now discuss the quantitative impact of subleading-ctdans on NLO predictions. We
focus on the distribution in the fourth j@t in W + 4-jet production at the LHC, since it is a key
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Figure4: A comparison of the full and leading-color virtual contritmns to thepr distribution of the fourth
jetin W~ +4-jet production at the 7 TeV LHC.

observable. Predictions of jet -distributions have already been given in rgf. [1]. In thatrkva
leading-color approximation was used for the virtual pahe remaining real, Born and subtraction
terms were computed to all orders in the color expansion.e ke show results including the
remaining subleading-color correctioff$ [2]. The systérsawe observe match our earlier results
on subleading-color contributions ¥é + 3-jet production[[j3].

We use the same basic setup of matrix-element generatonsteMzarlo integration, scale
choices and cuts as discussed in sedtjon 2. There is no udginition of the leading-color terms;
definitions may differ by reassigning subleading-colontgr A detailed discussion of the leading-
color approximation we use here is provided in rff. [2].

In figure[4 we compare the full-color versus leading-colatudl contributions to ther dis-
tribution of the fourth jet il ~+4-jet production. Also displayed are the subleading4cotmtri-
butions by themselves, labeled as ‘full-minus-leadintptoln order to obtain the full parton level
differential cross section one must add the real and Boriribotions in the usual way. The size
of these contributions have been given recerilyf TiL, 13]iéhding-color virtual part accounts for
about 20% of the cross section.

Figure[4# confirms that the subleading-color contributioslppressed uniformly by almost a
factor of 10 over the displayed range f. The suppression appears consistent with the expected
factor of /N2 with N = 3. With the leading-color virtual part accounting for ab@0®6 of the
total cross section, the subleading-color virtual part am® to less than a 3% correction to the
total.

A possible exception to the uniform suppression would be aezero of the leading-color
virtual cross section. Such zeros are not excluded on gegeyands, but they would have to
survive the sum over a large number of different helicity fapurations. A priori, there is no
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reason to assume that the vanishing of the leading-coldribation forces also the vanishing of the
subleading-color contribution. Close to a putative zerthefleading-color contribution we would

expect a relative enhancement of the subleading-coloepiethe virtual matrix elements. Even if

a zero were to appear in a special kinematic configuratiastileading-color virtual terms are
expected to keep their relative size with respect to the rimoiasive total cross section and typical
differential cross sections. Certainly figyie 4 does notshay evidence for suppression of the
leading-color cross section.

Although the leading-color results could point to kinernatnfigurations where subleading-
color contributions might dominate the virtual matrix eksmts, only their explicit knowledge al-
lows to determine their impact on the full cross section. iBiry, the size and uniformity of the
subleading-color terms justifies the use of leading-copmreximations for many multi-jet observ-
ables. Nevertheless, explicit computations are of grepbitance for a definitive understanding of
such multi-jet observables.
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