Accessing the distribution of linearly polarized gluons in unpolarized hadrons

Daniël Boer*, Stanley J. Brodsky[†], Piet J. Mulders^{**} and Cristian Pisano^{1‡}

*Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

[†]SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA, CP³-Origins, Southern Denmark University, Odense, Denmark

** Department of Physics and Astronomy, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam,

The Netherlands

[‡]Dipartimento di Fisica, Università di Cagliari, and INFN, Sezione di Cagliari, I-09042 Monserrato (CA), Italy

Abstract. Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through $\cos 2\phi$ asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future Electron-Ion Collider (EIC) or Large Hadron electron Collider (LHeC) experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

PACS: 12.38.-t; 13.85.Ni; 13.88.+e

INTRODUCTION

Linearly polarized gluons in an unpolarized hadron, carrying a light-cone momentum fraction x and transverse momentum p_T w.r.t. to the parent's momentum, are described by the transverse momentum dependent distribution (TMD) $h_1^{\perp g}(x, p_T^2)$ [1, 2, 3]. Unlike the quark TMD $h_1^{\perp q}$ of transversely polarized quarks inside an unpolarized hadron (also frequently referred to as Boer-Mulders function) [4], $h_1^{\perp g}$ is chiral-even and *T*-even. This means it does not require initial or final state interactions (ISI/FSI) to be nonzero. Nevertheless, as any TMD, $h_1^{\perp g}$ can receive contributions from ISI or FSI and therefore can be process dependent, in other words, non-universal, and its extraction can be hampered in nonfactorizing cases.

Thus far no experimental studies of $h_1^{\perp g}$ have been performed. As recently pointed out, it is possible to obtain an extraction of $h_1^{\perp g}$ in a simple and theoretically safe manner, since unlike $h_1^{\perp q}$ it does not need to appear in pairs [3]. Here we will discuss observables that involve only a single $h_1^{\perp g}$ in semi-inclusive DIS to two heavy quarks or to two jets, which allow for TMD factorization and hence a safe extraction. The corresponding

¹ Speaker. Talk given at the XIX Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011), April 11-15, Newport News, VA, USA.

hadroproduction processes run into the problem of factorization breaking [3, 5].

AZIMUTHAL ASYMMETRIES

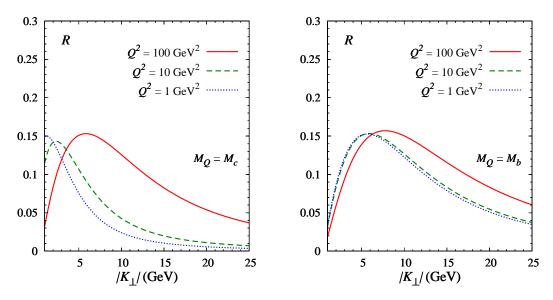
We first consider heavy quark (HQ) production, $e(\ell)+h(P) \rightarrow e(\ell')+Q(K_1)+Q(K_2)+X$, where the four-momenta of the particles are given within brackets, and the heavy quarkantiquark pair in the final state is almost back-to-back in the plane perpendicular to the direction of the exchanged photon and hadron. We look at the heavy quarks created in the photon-gluon fusion process, which can be distinguished kinematically from intrinsic charm production; e.g., from the $Q\bar{Q}$ invariant mass distribution. The calculation proceeds along the lines explained in Refs. [2, 6]. We obtain for the cross section integrated over the angular distribution of the back-scattered electron $e(\ell')$:

$$\frac{d\boldsymbol{\sigma}}{dy_1 dy_2 dy dx_B d^2 \boldsymbol{q}_T d^2 \boldsymbol{K}_\perp} = \frac{\alpha^2 \alpha_s}{\pi s M_\perp^2} \frac{(1+yx_B)}{y^5 x_B} \left(A + B \boldsymbol{q}_T^2 \cos 2\phi \right) \delta(1-z_1-z_2).$$
(1)

This expression involves the standard DIS variables: $Q^2 = -q^2$, where q is the momentum of the virtual photon, $x_B = Q^2/2P \cdot q$, $y = P \cdot q/P \cdot \ell$ and $s = (\ell + P)^2 = 2\ell \cdot P = 2P \cdot q/y = Q^2/x_B y$. Furthermore, we have for the HQ transverse momenta $K_{i\perp}^2 = -\mathbf{K}_{i\perp}^2$ and introduced the rapidities y_i for the HQ momenta (along photon-target direction). We denote the proton mass with M and the heavy (anti)quark mass with M_Q . For the partonic subprocess we have $p + q = K_1 + K_2$, implying $z_1 + z_2 = 1$, where $z_i = P \cdot K_i/P \cdot q$. We introduced the sum and difference of the HQ transverse momenta, $K_{\perp} = (K_{1\perp} - K_{2\perp})/2$ and $q_T = K_{1\perp} + K_{2\perp}$, considering $|q_T| \ll |K_{\perp}|$. In that situation, we can use the approximate HQ transverse momenta $K_{1\perp} \approx K_{\perp}$ and $K_{2\perp} \approx -K_{\perp}$ denoting $M_{i\perp}^2 \approx M_{\perp}^2 = M_Q^2 + \mathbf{K}_{\perp}^2$. The azimuthal angles of \mathbf{q}_T and \mathbf{K}_{\perp} are denoted by ϕ_T and ϕ_{\perp} respectively, and $\phi \equiv \phi_T - \phi_{\perp}$. The functions A and B depend on $y, z (\equiv z_2), Q^2/M_{\perp}^2, M_Q^2/M_{\perp}^2$, and \mathbf{q}_T^2 .

The angular independent part A is non negative and involves only the unpolarized TMD gluon distribution f_1^g , $A \equiv e_Q^2 f_1^g(x, \boldsymbol{q}_T^2) \mathscr{A}^{eg \to eQ\bar{Q}} \ge 0$. We focus on the magnitude B of the $\cos 2\phi$ asymmetry, which is determined by $h_1^{\perp g}$. Namely,

$$B = \frac{1}{M^2} e_Q^2 h_1^{\perp g}(x, \boldsymbol{q}_T^2) \mathscr{B}^{eg \to eQ\bar{Q}}, \qquad (2)$$


with

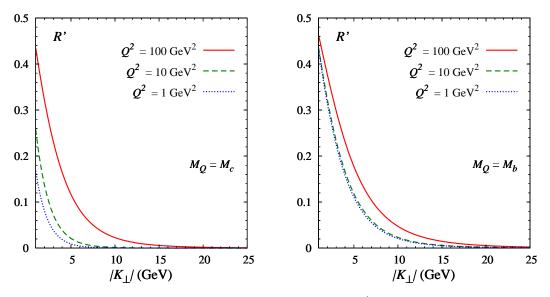
$$\mathscr{B}^{eg \to eQ\bar{Q}} = \frac{1}{2} \frac{z(1-z)}{D^3} \left(1 - \frac{M_Q^2}{M_\perp^2} \right) a(y) \left\{ \left[2z(1-z)b(y) - 1 \right] \frac{Q^2}{M_\perp^2} + 2\frac{M_Q^2}{M_\perp^2} \right\} , \quad (3)$$

 $D \equiv D\left(z, Q^2/M_{\perp}^2\right) = 1 + z(1-z)Q^2/M_{\perp}^2, a(y) = 2 - y(2-y), b(y) = [6 - y(6-y)]/a(y).$ Since $h_1^{\perp g}$ is completely unknown, we estimate the maximum asymmetry that is

Since h_1° is completely unknown, we estimate the maximum asymmetry that is allowed by the bound

$$|h_1^{\perp g(1)}(x)| \le f_1^g(x), \tag{4}$$

FIGURE 1. Upper bound of $|\langle \cos 2(\phi_T - \phi_{\perp}) \rangle|$ defined in Eq. (5) as a function of $|\mathbf{K}_{\perp}|$ at different values of Q^2 , with y = 0.01 and z = 0.5.


where the superscript (1) denotes the n = 1 transverse moment (defined as $f^{(n)}(x) \equiv \int d^2 \mathbf{p}_T \left(\mathbf{p}_T^2/2M^2\right)^n f(x, \mathbf{p}_T^2)$). The function *R*, defined as the upper bound of the absolute value of $\langle \cos 2(\phi_T - \phi_\perp) \rangle$,

$$|\langle \cos 2(\phi_T - \phi_\perp) \rangle| \equiv \left| \frac{\int d^2 \boldsymbol{q}_T \cos 2(\phi_T - \phi_\perp) d\boldsymbol{\sigma}}{\int d^2 \boldsymbol{q}_T d\boldsymbol{\sigma}} \right| = \frac{\int d\boldsymbol{q}_T^2 \boldsymbol{q}_T^2 |\boldsymbol{B}|}{2 \int d\boldsymbol{q}_T^2 A} \le \frac{|\mathscr{B}^{eg \to eQ\bar{Q}}|}{\mathscr{A}^{eg \to eQ\bar{Q}}} \equiv R,$$
(5)

is depicted in Fig. 1 as a function of $|\mathbf{K}_{\perp}|$ (> 1 GeV) at different values of Q^2 for charm (left panel) and bottom (right panel) production. We have selected y = 0.01, z = 0.5, and taken $M_c^2 = 2 \text{ GeV}^2$, $M_b^2 = 25 \text{ GeV}^2$. Such large asymmetries would probably allow an extraction of $h_1^{\perp g}$ at EIC (or LHeC).

If one keeps the lepton plane angle ϕ_{ℓ} , there are other azimuthal dependences, such as a $\cos 2(\phi_{\ell} - \phi_T)$. The bound on $|\langle \cos 2(\phi_{\ell} - \phi_T) \rangle|$, denoted as R', is shown in Fig. 2 in the same kinematic region as in Fig. 1. One can see that R' can be larger than R, but only at smaller $|\mathbf{K}_{\perp}|$. R' falls off more rapidly at larger values of $|\mathbf{K}_{\perp}|$ than R. We note that it is essential that the individual transverse momenta $K_{i\perp}$ are reconstructed with an accuracy δK_{\perp} better than the magnitude of the sum of the transverse momenta $K_{1\perp} + K_{2\perp} = q_T$. This means one has to satisfy $\delta K_{\perp} \ll |q_T| \ll |K_{\perp}|$, which will require a minimum $|K_{\perp}|$.

The cross section for the process $eh \to e'$ jet jet X can be calculated in a similar way and is analogous to Eq. (1). In particular, the explicit expression for B can be obtained from the one for HQ production taking $M_Q = 0$, while A now depends also on x_B and receives a contribution from the subprocess $\gamma^* q \to gq$ as well, not just from $\gamma^* g \to q\bar{q}$. Therefore, the maximal asymmetries (not shown) are smaller than for HQ pair production.

FIGURE 2. Same as in Fig. 1, but for the upper bound R' of $|\langle \cos 2(\phi_{\ell} - \phi_T) \rangle|$.

CONCLUSIONS

Studies of the azimuthal asymmetry of jet or heavy quark pair production in ep collisions can directly probe $h_1^{\perp g}$, the distribution of linearly polarized gluons inside unpolarized hadrons. Breaking of TMD factorization is expected in pp or $p\bar{p}$ collisions, hence a comparison between extractions from these two types of processes would clearly signal the dependence on ISI/FSI. The contribution of $h_1^{\perp g}$ to diphoton production has also been studied [7]. Since the proposed measurements are relatively simple (polarized beams are not required), we believe that the experimental determination of $h_1^{\perp g}$ and the analysis of its potential process dependence will be feasible in the future.

ACKNOWLEDGMENTS

C.P. is supported by Regione Autonoma della Sardegna (RAS) through a research grant under the PO Sardegna FSE 2007-2013, L.R. 7/2007. This research is part of the FP7 EU-programme Hadron Physics (No. 227431). SLAC-PUB-14494.

REFERENCES

- 1. P.J. Mulders and J. Rodrigues, Phys. Rev. D 63, 094021 (2001).
- 2. D. Boer, P.J. Mulders and C. Pisano, Phys. Rev. D 80, 094017 (2009).
- 3. D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, Phys. Rev. Lett. 106, 132001 (2011).
- 4. D. Boer and P.J. Mulders, Phys. Rev. D 57, 5780 (1998).
- 5. T.C. Rogers and P.J. Mulders, Phys. Rev. D 81, 094006 (2010).
- 6. D. Boer, P.J. Mulders and C. Pisano, Phys. Lett. B 660, 360 (2008).
- 7. J. Qiu, M. Schlegel and W. Vogelsang, arXiv:1103.3861 [hep-ph].