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Abstract

The well-known Haissinski distribution provides a stable equilib-
rium of longitudinal beam distribution in electron storage rings
below a threshold current. Yet, how to accurately determine this
threshold, above which the Haissinski distribution becomes un-
stable, is not firmly established in theory. In this paper, we will
show how to apply the Laguerre polynomials in an analysis of
this stability that are associated with the potential-well distor-
tion. Our approach provides an alternative to the discretiza-
tion method proposed by Oide and Yokoya. Moreover, it re-
establishes an essential connection to the theory of mode coupling
originated by Sacherer. Our new and self-consistent method is
applied to study the microwave instability driven by commonly
known impedances, including coherent synchrotron radiation in
free space.
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1 Introduction

The idea of using mode couplings to explain the instability of a bunch beam
was first proposed and then studied over many years by Sacherer[1]. The
theory essentially consists of an integral equation, known as the Sacherer
integral equation, derived as a perturbed Vlasov equation, which is solved
as an eigenvalue problem of a matrix. It was extended by Besnier[2] who
introduced orthogonal polynomials to the theory. It was further developed by
Zotter[3] to include the radial modes and later by Suzuki, Chin and Satoh[4]
to make an expansion in both azimuthal and radial modes.

Initially, the choice of the unperturbed distributions, for instance Gaus-
sian, was made on the basis of making the equation easier to solve. It is
therefore not a self-consistent approach for an electron bunch because it has
its own equilibrium distribution. To improve the theory, Oide and Yokoya[5]
studied the perturbation near Haissinski distribution[6]. They derived a gen-
eralized Sacherer integral equation that includes the incoherent tune shift
due to the distorted potential. Moreover, they introduced the action-angle
variables so that a Fourier expansion can be made in the angular variable
to take the advantage of a periodicity in the system of bunched beam. For
the radial direction, they numerically solved the integral equation by dis-
cretizing the action variable. Their method was successfully applied[7] to
study the instability of the Stanford Linear Collider (SLC) damping ring,
where many precision measurements were made[8]. However, it was found
out later[9] that the method of discretization was not as robust as one might
have expected largely due to the presence of the incoherent spectrum in the
system. In particular, the convergence of the procedure is poor in many cases
as one refines the mesh. To improve the theory, the integral equation was
“regularized” by Warnock, Stupakov, Venturini, and Ellison[10] by replac-
ing the linear equation with a highly nonlinear one, similar to the dispersion
equation for a coasting beam. As demonstrated for the instability in the SLC
damping ring, it also worked extremely well. However the nonlinear equation
itself introduced another layer of complication. Instead of solving an eigen-
value problem, one has to perform a search of a very nonlinear equation. In
general, it is not clear if the method of search is indeed better than the one
of Oide and Yokoya.

In this paper, we will continue the investigation of the stability of the
Haissinski distribution by analyzing the linearized Vlasov (LV) equation. In
particular, we will apply the orthogonal polynomials to solve the integral
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equation in the presence of the potential-well distortion.
We will start with the Vlasov-Fokker-Planck (VFP) equation in section 2;

and then, in section 3, we will introduce the Haissinski distribution as a static
solution of the VFP equation. In section 4, we will derive the LV equation as a
small perturbation near the Haissinski distribution. Then we will reduce the
linear equation to an integral equation using a Fourier expansion in section
5. Finally, in section 6, we will solve the integral equation in terms of various
matrix representations.

In the second part of the paper, we will apply the linear theory to com-
monly known impedances. First, the SLC damping ring will be studied as a
benchmark in section 7; Second, we will continue, in section 8, to investigate
the instability caused by the coherent synchrotron radiation (CSR) in free
space; and third, we will study a broadband resonance model in section 8. At
the end of the paper, we will conclude our study and discuss the microwave
instability.

2 Longitudinal beam dynamics

Let’s consider an electron in a storage ring executing a small synchrotron os-
cillation in a stationary RF bucket. For simplicity, we introduce a normalized
coordinate system, q = z/σz and p = −δ/σδ, where z is the differential posi-
tion relative to the synchronized particle with energy E0, δ = (E − E0)/E0,
and σz and σδ are the standard deviations of position and relative energy
in the equilibrium Gaussian distribution. Here we use positive q as the for-
ward direction of the beam. It is well known[11] that the bunch length
σz = ηcσδ/ωs, where ωs is the angular frequency of the synchrotron oscilla-
tion and η is the momentum compaction factor. The motion of the electron
is a simple harmonic oscillator described by the Hamiltonian, H = 1

2
(q2+p2),

along with independent variable, θ = ωst.
In general, the electron also experiences a collective force induced by

the bunch distribution λ(q, θ). Using the notion of an integrated wakefield
W (q)[12] in a single turn, the dynamics can be described by a Hamiltonian

H =
1

2
(q2 + p2)− In

∫ q

−∞
dq′′

∫ ∞

−∞
dq′W (q′′ − q′)λ(q′, θ), (2.1)

where

In =
reNb

2πνsγσδ

(2.2)
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is the normalized current, which was introduced by Oide and Yokoya[5].
Nb represents the number of electrons in the bunch, νs is the synchrotron
tune, re is the classic radius of electron, and γ = E0/mc2. Here, the bunch
distribution λ(q, θ) has been normalized, namely

∫∞
−∞ λ(q, θ)dq = 1.

It is worth noting that the dynamics effect of the wakefield is scaled by
the normalized current In, which is related to the bunch current Ib through

Ib = ηγσ2
δIA(

In
σz

), (2.3)

where IA = ec/re = 17045 A is the Alfven current. It is clear from this
formula that a higher energy, a larger momentum compaction factor, or a
larger relative energy spread results in a higher threshold of the bunch current
Ib for a given threshold of the normalized current In. In this paper, we will
develop a theory to calculate the threshold of In.

Furthermore, it can be shown that the evolution of the beam density
distribution Ψ(q, p; θ) is governed by the VFP equation

∂Ψ

∂θ
− {H,Ψ}PB = 2β

∂

∂p
(pΨ+

∂Ψ

∂p
), (2.4)

where β = 1/ωsτd and τd is the longitudinal damping time. We use the
subscript PB to indicate the Poisson Bracket

{f, g}PB =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (2.5)

Actually, H is the Hamiltonian defined in Eq. (2.1) with the substitution
of λ(q, θ) =

∫∞
−∞ Ψ(q, p; θ)dp. As a result, the VFP equation is a nonlinear

integral and partial differential equation. In general, it can only be solved
by numerical methods[13]. In fact, it is a special form of the Fokker-Planck
equation since the damping and diffusion terms on the right-hand side involve
only the partial derivatives of p. This is a consequence of the fact that the
synchrotron radiation causes loss and quantum diffusion only in the energy
of the radiating electron not in its time of flight.
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3 Haissinski distribution

Historically, it was Haissinski who discovered that the VFP equation (Eq. 2.4)
has a static solution in the form of[6]

Ψ0(q, p) =
1

κ
√
2π

exp(−H0) = λ0(q) exp(−
p2

2
)/
√
2π, (3.1)

where κ is a constant determined by the condition,
∫∞
−∞ λ0(q)dq = 1. Here the

subscript “0” indicates that the solution does not explicitly depend on θ or
∂Ψ/∂θ = 0. Since Ψ0 is a function of Hamiltonian H0 only, it commutes with
H0 in the Poisson Bracket and therefore the right hand side of the equation
vanishes by itself.
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Figure 1: Comparison of Haissinski distribution at the threshold current I thn =
0.042 pC/V in the SLC damping ring to a Gaussian distribution.

On the other hand, Ψ0 is also factorized into a product of a Gaussian
distribution in p and λ0(q), which makes the right hand side of the equation
vanish separately. Using Eq. (2.1) for H0 and eliminating the dependence of
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p in Eq. (3.1), we find the well-known Haissinski integral equation

λ0(q) =
1

κ
exp[−q2

2
+ In

∫ q

−∞
dq′′

∫ ∞

−∞
dq′W (q′′ − q′)λ0(q

′)]. (3.2)

At zero current, In = 0, so the solution becomes a Gaussian. In general, this
nonlinear integral equation can be solved numerically using Newton iteration
starting from the Gaussian distribution. A Haissinski solution, for the SLC
damping ring, is shown in Fig. 1.

In practice, we know that the Haissinski distribution is not just a possi-
ble solution but also the equilibrium distribution of the VFP equation at a
sufficiently low current. Above a threshold of In, the Haissinski distribution
is no longer a stable solution. In the literature, the associated instability is
commonly referred to as the microwave instability.

4 Linearized Vlasov equation

At the limit of β going to zero, the VFP equation reduces to the Vlasov
equation

∂Ψ

∂θ
− {H,Ψ}PB = 0. (4.1)

For an estimate of the threshold of instability, one often uses the Vlasov equa-
tion because the damping time is much longer than the synchrotron period
in a typical electron storage ring and hence β is a small and dimensionless
parameter. For instance, β = 0.00091 for the SLC damping ring.

To investigate the instability, we expand the density distribution:

Ψ(ϕ, J ; θ) = Ψ0(H0) + Ψ1(ϕ, J ; θ), (4.2)

where Ψ1(ϕ, J ; θ) is a small perturbation away from the Haissinski distri-
bution Ψ0(H0). Here we choose to use the action-angle variables, J and ϕ,
which can be canonically transformed from q and p. Substituting the expan-
sion into the Vlasov equation (Eq. (4.1)) and ignoring the nonlinear terms in
Ψ1, we obtain a LV equation

∂Ψ1

∂θ
+ (

∂Ψ1

∂ϕ
− ∂H1

∂ϕ

dΨ0

dH0

)
ω(J)

ωs

= 0 (4.3)

where ω(J)/ωs ≡ dH0/dJ and H1 is the perturbed Hamiltonian

H1 = −In

∫ q

−∞
dq′′

∫ 2π

0
dϕ′

∫ ∞

0
dJ ′W (q′′ − q′)Ψ1(ϕ

′, J ′; θ). (4.4)
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We have used the fact that the Poisson Bracket is invariant and dqdp = dϕdJ
under a canonical transformation.

5 Sacherer integral equation

Following Sacherer’s approach[1], we make a Fourier expansion of Ψ1 in ϕ

Ψ1(ϕ, J ; θ) =
∞∑

l=−∞
Rl(J)e

ilϕe−i Ω
ωs

θ (5.1)

Substituting this expansion into the LV equation and using the orthogonal
condition of a Fourier transformation, we derive the generalized Sacherer
integral equation

(
Ω

ω(J)
− l)Rl(J) = W (H0)

∞∑
m=−∞

∫ ∞

0
dJ ′Gl,m(J, J

′)Rm(J
′), (5.2)

where the kernel is

Gl,m(J, J
′) =

iIn
2π

∫ 2π

0
dϕe−ilϕ

∫ 2π

0
dϕ′eimϕ′

W (q − q′)
∂q

∂ϕ
, (5.3)

and W (H0) = −dΨ0(H0)/dH0. This integral equation was studied by Oide
and Yokoya[5]. Actually, as one can see in Appendix A, it is more convenient
to use the free energy K = H0 − Vmin as the radial variable. The static non-
zero value Vmin is subtracted to make the minimum value of K be zero. The
transformation between q, p and ϕ,K will be given in the appendix. Using
K to replace J , the Sacherer integral equation becomes

(
Ω

ωs

− l
ω(K)

ωs

)Pl(K) =
e−Vmin

κ
√
2π

e−K
∞∑

m=−∞

∫ ∞

0
dK ′Gl,m(K,K ′)Pm(K

′), (5.4)

where Pl(K) = ωsRl(K)/ω(K). Here we have used Eq. (3.1) for Ψ0.
Moreover, we can introduce the impedance Z(ω) to replace the wakefield:

W (q − q′) =
1

2π

∫ ∞

−∞
dωei

ωσz
c

(q−q′)Z(ω), (5.5)

in the kernel Gl,m(K,K ′) in Eq. (5.3). By performing an integration by parts
for q and using the periodical condition, q(ϕ + 2π,K) = q(ϕ,K), the kernel
can be simplified to be

Gl,m(K,K ′) = (
iIncl

σz

)
∫ ∞

−∞
dω

Z(ω)

ω
hl(

ωσz

c
,K)h∗

m(
ωσz

c
,K ′), (5.6)
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where

hl(ν,K) =
∫ 2π

0

dϕ

2π
e−ilϕ+iνq(ϕ,K). (5.7)

Furthermore, using the symmetry q(−ϕ,K) = q(ϕ,K) and the property
of impedance Z(−ω) = Z(ω)∗, we obtain

Gl,m(K,K ′) =
−lInc

σz

Im[2
∫ ∞

0
dω

Z(ω)

ω
hl(

ωσz

c
,K)h∗

m(
ωσz

c
,K ′)]. (5.8)

Clearly, the kernel itself is a real not a complex function.

6 Solve the integral equation

We would like to solve Pl(K) along with Ω in Eq. (5.4). According to
Eq. (5.1), the real part of Ω contributes to merely a coherent tune shift
and its positive imaginary part causes an exponential growth of the pertur-
bation Ψ1. The goal is to find the threshold of current at which Ω develops
a positive imaginary value.

6.1 Orthogonal polynomial expansion

A method of solving the integral equation is to use orthogonal polynomials[2].
We further decompose

Pl(K) = e−K
∞∑
α=0

aαl f
(l)
α (K), (6.1)

where f (l)
α are polynomials that satisfy the orthogonal and normal conditions:∫ ∞

0
dKe−Kf (l)

α (K)f
(l)
β (K) = δαβ. (6.2)

A similar expansion of the radial modes were used by Zotter[3], Suzuki, Chin,
and Satoh[4] when they studied a Gaussian model. An obvious difference
from theirs is that our variable K is the free energy rather than the radius.
Most importantly, the incoherent tune variation ω(K) is a weighting factor
in the radial expansion of Rl(K).
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Using the orthogonal condition of the polynomials, we can cast the inte-
gral equation (Eq. (5.4)) into an infinite system of linear equations

Ω

ωs

alα =
∞∑

m=−∞

∞∑
β=0

Mα,β
l,m amβ . (6.3)

It is clear that the eigenvalues of the matrix M give us Ω/ωs since this
equation itself defines eigenvalues. In this approach, we need to solve the
eigen equations.

Actually, the matrix M = O+N is the sum of two matrices. The element
of one of the matrices is given by

Oα,β
l,m = lδlm

∫ ∞

0
dK

ω(K)

ωs

e−Kf (l)
α (K)f

(l)
β (K), (6.4)

which describes a direct coupling of the radial modes with the same azimuthal
mode number due to the incoherent tune shift ω(K) generated from the
potential-well distortion.

The other matrix element Nα,β
l,m is written as

Nα,β
l,m =

e−Vmin

κ
√
2π

∫ ∞

0
dKe−Kf (l)

α (K)
∫ ∞

0
dK ′e−K′

f
(m)
β (K ′)Gl,m(K,K ′). (6.5)

Furthermore, the polynomials f (l)
α (K) can be easily constructed from the

generalized Laguerre polynomials L|l|
α (K), namely

f (l)
α (K) =

√
α!

(|l|+ α)!
K |l|/2L|l|

α (K). (6.6)

Here we use only the absolute value of the azimuthal mode number l in the
expression so that both positive and negative l are treated equally in the
expansion Pl(K).

Using Eq. (5.8) for the kernel Gl,m(K,K ′), we obtain

Nα,β
l,m =

−lInce
−Vmin

κσz

√
2π

Im[2
∫ ∞

0
dω

Z(ω)

ω
gαl (

ωσz

c
)gβm

∗
(
ωσz

c
)], (6.7)

where
gαl (ν) =

∫ ∞

0
dKe−Kf (l)

α (K)hl(ν,K). (6.8)
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It is worth noting that the dependence of Nα,β
l,m on the current In is not

linear as the expression indicates, since both Vmin and κ implicitly depend
on In through the nonlinear Haissinski equation. That is one of the major
differences between the self-consistent treatment and a Gaussian model.

For a Gaussian model, we have a potential of a harmonic oscillator,
V (q) = q2/2, which results in κ =

√
2π and Vmin = 0. Substituting them into

Eqs. (A.8) and (A.9) and evaluating the integrals, we find, q =
√
2K cosϕ

and ω(K)/ωs = 1. These simple analytical expressions allow us to further
evaluate Oα,β

l,m and Nα,β
l,m . After some straightforward calculations, we obtain

Oα,β
l,m = lδlmδαβ,

hG
l (ν,K) = ilJl(ν

√
2K), gαGl (ν) = il(

ν√
2
)|l|+2α

√
1

α!(|l|+ α)!
e−ν2/2, (6.9)

and

Nα,β
l,m =

icIn
2πσz

(
lil−m√

α!(|l|+ α)!β!(|m|+ β)!
)

×
∫ ∞

−∞
dω

Z(ω)

ω
e−(ωσz

c
)2(

ωσz√
2c

)|l|+|m|+2(α+β). (6.10)

These matrix elements agree with those derived by Suzuki, Chin, and Satoh[4]
in their Gaussian model. Clearly, our result contains the Gaussian beam as
a special case.

6.2 Oide and Yokoya discretization

Another method to solve the integral equation is to discretize the variable
K from 0 to Kmax and to approximate the integration with a summation.
This method leads to the same eigen equation as Eq. (6.3) with the matrix
elements

Oα,β
l,m =

lω(Kα)

ωs

δlmδαβ, (6.11)

and

Nα,β
l,m =

∆Ke−Vmin−Kα

κ
√
2π

Gl,m(Kα, Kβ), (6.12)

where Kα = α∆K are the grid points and ∆K is the spacing of the grid.
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In practice, both methods of polynomial expansion and discretizaton are
merely an approximation since the expansion has to be truncated either by
the highest order of the polynomials or the largest number of grid points
on the radial mesh. With the polynomial expansion, one has to carry out
two more integrals to obtain the matrix elements in exchange for a smaller
dimension of the matrix. In general, it is not clear which method is more
efficient to achieve the necessary convergence. In the following sections, we
will study the instability caused by some commonly known impedances as
examples.

7 SLC damping ring

The longitudinal instabilities in the SLC damping rings were well studied
both experimentally[8] and theoretically[7, 10]. Naturally, it serves us an
excellent example for a benchmark. As one will see later, it is also a simple
system in which only a single quadupole like mode is excited in a large range
of current above the threshold.
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Figure 2: Wakefield (left) and impedance (right) for the SLC damping ring
for σz = 4.946 mm (bunch length at zero current).

For the SLC damping ring, its longitudinal wakefield and impedance were
carefully calculated by Bane and Ng[14]. Due to a high periodicity in the ring,
an accurate model, as shown in Fig. 2, was possible to be constructed with
a reasonable effort. As one can see in the impedance plot on the right, the
model may be approximated by a constant resistance and a pure inductance.
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For a given current In, we first solve the Haissinski integral equation for a
solution of λ0(q) on a rectangular mesh of q and p using the wakefield. As a
by-product of the equation solving, we can obtain the distorted potential-well
V (q). Second, we use the transformation to compute ω(K) and q = q(ϕ,K)
as illustrated in appendix A and save the results as a numerical table. Third,
we perform numerical integration of ϕ for hl(ν,K). As an example, we show
h2(ν, 2.0) on the left in Fig. 3. For the Oide and Yokoya method, we can
compute the kernel by integrating the frequency ω using Eq. (5.8) and the
matrix elements by Eqs. (6.11) and (6.12).
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Figure 3: Spectrum functions at the threshold current I thn = 0.042 pC/V
in the SLC damping ring. For the Gaussian model, their imaginary parts
should be vanishing for the l = 2 mode.

For the method of Laguerre polynomials, we need to perform integrals
of K from zero to infinity. Since the functions of ω(K) and hl(ν,K) are
defined only in a finite range 0 < K < Kmax, we extrapolate them into
the region beyond Kmax using the Gaussian model. This approximation is
justified because most potentials have the same asymptote as the potential of
a linear oscillator V (q) = q2/2 when q approaches to infinity. One may argue
that the linear oscillator itself is valid only for a small q. Here we ignore the
effects such as the nonlinear RF potential. For the elements of matrix O, we
have

Oα,β
l,m = lδlm

∫ Kmax

0
dK[

ω(K)

ωs

− 1]e−Kf (l)
α (K)f

(l)
β (K) + lδlmδαβ, (7.1)
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and similarly

gαl (ν) =
∫ Kmax

0
dKe−Kf (l)

α (K)[hl(ν,K)− hG
l (ν,K)] + gαGl (ν). (7.2)

As an example, we show g02(ν) on the right in Fig. 3. As one can see
from the figure, the large value of the function is near ν = 2 and damped
down quickly at high frequency. As a result, the high frequency impedance
does not contribute to the quadupole mode. Finally, we compute Nα,β

l,m by
integrating ω in Eq. (6.7). With the elements of the matrix M = O+N , we
numerically calculate its eigenvalues and eigenfunctions.
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Figure 4: Tune shift (left) and growth rate (right) of the most unstable mode
in the SLC damping ring.

This procedure is repeated for many different values of In, starting from
zero. At low currents, all eigenvalues are real and the bunch is stable. The
instability threshold is defined as the current at which the first imaginary
eigenvalue is found as the current increases. The results of our analysis are
summarized and shown in Fig. 4. The most unstable mode is a quadrupole
like mode. As one can see, the agreement between the results obtained by
three different methods is excellent. We used 10 azimuthal modes in our
calculations. For the method of discretization, we used ∆K = 0.2 (approx-
imately 80 grid points) in the radial direction. For the method of Laguerre
polynomials, we used the integration step dK = 0.01 and 30 radial modes
in the expansion. Here, we essentially reproduced the well-known results
from the earlier works by Bane and Oide[7] and later by Warnock, Stupakov,
Venturini, and Ellison[10]. We expect to see a good agreement between the
calculations since both procedures converged rather well.
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The VFP simulations were carried out using the code[13] provided to us
by Warnock. The tune shifts were extracted from the Fourier analysis of the
center of the bunch distribution < q >; and the growth rate was obtained by
fitting to the exponential increase of σp and then subtracting out the radiation
damping 2β = 0.0018. In fact, this subtraction is corrected, according to a
paper by Suzuki[15], only because the unstable mode is a quadrupole. Small
deviation at higher currents can be attributed to the nonlinear effects in the
VFP simulation.

Finally, a sextupole like mode pops up at In = 0.075 pC/V with its real
part of Ω/ωs = 2.59 in the linear theory. It becomes the dominating mode at
In = 0.0825 pC/V with Re[Ω/ωs] = 2.55. This result is consistent with the
sextupole mode observed in the experiments[8]. The unexpected agreement
surprised us since it occurs well beyond the threshold I thn = 0.042 pC/V. But
it is not clear why the sextupole mode is never seen in the VFP simulations.

8 Coherent synchrotron radiation

As we have shown in the previous section, there is essentially a single quadrupole
mode excited in a large range of beam current in the SLC damping ring. As
a result, the linear theory works extremely well. In this section, we will study
the instability due to CSR generated by circulating electrons inside bending
magnets. This will provide another example to illustrate some features in
our analysis.

Consider an electron executing circular motion with radius ρ inside bend-
ing magnets. The longitudinal wakefield due to the steady CSR generated
by another electron behind is given by[16]

W (q) =
−4πρ1/3

34/3σ
4/3
z

q−4/3. (8.1)

In contrast to many other properties of synchrotron radiation, this wake
does not depend on the energy of the electrons. As a result, it is universal to
many types of electron storage rings. In particular, it can become a dominate
collective effect as the bunch length σz reduces down to the millimeter region.
As one can easily see from the formula of the wake and the Vlasov equation
(Eq. (4.1)), the theory depends only on a dimensionless parameter, namely
ξ = Inρ

1/3/σ4/3
z .
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The impedance is also well known and can be written[17]

Z(ω) = (
4π

c
)(
Γ(2

3
)

31/3
)(

√
3

2
+

i

2
)(
ρω

c
)1/3. (8.2)

Substituting the impedance into Eq. (5.8), we obtain the kernel

Gl,m(K,K ′) =
−4πΓ(2

3
)lξ

31/3
Im[(

√
3 + i)

∫ ∞

0
dνν−2/3hl(ν,K)h∗

m(ν,K
′)]. (8.3)

Similarly,

Nα,β
l,m =

−2
√
2πe−VminΓ(2

3
)lξ

31/3κ
Im[(

√
3 + i)

∫ ∞

0
dνν−2/3gαl (ν)g

β
m

∗
(ν)], (8.4)

using Eq. (6.7).

8.1 Gaussian model
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Figure 5: Mode analysis using the Gaussian model. Solid lines represent the
coherent tune shifts (Re(Ω/ωs)) and and dashed lines are for the growth rates
(Im(Ω/ωs)) of the unstable modes. For a given azimuthal mode number, only
the radial modes with the largest and smallest tune shifts are shown.

For the Gaussian model, using gαGl (ν) and carrying out the integral of ν
in Eq. (8.4), we obtain

Nα,β
l,m =

−Γ(2
3
)lξ

31/32n/2
√
(|l|+ α)!α!(|m|+ β)!β!

Γ(
1

2
(n+

1

3
))Im[(

√
3+i)il−m], (8.5)
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where n = |l|+|m|+2α+2β. We use these elements along with Oα,β
l,m = lδlmδαβ

to compute the eigenvalues of the matrix M = O + N . Our result gives a
classic picture of mode coupling as shown in Fig. 5.

At the threshold of ξth = 0.578, we see the first merge of l = 1 and
l = 2 modes. The merge of the modes generates a pair of complex modes
with equally positive and negative imaginary values. Here we plot only the
positive ones. 10 radial modes and 50 azimuthal modes are used in the
calculation. There is no problem to achieve 0.1% level of convergence to
determine the threshold.

8.2 Self-consistent methods

For a self-consistent treatment, we need to solve the Haissinski and Sacherer
integral equations at each current; then we repeat the procedure, outlined in
the section for studying the SLC damping ring, for various currents. The ex-
pressions for kernel in Eq. (8.3) and for matrix elements in Eq. (8.4) simplify
the calculation.
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Figure 6: Real parts (left) and imaginary parts (right) of all unstable modes
driven by CSR in free space. Each dot represents an unstable mode.

Using the expansion of Laguerre polynomials, we find the threshold at
ξth = 0.482 as illustrated in Fig. 6. In contrast to the instability of the
SLC damping ring, many modes are simultaneously excited slightly above
the threshold. Furthermore, as one can see from the left plot in the figure,
an unstable azimuthal mode is as high as the 15th. To accommodate the
high-order modes, we have used 20 azimuthal and 20 radial modes in our
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calculation. As shown in Fig. 7, a reasonably good convergence is achieved
with 20 radial modes while the number of azimuthal modes is fixed at 20.
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Figure 7: Threshold of microwave instability as a function of number of radial
modes expanding with the Laguerre polynomials.

An obvious difference from the Gaussian model is that the threshold is
lower by 20%. A little subtle one is that there are more unstable modes,
resulting in a slower growth rate for each mode. Finally, as we show in
Fig. 8, the coupling modes are in the radial direction. As one can see from
the figure, the first unstable mode is not a quadrupole mode but a sextupole
mode. The threshold for the unstable quadrupole mode is slightly higher at
ξthq = 0.50. This threshold agrees perfectly with the result using the VFP
solver in our previously published paper[18]. The agreement should not be
considered merely a coincidence since we had used a quadratic variance σp >
1 as the criterion to determine the microwave threshold in the simulation and
therefore made it more sensitive for detecting the instability of a quadrupole
mode.

As we discussed in the section on the SLC damping ring, we can also use
the discretization to solve the Sacherer integral equation. However, as we
discussed earlier, a much higher expansion of the azimuthal modes is required
for the CSR impedance. As a result, the dimension of the matrix becomes so
large, in terms of the use of computer memory, that the computation becomes
too slow due to the swapping of memory. This limitation prevents us from
achieving any good convergence. With the finest grid ∆K = 0.1 possible, the
discretization method gives a much lower threshold at ξth = 0.25 as shown in
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Figure 8: Coupling of the radial modes: quadrupoles on left and sextupoles
on right.

Fig. 9. Since the convergence is poor, it is not clear if the threshold is indeed
accurate. However, this lower threshold can not be easily discarded because
it is very close to the threshold calculated[19] by applying the theory of a
coasting beam.
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Figure 9: Growth rates of all modes at various currents using the discretiza-
tion method for the CSR impedance in free space.
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Figure 10: Double-peak distribution on left and its corresponding double-
well potential on right for the Q=1 broadband resonance model with νr =
ωrσz/c = 0.5 and ξ = InRωr = 18.

9 Broadband resonance model

Another commonly studied impedance model is a broadband resonance model
constructed with a parallel LRC circuit[12],

Z(ω) =
R

1 + iQ(ωr

ω
− ω

ωr
)
, (9.1)

where R is the resistance, Q = R
√
C/L is the quality factor, and ωr =

1/
√
CL is the resonance frequency. The wakefield can be calculated using

Eq. (5.5). For q < 0, it is given by

W (q) =
Rωr

Q
[cos(ν̄rq) + sin(ν̄rq)/

√
4Q2 − 1] exp(νrq/2Q), (9.2)

where ν̄r = νr
√
1− 1/4Q2 and νr = ωrσz/c. The wake vanishes when q > 0.

We can easily show that the theory depends on only three dimensionless
parameters, namely ξ = InRωr as a current, νr a frequency, and Q. In
particular, the kernel is given by

Gl,m(K,K ′) = −lξIm[2
∫ ∞

0
dν

hl(ν,K)h∗
m(ν,K

′)

ννr + iQ(ν2
r − ν2)

], (9.3)
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which is derived using Eq. (5.8). Similarly, we have

Nα,β
l,m =

−lξe−Vmin

κ
√
2π

Im[2
∫ ∞

0
dν

gαl (ν)g
β
m

∗
(ν)

ννr + iQ(ν2
r − ν2)

], (9.4)

using Eq. (6.7).
For some values of νr in the Q=1 broadband resonance model, the Haissin-

ski distribution contains two peaks as shown in Fig. 10 at a sufficiently large
current. As a result, it will generate a double-well potential and thus produce
two branches in the canonical transformation that is outlined in the appendix.
Mostly, the two branches are overlapping except in a region between K1 and
K2 as illustrated in the right figure.
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Figure 11: Threshold as a function of νr = ωrσz/c in the Q=1 broadband
impedance model with various methods.

Empirically, we found that the region betweenK1 andK2 are small near or
slightly above the threshold. This observation allows us to treat each branch
as if it is a separate and independent perturbation away from the double-
peak Haissinski distribution, ignoring the presence of the other branch. The
threshold of the instability is therefore determined by the fastest growing
mode in both branches.
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For Q=1, the broadband model was first systematically studied[5] by Oide
and Yokoya. Here, we repeat the calculation with the formulation developed
in this paper. It is worth noting that the same difficulty of the double-well is
also encountered in the original method proposed by Oide and Yokoya. As
we discussed in the previous section, there are some degrees of uncertainty
in determining the exact threshold due to numerical noise. To minimize the
effect of the noise, we determined the threshold by extrapolating from higher
currents at which the noise is much less important.

The results are summarized and shown in Fig. 11. For the VFP simula-
tions, we simply plotted the thresholds in our previously published paper[18].
As one can see from the figure, the results from the four methods (includ-
ing Gaussian) are not too much different from each other. Once again, the
coasting beam theory, ξth =

√
4πν2

r , provides a conservative estimate of the
threshold.

10 Discussion

We have re-derived the Sacherer integral equation by linearizing the Vlasov
equation and expanding it in a Fourier series in the presence of a potential-
well distortion. To solve the integral equation, we employed the Laguerre
polynomials and reduced it to an eigen-equation of an infinite dimensional
matrix. The matrix elements are written in terms of integrals that contain
the incoherent spectrum and a kernel driven by impedance. This linear
theory provides a natural and explicit extension to the mode-coupling theory
originated by Sacherer. For instance, with a quadratic potential V (q) = q2/2,
it directly reduces to the well-known Gaussian model.

We applied the new method to study the longitudinal instability in the
SLC damping ring; we found excellent agreements with three different meth-
ods: Laguerre polynomial, discretization, and VFP simulation. Our results
also agree with the known results of the threshold. In addition, about two
times above the threshold, the linear theory produced a dominating sextupole
mode, which was observed in the measurements but not in the VFP simula-
tions. Clearly, the linear theory provided more insights into the longitudinal
dynamics in the SLC damping ring.

The method was then applied to calculate the threshold of longitudinal in-
stability induced by CSR in free space. We found that the Vlasov theory can
be characterized by a dimensional parameter ξ = Inρ/σ

4/3
z . The instability
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is caused by the coupling of two radial modes not azimuthal ones predicted
by the Gaussian model. The coupling of the radial modes generates a much
slower growth rate than the azimuthal mode coupling and therefore makes
it much harder to be observed experimentally. The calculated threshold
ξth = 0.50 is in an excellent agreement with the VFP simulations. However,
the discretization method gave a much lower threshold. This discrepancy
remains to be resolved when computing power is further increased.

Our examples clearly show that the microwave instability is a complicated
phenomenon. For a simple case such as the SLC damping both the linear
theory and simulation can provide us a reliable calculation of the thresh-
old; sometime the linear theory may even give us more insights beyond the
threshold. Mostly, the linear theory and simulation are complementary to
each other. In many situations, there is an uncertainty in the calculation
of the threshold due to the numerical noise or the incoherent spectrum. In
spite of our improvements in the linear theory, a comprehensive theory of the
microwave instability remains elusive. The key is to develop an efficient and
robust method to solve the Sacherer integral equation.
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Appendix

A Canonical transformation

Let’s assume that we have solved the Haissinski equation and found a solution
of λ0(q). The unperturbed Hamiltonian H0 can be computed according to
Eq. (2.1) simply with the substitution of λ(q) = λ0(q). If we introduce the
free energy K = H0−Vmin of a particle confined in a potential well V (q), we
have K = 1

2
p2 + V (q), where V (q) is given by

V (q) =
q2

2
− In

∫ q

−∞
dq′′

∫ ∞

−∞
dq′W (q′′ − q′)λ0(q

′)− Vmin, (A.5)
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where Vmin is the minimum value of the static potential generated by the
wakefield. For this kind of closed system, it is well known[20] that the canon-
ical transformation to the action-angle variables can be generated by

F2(q, J) = ±
∫ q √

2(K(J)− V (q′))dq′, (A.6)

then the angular variable ϕ is given by

ϕ =
∂F2

∂J
= ±

∫ q dK/dJ√
2(K(J)− V (q′))

dq′. (A.7)
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Figure 12: The potential-well at the threshold current I thn = 0.042 pC/V in
the SLC damping ring. Note that most distortion occurs near the bottom of
the well.

To make our convention consistent with Courant-Snyder’s in the case of
simple harmonics, we choose ϕ in the range of 0 ≤ ϕ ≤ π,

ωs

ω(K)
ϕ = −

∫ q

qmax

1√
2(K − V (q′))

dq′, (A.8)

where qmax is one of the turning points for a particle with a given free energy
K inside the potential well. Here we have used ω(K)/ωs = dH0/dJ as we
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defined previously. Since it is a periodic system, when ϕ = π, it should reach
the other end of the potential well and therefore we have

ω(K)

ωs

= −π/
∫ qmin

qmax

1√
2(K − V (q′))

dq′. (A.9)

In Fig. 13, we plot the incoherent tune shifts due to the distorted potential
at its threshold current in the SLC damping ring. It is worth noting that the
tune shift mostly occurs at small amplitudes and it asymptotically vanishes
at very large amplitude. As a result, an expansion of polynomials is not a
good approximation of this tune shift.
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Figure 13: Incoherent tune shift as a function of K at the threshold current
I thn = 0.0420 pC/V in the SLC damping ring.

Sometime we need to know q as a function of ϕ and K. That can done
simply to invert the function ϕ = ϕ(q,K). For the other half of the period,
π ≤ ϕ ≤ 2π, the treatment is similar, except the momentum has to be
reversed. Namely

ωs

ω(K)
(ϕ− π) =

∫ q

qmin

1√
2(K − V (q′))

dq′. (A.10)
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With this definition of ϕ, it is easily shown that q(−ϕ,K) = q(ϕ,K). This
reflection symmetry allows us to simplify many calculations in the later sec-
tions.

Since there is one-to-one correspondence between J and K, it is ease to
convert the dependance from K to J . Actually, we found that it is more
convenient to use K as the radial variable.
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