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A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β 6= 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC/BLM scale for QCD processes. We show that a single global PMC scale,
valid at leading order, can be derived from basic properties of the perturbative QCD cross section.
The elimination of the renormalization scheme ambiguity using the PMC will not only increase the
precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics
beyond the Standard Model.

PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].

The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,
when the renormalization scale µ is set properly, all non-conformal β 6= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn

s βnn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]

It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-
Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)
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sums all vacuum polarization contributions to the dressed photon propagator, both proper and improper. (Here
Π(t) = Π(t, 0) is the sum of proper vacuum polarization insertions, subtracted at t = 0). Formally, one can choose
any initial renormalization scale µ2

0 = t0, since the final result when summed to all orders will be independent
of t0. This is the invariance principle used to derive renormalization group results such as the Callan-Symanzik
equations [4, 5]. However, the formal invariance of physical results under changes in t0 does not imply that there is no
optimal scale. In fact, as seen in QED, the scale choice µ2 = q2, the photon virtuality, immediately sums all vacuum
polarization contributions to all orders exactly. With any other choice of scale, one will recover the same result, but
only after summing an infinite number of vacuum polarization corrections.

Thus, although the initial choice of renormalization scale t0 is arbitrary, the final scale t which sums the vacuum
polarization corrections is unique and unambiguous. The resulting perturbative series is identical to the conformal
series with zero β-function. In the case of muonic atoms, the modified muon-nucleus Coulomb potential is precisely
−Zα(−~q 2)/~q 2; i.e., µ2 = −~q2. Again, the renormalization scale is unique.

One can employ other renormalization schemes in QED, such as the MS scheme, but the physical result will be
the same once one allows for the relative displacement of the scales of each scheme. For example, one can compute
the standard one-loop charged lepton pair vacuum polarization contribution to the photon propagator at photon
virtuality q2 using dimensional regularization. The result in MS scheme for spacelike argument q2 = −Q2 is

log
µ2

MS

m2
`

= 6
∫ 1

0

x(1− x) log
m2

` + Q2x(1− x)
m2

`

. (3)

At large Q2 this is

log
µ2

MS

m2
`

= log
Q2

0

m2
`

− 5/3; (4)

i.e., µ2
MS

= Q2e−5/3. Thus if Q2 >> 4m2
` , we can identify

αMS(e−5/3q2) = αGM−L(q2). (5)

The e−5/3 displacement of renormalization scales between the MS and Gell-Mann–Low schemes is a result of the
convention [6] which was chosen to define the minimal dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the transitivity property of the renormalization group [3, 7–9].

The same principle underlying renormalization scale-setting in QED must also hold in QCD since the nF terms
in the QCD β function have the same role as the lepton N` vacuum polarization contributions in QED. QCD and
QED share the same Yang-Mills Lagrangian. In fact, one can show [10] that QCD analytically continues as a
function of NC to Abelian theory when NC → 0 at fixed α = CF αs with CF = N2

C−1
2NC

. For example, at lowest
order βQCD

0 = 11
3 NC − 2

3nF → − 2
3nF at NC = 0. Thus the same scale-setting procedure must be applicable to all

renormalizable gauge theories.
Thus there is a close correspondence between the QCD renormalization scale and that of the analogous QED process.

For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.

The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving
the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.

The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the
process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)2.
In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2

0 to identify
all of the β-dependent nonconformal contributions. At lowest order β0 = 11/3NC − 2/3nF . Thus at NLO one can
simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0. Of course in QCD, the nF terms arise from the renormalization if the three-gluon
and four-gluon vertices as well as from gluon wavefunction renormalization.

It is often stated that the argument of the coupling in a renormalization scheme based on dimensional regularization
has no physical meaning since the scale µ was originally introduced as a mass parameter in extended space-time



3

dimensions. However, the QED example above shows that the MS scale is unambiguously related to invariants in
physical 3+1 space. The connection of αMS to the Gell-Mann–Low scheme can be established at all orders. This also
provides the analytic extension [11] of the αMS scheme for finite fermion masses as well to timelike arguments where
the coupling is complex.

The PMC/BLM scale which appears in the three-gluon vertex is a function of the virtuality of the three external
gluons q2

1 , q2
2 , and q2

3 . It has been computed in detail in refs. [12]. The results are surprising when the virtualities
are very different as in the subprocess gg → g → QQ̄.

µ̂2 ∝ q2
minq2

med

q2
max

(6)

where |q2
min| < |q2

med| < |q2
max|; i.e. q2

max has the maximal virtuality [13]. The same scale also correctly sets the
effective number of quarks nf which appear in the β function controlling the three-gluon vertex renormalization.
This example shows that it is critical to properly fix the renormalization scale; a prediction based on guessing that
µ2 ' q2

max will give misleading results.
It is sometimes argued that it is advantageous not to fix the renormalization scale at all, since its variation provides

a measure of higher order contributions to the theory predictions. In fact, one obtains sensitivity only to the β-
dependent non-conformal terms by this procedure. In some cases the conformal contributions may be unexpectedly
large. For example, the very large electron-loop light-by-light scattering contribution [14] ' 18(α3/π)3 to the muon
anomalous magnetic moment is unassociated with renormalization or the β function. Of course, one can still compute
the variation of the prediction around the PMC scale as an indicator of higher order non-conformal terms.

Stevenson has proposed that one should set the renormalization scale at a point where the predicted cross section
has minimal variation with respect to µ – the “principle of minimal sensitivity” (PMS) [15]. However, unlike the
PMC, the application of the PMS to jet production gives unphysical results [16] since it sums physics into the running
coupling not associated with renormalization. Worse, the PMS prediction depends on the choice of renormalization
scheme, and it violates the transitivity property of the renormalization group [17]. Such heuristic scale-setting methods
also give incorrect results when applied to Abelian QED.

It should be emphasized that the factorization scale which enters predictions for QCD inclusive reactions is intro-
duced to match nonperturbative and perturbative aspects of the parton distributions in hadrons; it is present even in
conformal theory, and thus its determination is a completely separate issue from renormalization scale setting.

II. IDENTIFYING THE RENORMALIZATION SCALE USING THE PRINCIPLE OF MAXIMUM
CONFORMALITY

Given the analytic form of the hard process amplitude or cross section as a series in αs(µ2
0) evaluated at an initial

scale µ2
0, one can identify the PMC scale in a systematic way:

1. The variation of the cross section with respect to log µ2
0 can be used to distinguish the conformal terms versus

the nonconformal terms proportional to the β function.

2. The identified nonconformal terms have the form β × log pij/µ2
0 where pij = pi · pj are the scalar product

invariants i 6= j which enter the hard subprocess. In practice, these terms can be identified as coefficients of nf ,
the number of flavors appearing in the β function; i.e., the flavor dependence arising from quark loops associated
with coupling constant renormalization. The nF terms in QCD arise from the renormalization if the three-gluon
and four-gluon vertices as well as from gluon wavefunction renormalization.

3. The scale is then shifted µ2
0 → µ̂2 in order to absorb the non-conformal terms. Thus when the scale is correctly

set, the coefficients of αs(µ2) become independent of the β function and log µ̂2.

4. The series is then identical to that of the conformal theory where β = 0 as given by the Banks-Zaks method [18].

Other examples of this procedure will be given in the next sections.

A. The Global PMC Scale

Ideally, as in the BLM method, one should allow for separate scales for each skeleton graph; e.g., for electron-electron
scattering, one takes α(t) and α(u) for the t-channel and u-channel amplitudes, respectively.
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Setting separate renormalization scales can be a challenging task for complicated processes in QCD where there are
many final-state particles and thus many possible Lorentz scalars p2

ij = pi · pj . However, one can obtain a useful first
approximation to the full PMC/BLM scale-setting procedure by using a single global scale µ̂2 which appropriately
weights the individual BLM scales.

The global scale can be determined by varying the subprocess amplitude with respect to each invariant, thus
determining the coefficients fij of log p2

ij/µ2
0 in the nonconformal terms in the amplitude. The global PMC scale is

then

µ̂2 = C ×Πij [p2
ij ]

wij , (7)

i.e.,

log µ̂2 =
∑

i 6=j

wij log p2
ij + log C (8)

where the weight for each invariant is

wij =
fij∑
i 6=j fij

. (9)

and
∑

i 6=j wij = 1. The constant C is the scheme displacement; e.g., C = e−5/3 for MS for µ̂2 >> 4m2
f .

As a specific example of the application of a PMC global scale, consider the electron-electron scattering amplitude
in QED. (For simplicity, we will just take the contribution of the convection current to the amplitude, as in scalar
QED.) The Lorentz invariant Born amplitude is then

M0(t, u) = 4πα0

(s− u

t
+

s− t

u

)
. (10)

The running QED coupling α(q2) in QED sums all proper and improper vacuum polarization graphs

M(t, u) = 4πα(t)
(s− u

t

)
+ 4πα(u)

(s− t

u

)
(11)

where to leading order

α(t) = α(t0)
(
1 + n`

α(t0)
3π

log
−t

t0

)
. (12)

Aside from power-suppressed contributions involving the lepton masses, the resulting series is identical to the corre-
sponding conformal theory with β = 0.

In this process we have contributions from both the t - and u- channel amplitudes which require separate renor-
malization scales for each skeleton graph. However, at leading order we can weight the amplitudes to obtain a single
PMC/BLM scale which still sums the nonconformal β terms into the running coupling α(µ2) at leading order. For
example, using the standard Gell-Mann–Low scheme, we can write

M(t, u) = f(t)α(t) + g(u)α(u) = (f(t) + g(u))α(µ̂2) (13)

where f(t) = 4π(s− u)/t and g(u) = 4π(s− t)/u are the Born amplitudes for the t - and u -channels, respectively.
The logarithm of the global scale is then

log µ̂2 =
f(t)

f(t) + g(u)
log (−t) +

g(u)
f(t) + g(u)

log (−u) (14)

which duplicates the multi-scale result at NLO. Using kinematical constraints such as the total momentum conservation
s + t + u = 0 the weighted scale dependence can be confined into the log(t/u) term inside the running coupling. The
global scale µ̂2 is maximal at θCM = π/2 (µ2 =

√
tu = −t = −u) and vanishes at the boundaries (0, π) where

tan2(θCM/2) = t/u. The results are shown in Fig. 1.
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FIG. 1: The PMC/BLM scale as function of the CM angle θCM :e e → e e scalar QED

III. A PMC EXAMPLE FOR QCD: APPLICATION TO JET CROSS SECTIONS IN
ELECTRON-POSITRON ANNIHILATION

As an example of the application of the PMC to QCD, we will show how the renormalization scale can be determined
for the cross sections for e+e− annihilation into two, three and four jets in MS scheme.

The two-jet cross section has only infrared divergences:

σ(2) = σ0

(4πµ2

q2

)λ/2(1− λ/2
)Γ(1− λ/2)

Γ(2− λ)
(15)

where σ0 = 4π α2

3q2 NC

∑Nf

i=1 e2
i .

Here λ ≡ 4 − n is the number of extra space-time dimensions used to regulate infrared and ultraviolet divergent
integrals. Eventually all of the infrared divergences and the factors involving λ will cancel out. In dimensional
regularization the scale µ is introduced as a mass scale to restore the correct dimension of the coupling. The gauge
coupling gR is related to the renormalized coupling constant αR by

g2
R

(4π)(4−λ)/2
=

αs(µ2)
4π

(µ2)λ/2eγEλ/2 (16)

and here γE is the Euler constant.
As discussed in the introduction, the mass scale of schemes defined by dimensional regularization attains its physical

meaning when it is applied to QED. The renormalized gauge coupling is also related to the bare coupling by:

gR =
√

Z3Z2/Z1g0, (17)

where Z1 is the renormalization constant for the quark-antiquark-gluon vertex, Z2 for the quark field and Z3 for the
gluon field. The renormalization constants are:

Z1 = 1− g2
0

16π2
(Nc + CF )

(
2

λUV
− 2

λIR

)
(18)

Z2 = 1− g2
0

16π2
CF

(
2

λUV
− 2

λIR

)
(19)

Z3 = 1 +
g2
0

16π2
(
5
3
Nc − 2

3
Nf )

(
2

λUV
− 2

λIR

)
(20)

(21)
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where λUV , λIR are related respectively to the UV−ultraviolet and IR−infrared poles. In the MS only the pole
associated with UV renormalization is subtracted out, and this leads us to a redefinition of the gauge coupling:

1
gR

δg0 =
g2

R

16π2
(
2
3
Nf − 11

3
Nc)

1
λUV

(22)

A suitable renormalization scheme is the MS which differs from MS by a constant term and the respective counterterm
can be inserted in the Born cross section by shifting the coupling constant:

α0
s = αMS

s

{
1−

(
11
6

Nc − 2
3
TR

)
αMS

s

2π

(
1
ε

+ (ln 4π − γE)
)}

= αMS
s

{
1− β0α

MS
s

(
1
ε

)}
(23)

where:
1
ε

=
1
ε

+ (ln 4π − γE), (24)

β0 =
1
2π

(
11
6

Nc − 2
3
TR

)
(25)

with TR = Nf/2 , ε = λUV /2.

The Born cross section for e+e− → q(p1)q̄(p2)g(p3) for massless quarks and gluons is

dσ(3)(µ2)
dx1dx2

∣∣∣∣
Born

= σ(2)
(4πµ2

q2

)λ/2 1
Γ(1− λ/2)

Fλ(x1, x2)
αMS

s (µ2)
2π

CF BV−λ/2S(x1, x2) (26)

Here

Fλ(x1, x2) = [(x1 + x2 − 1)(1− x1)(1− x2)]−λ/2 (27)

and

BV−λ/2S(x1, x2) = BV (x1, x2)− λ

2
BS(x1, x2) (28)

BV (x1, x2) =
x2

1 + x2
2

(1− x1)(1− x2)
(29)

BS(x1, x2) =
x2

3

(1− x1)(1− x2)
(30)

where xi = 2Ei√
q2

in the e+e− CM. In terms of invariants: yij = sij/q2 = (pi + pj)2/q2. Then x1 = 1 − y23, x2 =

1− y13, x3 = 1− y12, x1 + x2 + x3 = 2.
The renormalized one-loop corrected cross section for e+e− → q(p1)q̄(p2)g(p3) is given by Eq. (2.11) of Fabricius

et al. [21] For our purposes it is sufficient to quote only the term proportional to β0 in the MS−scheme:

dσ(3)

dx1dx2

∣∣∣∣
oneloop

=
dσ(3)(µ2)
dx1dx2

∣∣∣∣
Born

[
1 + αs(µ2)

Γ(1− λ/2)
Γ(1− λ)

(4πµ2

q2

)λ/2
β0

(
log

µ2

q2

)
+ · · ·

]
(31)

where the coupling is defined as in Eq. 23: αMS(elog 4π−γE µ2) ≡ αMS(µ2). The remaining contributions are indepen-
dent of NF and β0

We can eliminate the non-conformal log-term proportional to β0 by shifting the renormalization scale αMS(µ2) in
the Born cross section Eq. 26

αs(µ2) ' αs(q2)
(

1− αs(q2)β0 log[
µ2

q2
]
)

;

however, it is first convenient to shift the scale to µ2 → (µ2
0). Then

dσ(3)

dx1dx2

∣∣∣∣
oneloop

=
dσ(3)(µ2

0)
dx1dx2

∣∣∣∣
Born

[
1 + αs(µ2

0)
Γ(1− λ/2)
Γ(1− λ)

(4πµ2
0

q2

)λ/2
β0

(
log

µ2
0

q2

)
+ · · ·

]
(32)

Naively one could simply fix the scale to
√

q2, but the 3-jet cross section will still be affected by IR divergences; in
order to apply the PMC/BLM prescription we will first need to include the 4-jet contributions.
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IV. NUMERICAL SCALE FIXING

The complete differential 3-jet cross section has been calculated by Fabricius et al. [21], and we quote here the
results for the β0−dependent terms:

d2σ(3)(ε, δ)
dx1dx2

= σ0
αs(q2)

2π
CF × (33)

{
BV (x1, x2)

[
1− αs(q2) β0

(
log(

1− cos δ

2
) + log x̂2

3 −
13
3

)]
−BS(x1, x2)αs(q2)

β0

2

}
+O(δ2)) + · · · (34)

where x̂3 = (2− x1 − x2) and

dσ(3)(ε, δ) = dσ(3) + dσ(4)(ε, δ) (35)

is the sum of the 3- and the 4-jets contributions. The cancellation of the IR-poles is guaranteed by the KLN
theorem [19, 20].

The variables (ε, δ) are small quantities introduced in the virtual amplitude in order to define the soft and collinear
4-jet→3-jet limit (for more details, see Ref. [21]).

In order to extract the PMC/BLM scale we first work in the MS-scheme, fixing an arbitrary renormalization scale:
µ2 = µ2

0. It turns out that β0 term of the 3-jet differential IR safe cross section has the form:

d2σ(3)(ε, δ)
dx1dx2

= σ0
αs(µ2

0)
2π

CF × (36)
{

BV (x1, x2)
[
1− αs(µ2

0)β0

(
log(

1− cos δ

2
) + 2 log (2− x1 − x2)− 13

3
+ log

q2

µ2
0

)]
+

−BS(x1, x2)αs(µ2
0)

β0

2

}
+O(δ2)) + · · · .

In principle we can extract information on the terms in this formula performing a detailed analysis of the dependence
of the β0−coefficient on the invariants. Performing a blindfold study we can single out the β0−coefficient by means
of the β0−derivative of the whole cross section:

d

dβ0

d2σ(3)(ε, δ)
dx1dx2

= σ0
αs(µ2

0)
2π

CF × (37)
[
BV (x1, x2)

[
−αs(µ2

0)
(

log(
1− cos δ

2
) + 2 log (2− x1 − x2))− 13

3
+ log

q2

µ2
0

)]
+

−BS(x1, x2)αs(µ2
0)

1
2

]
+O(δ2)) + · · · .

or either by the nf−derivative since:

df

dβ0
=

df

dnf
× dβ0

dnf

−1

(38)

Then we can factorize out the Born amplitude Eq.26:

dσ(3)(µ2
0)

dx1dx2

∣∣∣∣
−1

Born

· d

dβ0

d2σ(3)(ε, δ; µ2
0)

dx1dx2
=

[
−αs(µ2

0)
(

log(
1− cos δ

2
) + 2 log (2− x1 − x2)− 13

3
+ log

q2

µ2
0

+
BS(x1, x2)

2 BV (x1, x2)

)]
+O(δ2)) + · · · .

and at the first order approximation the PMC/BLM scale can be fixed numerically imposing:
[

dσ(3)(µ2)
dx1dx2

∣∣∣∣
−1

Born

·
(

d

dnf

d2σ(3)(ε, δ; µ2)
dx1dx2

)∣∣∣∣
nf =0

]∣∣∣∣∣
µ2=µ2

P MC

= 0 (39)
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This numerical procedure can be also iterated to the higher orders in αs, by keeping track of the nf -terms, leading
us to an improvement of the accuracy of the PMC/BLM scale µ2

PMC . Following this procedure we can include all
the non-conformal β terms into the running coupling constant for every physical process, setting the renormalization
scale at the PMC/BLM scale without necessarily knowing the PMC/BLM analytic form. Thus we end up with a
cross section which is formally equal to the corresponding conformal expansion with β = 0. In this particular case the
PMC/BLM scale has the form:

µ2
PMC ' q2 (2− x1 − x2)2

δ2

4
e
− 13

3 +
BS(x1,x2)

2 BV (x1,x2) . (40)

In this case the coefficient depends on the parton energies x1, x2, on the angle parameter δ, and on the scale ratio q2/µ2
0

(all these quantities can be written in the form of Lorentz invariants). The different contributions to the coefficient
can be also identified, term by term, by considering the most differential cross section (i.e. for the 3-jet case the triple
differential cross section), by performing the derivative (or logarithmic derivative) with respect to the corresponding
invariant, and then isolating the constant term. This procedure will be discussed in detail in the next section.

V. THE PMC/BLM SCALE AS A FUNCTION OF THE JET MASS RESOLUTION PARAMETER

As shown by Kramer and Lampe [16], one can define a QCD jet by defining a resolution parameter ys as its maximal
virtuality. The jet then consists of particles with total invariant mass squared smaller than ys. Using this definition,
we will perform the integration of the entire differential cross section, including real and virtual contributions in order
to have a IR safe quantity. This gives a y-dependent integrated formula with β0 dependent terms which can be
absorbed into the argument of the running coupling, according to the PMC/BLM prescription.

The entire differential three-jet cross section [22]:

1
σ0

dσ(s) + dσ3

dy
=

∫ 1−2y

y

dz

∫ 1−y−z

y

dx T [1− x− z, x, z]αs(Q2)(1− β0 αs(Q2)(log[x] + log[z]− 5
3
......))

= αs(Q2) (T (y)− β0 αs(Q2) (C(y) + ....)) (41)

≡ T (y)αs(Q2) (1− β0 αs(Q2) 2 log[
µBLM√

s
]) = T (y)αs(µ2

BLM ); (42)

where: σ0 = σ0 CF Q2 /2π , s = Q2 , x = y13 , z = y23,

T [x1, x2, x3] =
2x2

1 + x2
2 + x2

3 + 2x1(x2 + x3)
x1x3

(43)

and

T [y] =
5
2
− 6y − 9y2

2
+ 2Log

[
−2 +

1
y

] (
3y + Log

[
−1 +

1
y

])
− 3Log[1− 2y] + 3Log[y]

−2Li2

[
2 +

1
−1 + y

]
+ 2Li2

[
− y

−1 + y

]
; (44)
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C[y] =
1
12

{
9(−1 + 3y)(11 + 5y) + (61 + 18iπ)Log[1− 2y] + Log[1− 2y]

(
2y(−103− 36y − 3iπ(2 + y))

+6(−3 + 2y)Log[1− y] + 3Log[1− 2y]
(−9 + 14y + y2 + 4Log[1− y]− 4Log[y]

) )
+

+12ArcTanh[1− 2y]
(
2Log[1− 2y]2 + y2(Log[1− 2y]− Log[y])

)
+

(41 + 38y)(Log[1− 2y]− Log[y])− Log[y] + 2((31− 18y)y + 3iπ(−1 + y)(3 + y)

−3(−8 + y)yLog[1− 2y] + 3(3− 2y)Log[1− y])Log[y] + 3
(
9 + (−30 + y)y − 8Log[1− y]

)
Log[y]2

+24Log[y]3 − 6(−1 + y)(3 + y)Li2
[1− y

y

]
+ 6

(
− 3 + 2y + y2 + 8Log[y]

)
Li2

[ y

1− y

]

+6(−1 + y)(3 + y)Li2
[ 1− y

1− 2y

]
− 6

(
− 3 + 2y + y2 + 8Log[1− 2y]

)
Li2

[1− 2y

1− y

]

−48Li3
[ y

1− y

]
+ 48Li3

[1− 2y

1− y

]}
(45)

Then in the 3-jet case, the BLM-PMC scale as function of the jet-virtuality y, has the analytic form:

µ̂2 = µ2
PMC/BLM = s × e−

5
3 +

C(y)
T (y) (46)

A plot of the PMC/BLM scale against y, the virtuality resolution of the jet, in e+e− → qq̄g is shown in Fig. 2. The
result agrees with the BLM scale calculated by Kramer and Lampe in the MS scheme. The PMC/BLM prediction
is scheme-independent; the specific value of the renormalization scale is rescaled according to the choice of scheme so
that all results are commensurate. The PMC/BLM scale also accurately determines nf , the effective number of flavors
in the β-function. As is clear from the QED analog, the renormalization scale reflects the virtuality of the gluon jet;
it thus must vanish when the resolution y s vanishes. As noted by Kramer and Lampe [16], the renormalization scales
determined by the ad hoc PMS and FAC (Fastest Apparent Convergence) [23] procedures have the wrong physical
behavior at y s → 0, since they become infinite µ2 →∞ as the jet resolution and gluon virtuality vanish.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
y

0.1

0.2

0.3

0.4

0.5

FIG. 2: The PMC/BLM scale, µPMC (plane line) as a function of the jet resolution parameter y, for e+e− → qq̄g.

For comparison,
√

y is also shown (dashed line).

VI. PMC/BLM SCALE FIXING IN THE 3 JET CASE: THE COMPLETE DIFFERENTIAL CROSS
SECTION

In the case of the complete differential cross section; i.e., the most differential cross section for a given process
without any constrained variables, the PMC/BLM scales depend on the number of flavors nf and on the independent
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invariants entering the process. In the case of the three jets we notice that the cross section depends on the color
and flavor parameters nf , NC , CF and on the kinematical invariants s12, s13, s23 where the label 3 refers to the gluon
momentum, and the indices 1, 2 refer to the quark and anti-quark momenta. On the other hand, the nonconformal
terms entering the running coupling depend only on the number of flavors nf and on a reduced number of kinematical
invariants. These terms can be identified by first varying the number of flavors nf and then the invariant sij , whereas
the constant term can be extracted by simply subtraction at the final step.

Starting with the triple differential cross section for three jets given in Ref.[22]:

dσ(s) + dσ3

dz dy dx
= σ̃0

αs(Q2)
2π

δ(1− x− y − z)
{

T [z, x, y]
[
1 +

αs(Q2)
2π

CF (....) +
αs(Q2)

2π
NC(....)

− αs(Q2) β0

(
log[x ∗ y]− 5

3

)]
+

αs(Q2)
2π

F [z, y, x]
}

(47)

with σ̃0 = σ0 CF s. For simplicity sake we are using the notation (z, x, y) for respectively the final state gluon-, quark-,
antiquark-energy. In order to extract the first order terms related to the β− function we can start performing an ab
initio analysis of the cross section. We can first single out the β0 coefficient by means of the β0− derivative, or either
by the number of flavors nf−derivative, using Eq. 38 and then we can factorize out the Born amplitude:

dσ3(Q2)
dz dy dx

∣∣∣∣
−1

Born

1
αs(Q2)

d

dβ0

(
dσ(s) + dσ3

dz dy dx

)
=

[
log[x y]− 5

3

]
+ O(αs), (48)

dσ3(Q2)
dz dy dx

∣∣∣∣
Born

= σ̃0
αs(Q2)

2π
T [z, x, y] δ(1− x− y − z).

Finally, we can extract the weight for each invariant by taking the logarithmic derivative:

ωi =
d

d log(xi)

(
dσ3(Q2)
dz dy dx

∣∣∣∣
−1

Born

1
αs(Q2)

d

dβ0

(
dσ(s) + dσ3

dz dy dx

))
(49)

where xi = (x, y, z). The constant term can be identified by subtracting out all the logarithm terms from the β0

coefficient. Then at first order approximation in the coupling constant, the µPMC-scale for the 3-jet differential cross
section has the analytic form:

µ2
PMC ' Q2 × C ×

∏

i

xωi
i = Q2 x y e−

5
3 . (50)

A. Commensurate Scale Relations

Relations between observables must be independent of the choice of scale and renormalization scheme. Such
relations, called “Commensurate Scale Relations”(CSR) [24–26] are thus fundamental tests of theory, devoid of
theoretical conventions. One can compute each observable in any convenient renormalization scheme, such as the MS
scheme using dimensional regularization. However, the relation between the observables cannot depend on this choice
- this is the transitivity property of the renormalization group [3, 7–9]. For example, the PMC relates the effective
charge αg1(Q

2), determined by measurements of the Bjorken sum rule, to the effective charge αR(s), measured in the
total e+e− annihilation cross section: [1− αg1(Q

2)/π]× [1 + αR(s∗)/π] = 1. The ratio of PMC scales
√

s
∗
/Q ' 0.52

is set by physics; it guarantees that each observable goes through each quark flavor threshold simultaneously as Q2

and s are raised. Because all β 6= 0 nonconformal terms are absorbed into the running couplings using PMC, one
recovers the conformal prediction [25]; in this case, it is the Crewther relation [27, 28]. Thus by applying the PMC,
the conformal commensurate scale relations between observables, such as the Crewther relation, become valid for
non-conformal QCD at leading twist.

VII. CONCLUSIONS

As we have shown, the principle of maximal conformality (PMC) provide a consistent method for setting the optimal
renormalization scale in pQCD. One shifts the scale so that the β terms in the perturbative series are absorbed into
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the running coupling. In many cases this can be accomplished simply by absorbing the terms in nF which arise from
coupling constant renormalization. The resulting series is identical to that of the corresponding conformal theory with
β = 0 as given by the Banks-Zaks method. The scale-fixed predictions using the PMC are independent of the choice
of renormalization scheme – a key requirement of renormalization group invariance. The results avoid renormalon
resummation and agree with QED scale-setting in the Abelian limit. The PMC is the theoretical principle underlying
the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice
gauge theory [29]. Besides it has been recently shown that for certain observables in 2-jet production the results of
the MOM-BLM method are very similar to those of MSYM theory [30][31][32]. The number of active flavors nf in
the QCD β function is also correctly determined.

We have discussed specific methods for efficiently determining either the PMC/BLM renormalization scale analytic
form or its numerical value in QCD processes. The analytic form can be determined by varying the subprocess
amplitude with respect to each invariant, thus determining the coefficients fij of log p2

ij/µ2
0 in the nonconformal terms

in the amplitude. This result can be used to fix individual scales for the contributing skeleton graphs. A single PMC
global scale is then determined at NLO by appropriate weighting. On the other hand the numerical value of the PMC
scale can be determined also without necessarily knowing the PMC-analytic form, by means of the nf -derivative of
the whole cross section. The two methods completely agree and give rise to the same results.

The global PMC renormalization scale is particularly useful for very complex processes; one only requires the
dependence of the calculated subprocess amplitudes on the initial renormalization scale µ2

0 and nF , the number of
quark flavors appearing from quark loops associated with renormalization. The single global PMC scale, valid at
leading order, can thus be derived from basic properties of the perturbative QCD cross section.

Clearly, the elimination of the renormalization scheme ambiguity using the PMC will greatly increase the precision
of QCD tests and will also increase the sensitivity of measurements at the LHC and Tevatron to new physics beyond
the Standard Model.
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