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ABSTRACT
When extracting the weak lensing shear signal, one may employ either locally normalized or globally nor-

malized shear estimators. The former is the standard approach when estimating cluster masses, while the latter
is the more common method among peak finding efforts. While both approaches have identical signal-to-noise
in the weak lensing limit, it is possible that higher order corrections or systematics considerations make one
estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context
of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find the two estimators have
nearly identical statistical precision, even after including higher order corrections, but that these corrections
must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We
also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two
estimators exhibit different systematics, particularly with respect to contamination of the source catalog by
foreground galaxies. Thus, the two estimators may be employed as a systematics cross-check of each other.
Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to ≈ 2%
precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment
by a factor of ∼ 3 relative to the self-calibration expectation. A companion paper (Schmidt & Rozo 2010)
investigates how the two types of estimators considered here impact weak lensing peak finding efforts.
Subject headings: cosmology: clusters

1. INTRODUCTION

Upcoming large photometric surveys such as the Dark En-
ergy Survey (DES)5, Pan-Starrs6, and the Large Synoptic Sur-
vey Telescope (LSST)7 will find hundreds of thousands of
clusters over large fractions of the sky. These samples hold
the potential to be our most powerful tool in understanding
dark energy (Albrecht et al. 2006), and appear to be a neces-
sary component of any set of observables that wishes to distin-
guish between dark energy and modified gravity approaches
for explaining an accelerating universe (Shapiro et al. 2010).
Indeed, even today cluster abundances provide some of the
tightest constraints on the amplitude of the low redshift mat-
ter power spectrum (Mantz et al. 2008; Henry et al. 2009;
Vikhlinin et al. 2009; Rozo et al. 2010), and interesting
constrains on modifications to gravity (Schmidt et al. 2009;
Rapetti et al. 2010; Lombriser et al. 2010). Not surprisingly
then, realizing the promise of galaxy clusters as a cosmolog-
ical probe is of paramount importance for understanding the
physics driving the current phase of accelerated expansion of
the universe.

The most important obstacle that cosmological applications
of cluster surveys must overcome is the calibration of mass–
observable relations. That is, the Cold Dark Matter (CDM)
paradigm of structure formation allows us to predict the abun-
dance of galaxy clusters as a function of mass, whereas em-
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pirically we can only recover the abundance of galaxy clus-
ters as a function of some observable X that correlates with
mass. Consequently, cosmological investigations of cluster
abundances require that we carefully calibrate the probability
P(X |M) that a halo of mass M is included in a survey as a
cluster with observable X . This is a problem that is particu-
larly difficult for photometrically selected cluster samples, as
there is little theoretical understanding of the relation between
a cluster’s galaxy content and its total mass.

Self-calibration is an elegant attempt to overcome this dif-
ficulty. In this approach, one simply parameterizes P(X |M),
and fits for the corresponding parameters relying on cluster-
ing information (Lima & Hu 2004, 2005; Hu & Cohn 2006),
and/or the evolution of abundances with redshift (Majumdar
& Mohr 2004; Gladders et al. 2007). One may further en-
hance such self-calibration techniques by relying on multi-
ple mass tracers (Cunha 2009), and these approaches are ex-
pected to be very successful in improving our understanding
of dark energy relative to other dark energy probes (Cunha
et al. 2009). Nevertheless, it is expected that careful a priori
calibration of the mass–observable relation of galaxy clusters
from targeted follow-up observations can further enhance the
utility of cluster samples over and above what can be achieved
through self-calibration (Majumdar & Mohr 2003, 2004; Wu
et al. 2010).

One way of empirically calibrating cluster masses is
through cluster weak lensing stacking (Sealfon et al. 2006;
Johnston et al. 2007a; Sheldon et al. 2009; Mandelbaum et al.
2008; Leauthaud et al. 2010; White et al. 2010). This tech-
nique relies on coherently adding the weak lensing signal of
galaxy clusters at fixed observable in order to estimate the
mean mass of the stacked galaxy clusters. Relative to esti-
mating the weak lensing mass of individual clusters, cluster
stacking has the significant advantage of allowing us to detect
the lensing signal at significantly lower cluster masses than
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would otherwise not be possible. Moreover, averaging over
many halos dramatically reduces the impact of weak lens-
ing projection effects due to non-correlated structures along
the line of sight. While such measurements do not in any
way constrain the scatter of the observable–mass relation, the
effectiveness of cluster stacking on improving cosmological
constraints from photometrically selected cluster samples is
evidenced by the dramatic improvement that this measure-
ment produced on the cosmological constraints derived from
the SDSS maxBCG cluster sample (Rozo et al. 2007, 2010).

Here, we forecast the precision with which cluster mass
and concentration can be measured in a DES-like photomet-
ric survey, and we discuss a variety of systematics associated
with this measurement. Specifically, motivated by the large
lensing bias signal expected in the weak lensing power spec-
trum in the DES (Schmidt et al. 2009a), we revisit the ques-
tion of whether lensing bias can have a significant impact on
weak lensing mass calibration (Mandelbaum et al. 2005). We
also consider finite bin-width correction to density contrast
estimates, and finally, we discuss how photometric redshift
source selection can impact the recovered weak lensing sig-
nal.

This paper is one of two companion papers; the second pa-
per considers the problem of identifying weak lensing peaks
in large photometric surveys and the impact of lensing bias
on weak lensing peak finding. An interesting by-product of
having performed a simultaneous study of these two distinct
subjects was the realization that in attacking these problems,
different approaches for extracting the weak lensing signal
are usually taken. Specifically, in estimating weak lensing
masses one often bins galaxies in annuli, and estimates the
mean shear in an annulus by dividing by the number of galax-
ies found within the annulus, in other words, adopting a local
normalization. Peak finders, on the other hand, often estimate
the shear signal within a region by simply filtering the shear
map which the galaxies sample, without necessarily dividing
by the number of galaxies within the filtered region. In other
words, they employ a global normalization, one that does not
depend on the local galaxy density. In these papers, we ex-
plore how each of these choices of normalization can impact
the statistics and systematics of both peak finding and mass
estimation.

This paper is organized as follows. In section 2 we in-
troduce the weak lensing estimator and calculate the statis-
tical uncertainties of cluster mass obtained from this estima-
tor. Various systematic errors are addressed in section 3. We
study the impact of these mass estimates on the cosmological
parameter constraints in section 4. Finally, we conclude in
section 5.

We adopt a fiducial flat ΛCDM cosmology with Ωm = 0.28,
ΩΛ = 0.72, h = 0.7, ∆ζ = 4.54× 10−5, and ns = 0.96. All
masses are M200m

8, and distances are physical distances in ei-
ther kpc or Mpc (as opposed to h−1 kpc or h−1Mpc). Finally,
we set the lensing bias parameter q = 1.5 (see below for de-
tails).

2. MASS CALIBRATION IN LARGE OPTICAL SURVEYS VIA
CLUSTER STACKING

2.1. The Weak Lensing Shear Estimator

8 i.e. 200 overdensity with respect to the mean matter density.

We consider a shear weak lensing estimator of the form

∆̂Σ =
1

n̄A

∑

i

Σc(zi)ei (1)

Here, the sum is over all galaxies within some annulus of ra-
dius R, ei is the ellipticity of galaxy i, n̄ is the mean density of
galaxies, and A is the area of the annulus. Expert readers will
immediately discern that the estimator ∆̂Σ is different from
the standard weak lensing shear estimator:

∆̂Σ
′

=
1
N

∑

i

Σc(zi)ei (2)

where N is the total number of source galaxies within the an-
nulus.

For the next few sections, we will focus primarily on ∆̂Σ

rather than ∆̂Σ
′

. This is primarily for convenience: the fact
that the estimator ∆̂Σ

′

takes the form ∆̂Σ
′

= x/y where x and
y are correlated implies that computing its mean and variance
requires some additional algebraic gymnastics that we need
not worry about when considering ∆̂Σ. Consequently, we
have opted to illustrate our discussion with ∆̂Σ first, and then
treat the more complicated case of ∆̂Σ

′

. Section 2.5 discusses
how the two estimators compare in terms of statistical preci-
sion, while in section 3.4 we demonstrate that the two esti-
mators have significantly different systematics with respect to
foreground contamination of the source galaxy population.

We wish to estimate the mean and variance of ∆̂Σ. In the
interest of simplicity, we assume all sources are at the same
redshift z and set Σc(zi) = Σ̄c. It is also useful to rewrite our
estimator as follows: first, we pixelize the sky behind the lens
in pixels of area ∆Ω, and define Ni as the number of galaxies
in pixel i. One might naively expect

Ni = n̄∆Ω(1 + δi), (3)

where the δi is the overdensity of matter in pixel i. In practice,
however, lensing modifies the observed source galaxy density
such that (Schmidt et al. 2009b)

Ni = n̄∆Ωµ
q/2
i (1 + δi) (4)

where µi is the magnification evaluated at pixel i, and q is
a number that characterizes how the source density changes
due to gravitational lensing. For a DES-like survey, we expect
q ≈ 1 − 2 (Schmidt et al. 2009b). Defining the filter function
Wi such that Wi = 1 only when a pixel is within the annulus of
interest, and assuming the pixels are small enough that Ni is
always either zero or one, we rewrite ∆̂Σ as

∆̂Σ =
Σ̄c

A

∑

i

∆Ω µ
q/2
i (1 + δi)Wiei (5)

where the sum is now over all pixels. This is the equation we
will use to derive the expectation value and variance of ∆̂Σ.

2.2. Mean and Variance of ∆̂Σ

The expectation value of ∆̂Σ follows from direct substitu-
tion of the expectation values of ei and δi. Specifically,

〈ei〉= gi (6)
〈δi〉= 0 (7)
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where g is the reduced shear, g = γ/(1 − κ). We assume now
that we work in the thin annulus approximation so that the
variation of µ and g within an annulus is negligible (though
see also section 3.3), and find

〈
∆̂Σ

〉
= Σ̄cµ

q/2g ≈ Σcγ (8)

where all lensing quantities are to be evaluated at the annulus
radius of interest. The approximate equality is obtained by
expanding to leading order in the lensing quantities.

To compute the variance, we assume source galaxies are
unclustered, so that Ni is Poisson. We have then

Cov(Ni,N j) = δi jVar(Ni) = δi j 〈Ni〉 = δi jµ
q/2n̄∆Ω, (9)

and therefore

〈δiδ j〉 =
Cov(Ni,N j)
〈Ni〉 〈N j〉

= δi j
1

µq/2n̄∆Ω
. (10)

In appendix A, we consider the additional contribution to
the noise due to clustering of the source population and we
demonstrate that it is sub-dominant at high masses, and neg-
ligible at low masses, justifying the assumption above. We
further assume the variance in the ellipticity of galaxies is
dominated by shape noise,

〈eie j〉 = gig j + δi j
σ2

e

2
, (11)

the factor of two coming from the fact that there are two inde-
pendent ellipticity components and we use only one of them.
For quantitative purposes, we adopt σe = 0.3 as our fiducial
value for the amplitude of the shape noise term. Direct sub-
stitution results in

Var(∆̂Σ) = Σ̄
2
c
µq/2

n̄A

(
g2 +

1
2
σ2

e

)
≈ Σ̄

2
c

σ2
e

2n̄A
, (12)

where again the approximate equality gives the leading order
term in a series expansion of the lensing quantities.

The signal-to-noise of our estimator ∆̂Σ is

(S/N) = µq/4 (n̄A)1/2g
(g2 +σ2

e/2)1/2 ≈
(n̄A)1/2γ

(σ2
e/2)1/2 . (13)

In a DES-like survey, we expect q ≈ 1 − 2, in which case the
lensing bias correction µq/4 results in a modest increase of the
signal-to-noise of our measurement.

2.3. Survey Assumptions, Fiducial Model, and the Fisher
Matrix

We wish to estimate the precision with which stacked shear
weak lensing experiments can constrain halo mass and con-
centration in a DES-like survey. We adopt a survey area Ω =
5,000 deg2, a fiducial galaxy density n̄ = 10 galaxies/arcmin2,
and a source redshift distribution

f (z) ∝ zm exp
[
−(z/z∗)β

]
(14)

with z∗ = 0.5, m = 2, and β = 1.4, as appropriate for a DES-
like survey. The fraction of galaxies above a given redshift z
is given by

Fbg(z) =

∫ ∞

z dz′ f (z′)∫ ∞

0 dz′ f (z′)
. (15)

Given a lens redshift zL, the (approximate) effective source
density is simply n̄Fbg(zL). For a characteristic lens red-
shift zL ≈ 0.5, the corresponding source density is ≈
8 galaxies/deg2.

We further assume clusters are binned in narrow redshift
slices z = z̄± 0.05, and are logarithmically binned in mass in
bins of width ±∆ log10 M = 0.1, corresponding to 5 bins per
decade in mass. The effective source density for a given mass
and redshift bin is therefore

n̄eff = 2n̄Fbg(z)
dn

d lnM
∆ lnM∆V (16)

where the factor of 2 arises from the total width of the mass
bin 2∆ lnM, ∆V is the survey volume enclosed by the redshift
slice z±∆z,

∆V = (1 + z)2D2
A(z)ΩcH−1(z)2∆z, (17)

DA being the angular diameter distance, and Fbg(z) is the frac-
tion of source galaxies with redshift higher than z. When es-
timating all lensing properties, we will further assume that all
source galaxies behind the clusters reside at a single source
redshift zs equal to the mean source redshift of the sources be-
hind the cluster. The mass function dn/d lnM is computed us-
ing the Tinker et al. (2008) mass function in our fiducial cos-
mology. As mentioned in the introduction, for the purposes
of computing the impact of lensing bias we always assume
q = 1.5 (Schmidt et al. 2009b).

Note that we have not taken into account the effects of finite
mass bins here: since the scale radius of halos evolves with
mass, the stacked shear profile within [lnM − ∆ lnM; lnM +
∆ lnM] is not equal to the profile of an NFW halo with mass
M. While this needs to be taken into account when fitting
actual data, it is not of direct relevance to our Fisher fore-
cast, so we neglect this effect here. Furthermore, it should
be noted that, observationally, cluster stacks are made by bin-
ning in an observable X , whereas the problem we have laid
out here assumes that the clusters are binned in mass. While
this obviously affects the distribution of cluster masses within
a stack, we do not expect the precision of the corresponding
measurement to be particularly sensitive to said distribution.
Indeed, roughly speaking the total uncertainty in the mass per
cluster is just the sum in quadrature of the measurement er-
ror with the intrinsic scatter. For a typical cluster, the latter is
smaller than the former, especially at low masses where most
of our cluster sample resides, and therefore our approximation
is valid. Given our expectations and the fact that our Fisher
Matrix forecast ought to be interpreted as a rough estimate of
the precision of these type of analysis, we have ignored this
(mass proxy-dependent) complication.

Assuming sources are uncorrelated and that the redshift
slices are narrow enough that halos are non-overlapping, the
estimators ∆̂Σ for different radial bins are uncorrelated. In
this limit, the Fisher matrix for a weak lensing shear experi-
ment simplifies to9

Fab =
∑

α

1
Var(∆Σα)

∂
〈
∆̂Σα

〉

∂pa

∂
〈
∆̂Σα

〉

∂pb
(18)

9 In the interest of simplicity, in equation 18 we have neglected the mod-
icum amount of information in the small dependence of Var(d∆Σ) on the
model parameters p. We do not expect our results to be sensitive to this
detail. Moreover, in practice we expect the covariance matrix for the mea-
surements will be estimated using a jackknife method, which will erase any
information in the variation of the covariance matrix with p.
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where the sum is over all radial bins α and p is the vector of
parameters of interest. Throughout, we assume logarithmic
radial binning with bins of width ±∆ log10 R = 0.02. More-
over, we will only add bins over the radial range 0.1 Mpc to
2 Mpc. We will further impose the condition that the clus-
ter magnification must be smaller than five (i.e. |µ| ≤ 5) for
a radial bin to be included in our computation. This ensures
that for those systems where the Einstein radius extends past
the 0.1 Mpc minimum radius, we do not include information
from sources that are strongly lensed. Our results are robust
to making our bins narrower, but do depend in detail on the
radial range assumed. For a discussion, see section 3.2.

We model the mass distribution of cluster stacks as a
Navarro, Frenk, and White (NFW, Navarro et al. 1996) pro-
file. For simplicity, we have held the concentration parameter
of our clusters fixed to c = 5. Changes in concentration within
a stack do not qualitatively change any of our results, and have
only a modest impact on the quantitative results. All of our
conclusions are robust to the choice of concentration param-
eter. We compute the convergence and shear of NFW pro-
files using the formulae in Wright & Brainerd (2000) (see also
Bartelmann 1996, and appendix of Schmidt & Rozo (2010)).

2.4. Results
Figure 1 shows the predicted statistical uncertainty in the

weak lensing mass and concentration of our cluster stacks as a
function of the mean cluster mass of the stack. Different lines
correspond to different lens redshift. From top to bottom, the
solid lines assume lens redshifts zlens = 0.1, 0.2, and 0.4. From
bottom to top, the dashed lines assume zlens = 0.6, 0.9, and
1.2. The vertical dotted line is a rough estimate of the ex-
pected mass threshold for optical selection. Qualitatively, the
precision of weak lensing measurements increases from z = 0
to z ≈ 0.2, reflecting the increasing number of lenses due to
increased survey volume, as well as the improvement on the
lensing efficiency of the lenses. Between z ≈ 0.2 and z ≈ 0.6,
the precision of the weak lensing measurements is roughly
redshift independent: even though survey volume continues
to increase, it is now offset by a diminishing source density.
For redshifts z & 0.6, both the lensing efficiency and the effec-
tive source density decrease quickly with increasing lens red-
shift, so weak lensing masses begin to worsen. We also note
that at all redshifts there is a mass scale at which the errors
blow up, reflecting the exponential drop off in the halo mass
function. The typical precision with which the mean mass
of galaxy clusters may be estimated at moderate redshifts is
roughly 2%.

2.5. On the Choice of Estimator

In section 2.1 we defined the estimator ∆̂Σ differently from
the more commonly used weak lensing shear estimator:

∆̂Σ
′

=
1
N

∑

i

Σc(zi)ei (19)

Pixelizing the sky, the estimator ∆̂Σ
′

can be written as

∆̂Σ
′

= Σ̄c

∑
i ∆Ωµ

q/2
i (1 + δi)Wiei∑

i ∆Ωµ
q/2
i (1 + δi)Wi

(20)

where the sum is now over all pixels.
A difficulty with ∆̂Σ

′

is now immediately apparent. We see
that ∆̂Σ

′

takes the form ∆̂Σ
′

= x/y, and in general one has
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FIG. 1.— The predicted 1σ statistical error in the log-mass (top) and the
concentration (bottom) of galaxy clusters in a DES-like survey as measured
through cluster stacking. The solid lines illustrate the trends with redshift for
z ≤ 0.4, while the dashed lines illustrate the trends with redshift for z ≥ 0.4.
From top to bottom (in either plot) the lens redshifts of the solid curves are
zlens =0.1, 0.2, 0.4, whereas the redshift of the dashed curves is, from bottom
to top, zlens =0.6, 0.9, and 1.2. The typical precision with which the mean
mass of galaxy clusters may be estimated at moderate redshifts is roughly
2%.
〈
∆̂Σ

′
〉

= 〈x/y〉 6= 〈x〉/〈y〉. One way to address this problem
is to write y = 〈y〉+δy, and expand the denominator in a power
series using the binomial expansion. This results in a power
series expansion of all quantities in terms of 1/(n̄A) (see Ap-
pendix B). Doing so up to second order in δ to compute the
mean of ∆̂Σ

′

we find
〈
∆̂Σ

′
〉

= Σ̄c

〈
µq/2g

〉
〈
µq/2

〉 . (21)

The quantities in the angular brackets in the right hand side of
the equation are to be averaged over the radial bin of interest.
Adopting the thin annulus approximation, we can pull out the
µ

q/2
i term out of the sums in equation 20 to obtain

∆̂Σ
′

= Σ̄c

∑
i ∆Ω(1 + δi)ei∑
i ∆Ω(1 + δi)

. (22)

In this limit, the magnification term drops entirely out of the
equations, and one can easily solve for the mean and variance
of ∆̂Σ

′

using the power series approach advocated earlier. We
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find (see Appendix B)
〈
∆̂Σ

′
〉

= Σ̄cg (23)

Var(∆̂Σ
′

) = Σ̄
2
c

1
µq/2n̄A

σ2
e

2
. (24)

Note the magnification still appears in the variance since the
effective source density is µq/2n̄.

Using the above equations, we repeat the Fisher matrix
experiment that we carried out for ∆̂Σ. We find that these
two estimators recover the mean cluster mass of a stack with
nearly identical precision, with |σM − σM′ | . 0.2% where σM
and σM′ are the forecasted uncertainties in 〈lnM〉 for a stack
using the estimators ∆̂Σ and ∆̂Σ

′

respectively.
Before we end, we would like to put a word of warning con-

cerning the validity of our results for the estimator ∆̂Σ
′

. Our
derivation in this section deals with the covariance between
the numerator and denominator of ∆̂Σ

′

through a power series
expansion, where the expansion parameter is 1/n̄A, the ex-
pected number of galaxies within the annulus of interest. Con-
sequently, for our analysis to be applicable one must choose
radial bins that are large enough for n̄A � 1. On the other
hand, we are also using the thin annulus approximation, so A
cannot be arbitrarily large. While we expect to be able to si-
multaneously satisfy both of these constraints in stacked weak
lensing analysis, this is generally not possible for individual
clusters. For instance, in our fiducial model, a relatively broad
radial bin R ∈ [0.2 Mpc,0.4 Mpc] would only contain ≈ 25
galaxies, so the higher-order terms in the 1/n̄A power series
expansion can in principle introduce ≈ 5% level corrections
to the signal in the inner most radial bins. Here, we do not
address this additional difficulty since our primary interest is
stacked weak lensing. The finite width bin corrections that
we treat below concern corrections to the leading order term
which occur even when n̄A � 1.

3. SYSTEMATICS

3.1. Lensing Bias Corrections
By lensing bias corrections we refer to the terms that scale

as µq/N for some value of N in both the mean and variance
of our shear estimators. As discussed in section 2.5, in the
thin annulus approximation the mean of ∆̂Σ

′

is independent
of these lensing bias terms, so we expect lensing bias correc-
tions to be small.10 The same is not true of ∆̂Σ, and therefore
ignoring these corrections can potentially lead to systematic
biases. That said, it is worth emphasizing that incorporating
these corrections into the analysis is not difficult, so having
to include such corrections is not any sort of limiting system-
atic. Our goal here is simply to determine whether doing so is
a necessary step in the analysis of future data sets.

To address this question, we use the Fisher matrix formal-
ism set out in the appendix of Wu et al. (2008) (see also
Huterer & Linder 2007) to estimate the mass and concen-
tration parameters that would be recovered from the data if

10 In principle, the fact that lensing bias does impact the covariance matrix
of d∆Σ

′
could lead to biasing in halo mass and concentration. In practice,

however, the error bars employed when relying on d∆Σ
′

are based on the
Poisson variance of the observed number density, which includes the appro-
priate lensing bias. Thus, one does not expect d∆Σ

′
to be affected by lensing

bias.
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FIG. 2.— 68% likelihood contours obtained when measuring the mass and
concentration of a halo stack of mass M = 5×1014 M� at redshift z = 0.3 us-
ing a DES-like survey. The solid contour includes the corrections for lensing
bias, while the dashed line ignores these corrections. The best fit value for
the former case coincides with the input parameters, marked by a diamond,
while ignoring these corrections leads to biased expectation values, shown
here with a triangle. This behavior is generic (see Figure 3 for details).

lensing bias corrections are ignored, and then compare those
results to those derived when properly including the lens-
ing bias terms in the analysis. The basic idea is illustrated
in Figure 2. The solid and dashed ellipses represent the
68% confidence contours when including (solid) or ignoring
(dashed) lensing bias corrections for a halo stack at z = 0.3
and M = 5×1014 M�. The true halo mass and concentration
is marked by the diamond, while the triangle marks the best
fit halo mass and concentration obtained when ignoring lens-
ing bias corrections. We can see that the best fit values when
ignoring lensing bias effects are well beyond the 68% error
ellipse of the experiment, demonstrating that lensing bias is a
significant correction when using the ∆̂Σ estimator.

The extent to which lensing bias is important relative to sta-
tistical uncertainties depends on both halo mass and redshift.
In particular, lensing bias is more important at high masses,
and at redshifts z ≈ 0.2 − 0.5, for which lensing efficiency is
high and statistical errors are small due to high source den-
sities. This is illustrated in Figure 3, where we show the
ratio between the systematic bias in mass and concentration
incurred by ignoring lensing bias effects, relative to the cor-
responding statistical uncertainty. We see that our projected
bias in the halo mass can be twice as large as the correspond-
ing statistical uncertainty, while the corresponding errors in
concentration can be even larger than 10 times the statistical
error. Thus, inclusion of lensing bias and reduced shear cor-
rections are necessary for weak lensing mass calibrations in a
DES-like survey.

One aspect of our results that is very surprising is that lens-
ing bias can lead to systematic underestimates of the mass,
despite the fact that lensing bias leads to an apparent in-
crease of the lensing signal. The reason we find that masses
are underestimated when ignoring lensing bias is due to the
anti-correlation between halo mass and concentration. Since
lensing bias dramatically boosts the recovered concentration,
the recovered mass must necessarily go down to compen-
sate. This statement, however, is very much dependent on
the range of radii considered in the calculation. In particular,
as one moves out the maximum radius employed in the anal-
ysis the anti-correlation between mass and concentration de-
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FIG. 3.— Ratio of the systematic bias in the log-mass ∆ lnM or concentra-
tion ∆c incurred when ignoring lensing bias and reduced shear errors, relative
to the statistical uncertainty σln M or σc in these quantities (see Figure 1).

creases, and lensing bias begins to produce positively biased
halo masses (see also section 3.2).

Finally, our results may appear to contradict those in
Schmidt & Rozo (2010), who find lensing bias results in an
overestimate of weak lensing masses despite the fact that they
estimate masses using filters of comparable radius to those
employed here. The reason for this apparent discrepancy is
that in this analysis we have fit for both halo mass and con-
centration, whereas in the Schmidt & Rozo (2010) analysis,
the concentration parameter is held fixed at its fiducial value.
In that case, the apparent increase in the matter density in the
inner regions of a cluster due to lensing bias necessarily goes
into halo mass rather than concentration, leading to a positive
mass bias. In practice, because cluster stacks have abundant
signal, one fits for both mass and concentration, so the obser-
vationally relevant case for cluster stacks is that considered
here. For individual weak lensing mass estimates in the low
signal-to-noise regime, the results of Schmidt & Rozo (2010)
are the relevant ones.

3.2. The Relative Information Content of Different Scales
In light of the results from the previous section it is worth

investigating the contribution to the Fisher matrix from each
individual radial bin as a function of radius. The information
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FIG. 4.— Mass (solid) and concentration (dashed) sensitivity as a function
of radius for a 1015 M� halo at redshift z = 0.6. The sensitivity functions
characterize the relative information content of various scales. Dotted curves
are the two sensitivity functions we obtain when neglecting lensing bias cor-
rections. Not surprisingly, the scales that dominate the concentration and
mass information content are a few hundred kpc and a few Mpc respectively.
In both cases, lensing bias shifts the sensitivity functions towards smaller
scales, as we would expect.

contributed by radial bin Rα is

Fab(Rα) =
1

Var(∆Σα)

∂
〈
∆̂Σα

〉

∂pa

∂
〈
∆̂Σα

〉

∂pb
. (25)

Of course, this quantity explicitly depends on the width of the
radial bins employed. We therefore define the relative sensi-
tivity sab via

sab(Rα) =
Fab(Rα)

max{Fab(Rα)}
(26)

assuming logarithmic radial bins. Note that, by construction,
sab is very nearly independent of the assumed width of the
radial bins and the assumed source density. Of particular in-
terest to us are the mass sensitivity smm and concentration sen-
sitivity scc, which characterize the relative mass and concen-
tration information content of various scales.

Figure 4 illustrates the mass (solid) and concentration
(dashed) sensitivity functions for a 1015 M� halo at redshift
z = 0.6. Not surprisingly, the mass information content is
dominated by scales of order a few Mpc, while the concen-
tration information content is dominated by scales of order
a few hundred kpc. The large overlap of the two sensitiv-
ity functions results in the anti-correlation between halo mass
and concentration noted earlier. The dotted lines in the fig-
ure correspond to the sensitivity functions in the absence of
lensing bias effects (i.e. setting q = 0). We see that lensing
bias shifts the sensitivity functions to smaller scales, effec-
tively up-weighting them, as we would expect. The corre-
sponding sensitivity functions for the estimator ∆̂Σ

′

are es-
sentially identical to those of ∆̂Σ in the absence of lensing
bias corrections.

In light of Figure 4 it is easy to understand why our re-
sults were sensitive to the adopted radial range. It is evident
from the figure that both the minimum and maximum radius
will impact our results. The minimum radius chosen will di-
rectly affect the precision of the concentration measurement,
which in turn propagates to the cluster mass via the mass–
concentration correlation. Likewise, it is easy to see why our
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FIG. 5.— Bias in the recovered weak lensing masses using the thin-annulus
approximation for predicting the expectation value of d∆Σ

′
as a function of

the width of the annulus used to estimate the shear profile. We assume d∆Σ
′

is estimated in annuli of width ∆ defined via [lnRc −∆, ln Rc +∆]. The solid
line assumes the thin annulus approximation at R = Rc, while the dashed line
assumes the thin annulus approximation at the mean radius of the annulus
〈R〉. This bias is nearly independent of halo mass, concentration, redshift,
and source density.

results are sensitive to the maximum radius employed: scales
as large as tens of Mpc still contain non-negligible amounts of
information pertaining to the halo mass. Of course, in practice
such scales show deviations from a simple projected NFW
profile (Hoekstra (2003)), both because of possible deviations
from NFW in the 1-halo term, and because of the appearance
of a 2-halo term. We defer an investigation of this problem to
future work. Here, we simply note that we expect that there is
significant additional information in the weak lensing signal
up to scales as large as several tens of Mpc.

3.3. The Thin Annulus Approximation

When performing our forecasts for both ∆̂Σ and ∆̂Σ
′

we
adopted the thin annulus approximation, in which one ignores
variations of the convergence, shear, and magnification fields
within an annulus. When using finite radial bin widths, how-
ever, there is a slight ambiguity on what radius should one em-
ploy when performing the thin annulus approximation. Two
obvious choices are the central radius Rc where the radial bins
are defined by lnRc ±∆ lnR, and the mean radius of the an-
nulus

〈R〉 =
2
3

R3
max − R3

min

R2
max − R2

min
. (27)

The question then becomes, how thin must an annulus be for
the thin annulus approximation to hold for either of these two
choices of radii?

To address this question, we have again relied on a Fisher
matrix approach to estimate the systematic error in the log-
mass of a galaxy cluster when the mass is estimated using the
thin-annulus approximation, as a function of the width of the
annulus used to estimate ∆̂Σ or ∆̂Σ

′

. For specificity, we will
focus here on ∆̂Σ

′

, but very similar conclusions hold for ∆̂Σ.
We emphasize that, just as with lensing bias corrections, one
can in principle just include these finite bin width effects in the
fits. The analysis described here simply addresses whether it
is necessary to do so.

Our results are shown in Figure 5. The largest bin width
we consider is roughly five bins per decade in radius, corre-
sponding to ±∆ log10 R = 0.1. For such a bin width, there is
a negative mass bias of ≈ 5% assuming the thin annulus ap-
proximation at R = Rc (solid line), and a ≈ 2% positive bias
assuming R = 〈R〉 (dashed line). This bias is nearly indepen-
dent of halo mass, concentration, redshift, or source galaxy
density. Thus, it is important to account for finite bin width
effects when estimating cluster masses, particularly for the
purposes of calibrating cluster scaling relations.11

The origin of the the above bias is simple to understand:
consider first the case R = Rc. It is evident that in this case our
annulus contains more area beyond R = Rc than below R = Rc.
Consequently, we expect a negative bias, since the outer re-
gion of the annulus is being up-weighted relative to the inner
region. Setting R = 〈R〉 evidently overcompensates for this ef-
fect. While one can in principle imagine finding the specific
value of R for which there is no bias, this value will depend
in detail on cosmology, source galaxy density (due to mag-
nification bias corrections), etc., so it is simplest to just take
into account the finite bin-width correction exactly. Alterna-
tively, when performing stacked weak lensing measurements
one may adopt very narrow radial bins, in which case these
corrections become negligible.

3.4. Foreground and Cluster Member Dilution
One important systematic when estimating the mass of

galaxy clusters through weak lensing is the effect known
as member dilution (Bernardeau (1998); Medezinski et al.
(2007)). That is, if cluster members or other foreground
galaxies are included in the source population, they will re-
duce the observed shear and cause us to underestimate the
cluster mass. Let us treat this problem explicitly: the total
(angular) galaxy density around a cluster at redshift z can be
written as a sum

n = nbg + nfg + ncl (28)

where nbg is the background galaxy density field, nfg is the
foreground galaxy density, and ncl is the density of cluster
galaxies. When estimating weak lensing masses, one adopts
photometric redshift cuts to preferentially select background
galaxies. Let rbg, rfg, and rcl be the probabilities of passing
the photometric redshift cuts for a galaxy in the background,
foreground, and at the lens redshift, respectively. A perfect
photometric redshift selection would result in rfg = 0, rcl = 0,
and rbg = 1, so the value of these parameters characterizes the
actual redshift distribution of the source sample in the pres-
ence of imperfect photometric redshift selection. We wish
to consider the impact of uncertainties in these parameters on
∆̂Σ and ∆̂Σ

′

. For simplicity, we will work in the thin annulus
limit throughout.

We begin by considering ∆̂Σ, which we now write as

∆Σ =
Σ̄c

n̄AF

∑

i

∆Ω

[
rbgnbgebg

i + rfgnfgefg
i

]

+
Σ̄c

n̄AF

∑

i

∆Ωnclecl
i (29)

11 The small “steps” that appear in Figure 5 are real. To estimate cluster
masses, we use the scales 0.1 Mpc < R < 2 Mpc. This means that when we
vary the bin width, there will be discrete jumps in the number of bins, which
leads to the “stepping” observed in the plot.
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FIG. 6.— Top Panel: The ratio n̄cl/n̄ of the projected density of cluster
galaxies to the mean galaxy density of the survey for a halo of mass M =
1015 M� for a variety of redshifts. From bottom to top, the redshift of the
solid curves are z =0.1, 0.15, 0.3, and 0.6. From top to bottom, the redshift of
the dashed lines are z =0.9, 1.2, and 1.5. The redshift slice 0.2 . z . 1.0, the
ratio n̄cl/n̄ can be larger than unity in the inner few hundred kpc for massive
halos.

Here, F is the fraction of galaxies with redshift higher than the
redshift of the cluster (according to the observed redshift dis-
tribution), while n̄ is the mean galaxy density over the whole
survey. Hence, averaging over the whole survey,

〈nbg〉 = Fn̄; 〈nfg〉 = (1 − F)n̄. (30)

Further, efg, ebg, and ecl represent the foreground, background,
and cluster ellipticity fields. The first two moments of ebg sat-
isfy equations 6 and 11, while for the foreground and cluster
ellipticity fields we set

〈ei〉= 0 (31)

〈eie j〉=
1
2
σ2

e δi j. (32)

In practice, cluster member galaxies are known to be radially
aligned (i.e.,

〈
ecl

i

〉
6= 0), but the extent of the radial ellipticities

is less well known. We defer this additional source of error to
future work. Upon plugging in, we find

〈
∆̂Σ

〉
= rbgΣ̄cµ

q/2g, (33)

implying that ∆̂Σ is sensitive to only one of the three system-
atic parameters considered here. The relative systematic error
due to an uncertainty δrbg in rbg is simply

σsys(ln∆Σ) =
δrbg

rbg
= δrbg (34)

assuming our fiducial value rbg = 1.

Let us now turn our attention to ∆̂Σ
′

, which takes the form

∆̂Σ
′

= Σ̄c
x
y

(35)

where

x =
∑

i

∆Ω

[
rbgnbgebg

i + rfgnfgefg
i + rclnclecl

i

]
(36)

y =
∑

i

∆Ω
[
rbgnbg + rfgnfg + rclncl

]
. (37)

We will again ignore correction terms to the mean that go as
1/(n̄A), and set

〈
∆̂Σ

′
〉

= 〈x〉/〈y〉. We then arrive at

〈
∆̂Σ

′
〉

= Σ̄cg
[

1 +
rfg

rbg

1 − F
µq/2F

+
rcl

rbg

〈ncl〉

n̄
1

µq/2F

]−1

(38)

Here, 〈ncl〉 is the mean number density of cluster member
galaxies in the stack considered. We find that

〈
∆̂Σ

′
〉

is sensi-
tive to all three of our systematics parameters rfg, rbg, and rcl.
While these parameters only appear as two independent ratios
— rfg/rbg and rcl/rbg — in practice we still need to estimate
all three parameters independently.

But just how sensitive is ∆̂Σ
′

to systematic uncertainties?
As for ∆̂Σ, we compute the relative systematic error due to a
small uncertainty in our systematics parameters. Linearizing,
we find

σsys(ln∆Σ
′) = −δrfg

1 − F
µq/2F

− δrcl
〈ncl〉

n̄
1

µq/2F
. (39)

Comparing the above expression to equation 34, it is clear that
∆̂Σ

′

is more robust to systematics if the coefficient of δrfg and
δrcl are smaller than unity. Inspecting the above expression
we notice two important things: first, the coefficients scale
as 1/F, so at large redshifts, ∆̂Σ is guaranteed to become
more robust than ∆̂Σ

′

. Second, the coefficient for δrcl scales
as ncl/n̄ (dilution effect), which we expect to be larger than
unity in the cores of clusters, but insignificant in the outskirts,
so it is possible for ∆̂Σ to be more robust than ∆̂Σ

′

in the
cores of clusters, but the opposite be true in the outskirts.

Figure 6 shows the ratio n̄cl/n̄ for a halo of mass 1015 M�

as a function of radius for a variety of redshifts. The ratio has
been estimated using the model detailed in Appendix C. As
we expected, this ratio is larger than unity in the inner few
hundred kpc for 0.2 . z . 1.2. Note, however, that this is true
for very massive halos. If we assume instead M = 1014, this
ratio barely reaches unity at R = 100 kpc. Note that the simple
model for cluster members used here should only be taken as
an order-of-magnitude estimate.

Figure 7 shows the relative systematic error for both the
∆̂Σ and ∆̂Σ

′

estimators assuming a systematic uncertainty
δrbg = δrfg = δrcl = 1% (one can easily scale the values in Fig-
ure 7 to other valus of δr). For the estimator ∆̂Σ, the corre-
sponding systematic error is constant, and mass and redshift
independent. The same is not true of ∆̂Σ

′

. We find that for
massive halos, the error in ∆̂Σ

′

is typically dominated by di-
lution of the lensing signal by cluster member galaxies. This
error becomes larger than the expected statistical error in ∆̂Σ

at z ≈ 0.3, though it affects only the innermost few hundred
kpc scales. Moreover, this error is explicitly mass dependent,
with less massive halos benefiting from smaller systematic
uncertainties. In all cases, however, for z & 0.8, the 1/F de-
pendence of the systematic error on ∆̂Σ

′

makes this estimator
less robust than ∆̂Σ.

From the above discussion alone, it is unclear if either of
the two estimators we have considered here is superior to
the other. At very high masses and high redshift, ∆̂Σ is
likely to be preferable to ∆̂Σ

′

, but this may be reversed as
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FIG. 7.— Relative systematic error for both d∆Σ (dotted) and d∆Σ
′

(solid
and dashed) as a function of radius for a halo of mass M = 1015 M�. The solid
curves show the error on d∆Σ

′
due to a 1% systematic uncertainty δrfg on the

fraction of foreground galaxies included in the source galaxy population (the
curves for z = 0.1,0.3 are below the minimum error plotted). Dashed curves
are the relative systematic error on d∆Σ

′
due to a 1% error on rcl, the fraction

of cluster galaxies mistakenly included in the source population. Finally, the
dotted curves are the (redshift-independent) relative error on d∆Σ due to a 1%
systematic error δrbg in the estimated fraction of background galaxies in the
source population.

one moves towards lower redshifts and/or masses. Further-
more, choosing between ∆̂Σ and ∆̂Σ

′

also amounts to choos-
ing between a spatially constant, mass-independent but likely
redshift-dependent systematic in the case of ∆̂Σ, and a sig-
nificantly mass- and radius-dependent systematic in case of
∆̂Σ

′

. The cluster member dilution affecting ∆̂Σ
′

is frequently
corrected for by multiplying the shear profile measured with
∆̂Σ

′

by the observed source galaxy-cluster correlation func-
tion (e.g., “boost factor” in Mandelbaum et al. 2005). This
is essentially equivalent to using the estimator ∆̂Σ from the
start. Finally, the answer as to which estimator is preferable
will also depend on which of the systematic uncertainties dis-
cussed here — rbg, rfg, and rcl — can be best controlled.

3.5. Other Systematics
In addition to the systematics discussed above, there are

additional sources of systematic uncertainty that can impact
our results. A few examples of such sources of systematic
uncertainty are:

• Shear Systematics: if shear is mis-estimated, this sys-
tematic will of course be carried over to the estimated
cluster mass.

• Miscentering: if clusters are miscentered, this can have
a dramatic impact on the expectation value of the weak
lensing signal in the cores of clusters (Johnston et al.
2007b). This systematic will almost certainly dominate
the uncertainty with which the concentration of galaxy
clusters can be measured within cluster stacks, but its
impact on cluster masses can be significantly reduced
through careful analysis (Mandelbaum et al. 2010).

• Source obscuration by foreground galaxies: occasion-
ally, background galaxies will be perfectly aligned with
foreground galaxies, and therefore the latter cannot be

included in the weak lensing shear signal estimation.
This reduces the effective area of the annuli used to esti-
mate shear, which in turn impacts the expected number
of galaxies in the annulus, thereby impacting globally
normalized estimators.

• Photometric redshift errors: the strength of the shear
signal depends on the redshift of the source galaxy
under consideration, which must be estimated based
on photometric data. Consequently, scatter and catas-
trophic errors in photometric redshift estimates may
have a significant impact on shear mass calibration ex-
periments (see e.g. Mandelbaum et al. 2008).

In light of this discussion, we reiterate that determining
whether ∆̂Σ is superior to ∆̂Σ

′

or vice-versa will require
empirical investigation, and that due to these systematics, the
forecasted precison for a DES-like survey is best interpreted
as the lower-limit for what will actually be realized. That said,
until one estimator may be conclusively shown to be superior
to the other, estimating cluster masses using both estimators
should allow one to estimate the level of systematic uncer-
tainty introduced by source galaxy selection, which should be
of tremendous utility in upcoming photometric surveys.

4. THE IMPACT OF STACKED WEAK LENSING ON CLUSTER
ABUNDANCE EXPERIMENTS

4.1. Fisher Matrix and The Fiducial Model
We now consider whether the statistical precision of the

mean weak lensing masses recovered from stacked weak lens-
ing is sufficient to significantly improve cosmological con-
straints in a DES-like survey relative to the self-calibration
expectation with Planck priors. We address this question by
once again relying on the Fisher matrix formalism. Specifi-
cally, we set the Fisher matrix for our experiment to the sum
of the standard self-calibration result plus an additional con-
tribution due to the stacked weak lensing data,

Ftotal = FPlanck + FSC + FWL. (40)

The Planck priors Fisher matrix is that provided by Hu and
Ma (private communication). For the self-calibration fisher
matrix, we use the formalism described in detail in Wu et al.
(2008) and Wu et al. (2010). Briefly, we assume that the sur-
vey area 5,000 deg2 is divided into 500 patches of 10 deg2

each. The observables in our experiment are the cluster counts
in each of these 500 patches for each mass and redshift bin.
We adopt the same binning as for the weak lensing analy-
sis (five bins per decade in mass, and redshift slices of width
±∆z = 0.05).

The model parameters we consider can be split into two
categories, cosmological parameters, and the nuisance param-
eters describing the observable–mass relation. The cosmo-
logical parameters and their fiducial values are given in the
introduction, except that we add as free parameters w0 and
wa. These describe the equation of state of the dark energy
w = w0 + wa(1 − a) as a function of the cosmic expansion fac-
tor a. We will be primarily interested in how the Dark Energy
Task Force (Albrecht et al. 2006) figure of merit — defined
as the the product of the eigenvalues of the w and wa Fisher
matrix — changes upon inclusion of the weak lensing data.

In order to describe the observable–mass relation, each
cluster is assumed to have an observed “mass” Mobs which
represents its richness measurement. We assume the
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observable–mass relation P(Mobs|Mtrue,z) is log-normal, with
the mean and variance of lnMobs assumed to scale linearly
with lnM and ln(1 + z). We write

〈lnMobs〉= lnM0 +αM ln
(

M
Mpivot

)
+αz ln(1 + z) (41)

σ2
obs =σ2

0 +βM ln
(

M
Mpivot

)
+βz ln(1 + z). (42)

We set Mpivot = 7×1013 M�.12 The remaining set of parame-
ters are allowed to vary, and all of our results are marginalized
over these observable–mass parameters. We set the fiducial
value of our free parameters to those of an unbiased estimator
in lnMobs, so that lnM0 = lnM and αM = 0 and αz = 0. Further,
for our fiducial model we assume no evolution of the scatter
with mass or redshift, so that βM = βz = 0. We consider two
possible values of the amplitude of the scatter σ0 = 0.2 and
σ0 = 0.5, corresponding to 20% and 50% scatter in Mobs at
fixed Mtrue.

Our stacked weak lensing analysis allows us to introduce an
additional set of observables in our analysis, namely the mean
mass MW L in bins of Mobs. Since the mean mass estimates of
the different bins are independent, the weak lensing Fisher
matrix is simply

FWL =
∑

all bins

1
σ2

W L

∂ 〈lnMW L〉

∂pi

∂ 〈lnMWL〉

∂p j
(43)

where σW L is the error in the mass estimated in section 2.4. To
compute 〈lnMWL〉, we assume that weak lensing masses are
unbiased, so that

〈MW L|Mobs,z〉= 〈Mtrue|Mobs,z〉 (44)

=
1
N̄

∫
dMtruedz Mtrue

dn
dMtrue

dV
dz

〈φ〉 (45)

where φ is the binning function in observed mass and redshift,
〈φ〉 is the effective binning function as a function of true halo
mass,

〈φ|Mtrue,z〉 =
∫

dMobs φ(Mobs,z)P(Mobs|Mtrue,z), (46)

and N̄ is the expected number of clusters,

N̄ =
∫

dMtruedz
dn

dMtrue

dV
dz

〈φ〉 . (47)

A more detailed discussion of how to add this additional in-
formation to cluster forecasts is presented in Wu et al. (2010).

Before moving on, we point out that since the error esti-
mates σW L of the weak lensing masses from section 2.4 as-
sumed clusters were binned according to their true masses,
there is a small scatter-dependent correction to the predicted
uncertainties. Given that we have not taken into account finite
mass bin width effects (see section 2.3), we ignore these cor-
rections in this section as well, and simply remind the reader
that the corrections are expected to be small since shape noise
is larger than the intrinsic scatter in the mass.

4.2. Results

12 Note lnM0 and lnMpivot are degenerate, so we can fix one of them arbi-
trarily without loss of generality.

FIG. 8.— The figure of merit for a DES-like cluster abundance experiment
with stacked weak lensing mass calibration relative to its self-calibration ex-
pectation, as function of the external prior ∆σ2

0 on the scatter in the mass-
observable relation. Planck priors are assumed. The solid lines employ the
forecasted errors arrived at in section 2.4. The dashed and dotted lines have a
source density that is a factor of two lower (dashed) and higher (dotted) than
that of our fiducial model. The long tick marks along the top axis correspond
to a 5% prior on the scatter assuming σ0 = 0.1 (solid), σ0 = 0.2 (dashed), and
σ0 = 0.5 (dotted). The relative improvement in the figure of merit is nearly
independent of the adopted value of σ0, particularly for broad priors.

Figure 8 shows the figure of merit of our DES-like survey
including stacked weak lensing mass calibration relative to
the figure of merit obtained without this additional source of
data. We have allowed for the possibility of a prior on the
scatter parameters with ∆σ2

0 = ∆βM = ∆βz. The solid line
assumes the weak lensing uncertainty for each mass and red-
shift bin σW L estimated in section 2.4, whereas the dashed and
dotted assumed a source density that is half and twice that of
our fiducial model respectively. Assuming no scatter prior,
we find that the improvement in the Dark Energy Task Force
figure of merit is in the range 2.5 − 3.5. This is true for both
the σ0 = 0.2 and the σ0 = 0.5 models: the relative improve-
ment in the figure of merit is only weakly dependent on the
assumed scatter, which is why we only show one set of curves
in Figure 8 (those for σ0 = 0.5). The fiducial value for the fig-
ure of merit is, of course, different. We have FoMSC = 19 for
σ0 = 0.2, while FoMSC = 15 for σ0 = 0.5.

Additional priors on the scatter of the mass–observable re-
lation may further increase the efficacy of stacked weak lens-
ing mass calibration, leading to improvements in the figure of
merit as large as a factor of 8. To do so, however the priors
need to be very tight. Note that we have expressed these pri-
ors in terms of the variance rather than the standard deviation.
For reference, the long thin vertical tick marks a long the top
x-axis in Figure 8 correspond to a 5% prior (i.e. ∆σ0 = 0.05
on the scatter, assuming σ0 = 0.1 (solid), σ0 = 0.2 (dashed),
and σ0 = 0.5 (dotted). Note that while strictly speaking we
are only showing the relative improvement for the σ0 = 0.5
case, the curves for σ=0.1 and σ0 = 0.2 closely track that for
σ0 = 0.5. It is evident from the Figure that accurate knowledge
of the scatter can lead to significant further improvement in
the figure of merit of the experiment.

We have also considered how biases in the weak lensing
masses could impact cosmological parameter estimation in
order to assess the level at which systematics need to be con-
trolled. Not surprisingly, we find that ≈ 2% biases in mass —
which correspond to ≈ 1σ — result in ≈ 1σ biases in the in-
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ferred cosmological parameters. Whether the recovered weak
lensing masses can indeed be expected to be unbiased at the
2% level in real data, however, remains to be seen.

5. SUMMARY AND CONCLUSIONS

Weak lensing shear profiles and weak lensing peak finding
tend to utilize the shear signal in different ways, with shear
profile mass calibration relying on locally normalized estima-
tors (∆̂Σ

′

), and peak finding relying on globally normalized
estimators (∆̂Σ). We have used both of these estimators to
predict the precision to which the mean mass of galaxy clus-
ter stacks in a DES-like survey can be measured. We find that
for moderate redshift clusters (z . 0.6), the typical precision
achieved is ≈ 2%, with the two types of estimators having
nearly identical statistical uncertainties. A companion paper,
Schmidt & Rozo (2010), investigates similar issues in the case
of weak lensing peak finding.

We also considered three sources of systematic biases for
these measurements. The first is lensing bias, which we find
affects ∆̂Σ but not ∆̂Σ

′

. For the former, we find that includ-
ing lensing bias corrections to the expectation value of ∆̂Σ is
necessary to avoid significant systematic biases in both halo
mass and concentration. We emphasize however that lensing
bias corrections can be easily incorporated into the data anal-
ysis, so this is not a particularly worrisome systematic. Our
results simply indicate that it is necessary to incorporate these
corrections.

The second source of systematic uncertainty we consid-
ered are finite bin-width corrections, which affect both ∆̂Σ

and ∆̂Σ
′

. Again, these corrections can in principle be ex-
plicitly included when analyzing data, and our investigation
only addresses whether doing so is necessary for practical pur-
poses. We find that for logarithmic bins ±∆ log10 R . 0.04,
the systematic bias in mass from finite bin-width corrections
is less than 1%. If one uses 5 bins per decade in radius
(±∆ log10 R = 0.1), biases as large as 5% in mass are possi-
ble.

The final systematic we consider here is fluctuations in the
number density of galaxies due to intrinsic clustering, which

can affect the estimators through imperfect photometric red-
shift selections. Remarkably, we find that ∆̂Σ and ∆̂Σ

′

are
affected by this systematic in very different ways: ∆̂Σ is af-
fected by the fraction of background galaxies missed by pho-
tometric redshift selection, whereas ∆̂Σ

′

is affected by the
fraction of foreground or cluster member galaxies that are in-
cluded in the source population. Whether ∆̂Σ or ∆̂Σ

′

is more
robust depends on which of these systematics can be better
controlled, a question which can only be empirically resolved.
In either case, both estimators can be used to cross-check each
other for the effects discussed here, due to their significantly
different systematics.

Finally, having estimated the precision with which the
mean cluster mass of clusters stacks can be measured with
a DES-like survey, we have investigated how this measure-
ment would impact the cosmological parameter constraints of
a DES-like cluster abundance experiment. We find that with
our fiducial assumptions, the figure of merit of such an exper-
iment improves by a factor of 2.5–3.5, with larger increases
possible if priors on the scatter of the observable–mass re-
lation can be derived from additional observations. Further-
more, the improvement in the figure of merit induced by weak
lensing mass calibration is almost independent of the magni-
tude of this scatter, and should thus apply to a wide range of
mass proxies.
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APPENDIX

SOURCE CLUSTERING

In the main section of this paper, we assumed source galaxies are randomly distributed in the sky. We now investigate whether
source clustering can have an impact on our results. Source clustering implies that equation 10 must be replaced by

〈δiδ j〉 = δi j
1

µq/2n̄∆Ω
+ ξi j (A1)

where ξi j is the projected galaxy–galaxy correlation function. Note that in general this term will correlate different radial bins, so
that if ∆̂Σα and ∆̂Σβ are the estimators at radial bins α and β, the new term in the covariance matrix is given by

Cαβ = Σ̄
2
cµ

q/2
α µ

q/2
β gαgβVαβ (A2)

where

Vαβ =
1

AαAβ

∑

i j

∆Ω
2ξi jWα

i Wβ
j , (A3)

and Aα and Aβ are the area of the annulus α and β respectively. Note we have used the thin annulus approximation to set µ and
g constant within each annulus. Taking now the continuum limit, we arrive at

Vαβ =
1

AαAβ

∫
d2l

(2π)2 P(l)|W∗

α(l)Wβ(l)|. (A4)

Before going any further, it is worth taking a second to compare equation A2 with equation 12. Specifically, note that shape
noise is explicitly dependent on the source density, whereas source clustering is not. This implies that at a sufficiently high source
density, source clustering must dominate. On the other hand, source clustering scales as g2, whereas shape noise scales as σ2

e .
More precisely, source clustering will be relevant if g2

αVαα is comparable to σ2
e/2n̄A. Thus, unless the source density is quite

large, we expect shape noise to dominate. What follows is a quantitative confirmation of this expectation.
To do so, we need to begin by estimating Vαβ, which in turn requires that we compute the projected source galaxy power

spectrum. Let then nco(x) be the comoving galaxy density field. Assuming flatness, the corresponding projected galaxy density
field is

n(~θ) =
∫

dz ncoχ
2 dχ

dz
H(z − zL) (A5)

where H is a step function that selects only galaxies at redshift larger than the lens redshift of interest zL. The fluctuations in the
source density field are therefore given by

δ(~θ) =
∫

dχ g(χ)δg(x) (A6)

where δg(x) is the 3D galaxy density contrast, and

g(χ) =
1∫

dz f (z)H(z − zL)
f (z)

(
dχ

dz

)−1

H(z − zL). (A7)

Using Limber’s approximation, the angular power spectrum of the source density field is related to the three dimensional galaxy
power spectrum via

P(l) =
∫

dχ
g2(χ)
χ2 P3D(l/χ,z). (A8)

All that remains is to specify the 3D galaxy power spectrum. To do so, we assume a constant scale-independent bias b = 1 relative
to the non-linear matter power spectrum Pmm(k,z), which we compute using Smith et al. (2003) as implemented in the CAMB
package (Lewis et al. 2000).

Having determined the projected source power spectrum, we need to compute the mean power over the filter functions Wα. We
assume Wα is a top hat in radius going from log10 R ∈ [log10 Rc −∆, log10 Rc +∆], with ∆ = 0.02 as per our fiducial assumptions.
The Fourier transform of Wα is therefore

Wα(l) =
∫

d2θ Wα(θ)exp(il ·θ) = 2π

∫ θmax

θmin

dθ θJ0(lθ) (A9)

=
2π

l2 [umaxJ1(umax) − uminJ1(umin)] (A10)
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FIG. 9.— Ratio of the shape noise error considered in the main body of the manuscript to our estimated source clustering error using our fiducial assumptions
for the estimator d∆Σ. The ratio is shown for halos of mass M = 1014 M� (thin lines) and M = 1015 M�. Different lines correspond to different redshifts, namely
z = 0.1 (solid), z = 0.5 (dashed), and z = 0.9 (dotted). In all cases, we assume a concentration c = 5. We conclude that for the source densities expected for the
DES source clustering is a subdominant source of noise.

where u = Rl/dA and dA is the angular diameter distance to the redshift of the lens. We now have all the ingredients necessary for
computing the source clustering error.

Figure 9 compares the ratio between the shape noise term used in the main section of the paper, and the diagonal contribution
Cαα to the covariance matrix due to source clustering. Note we plot the ratio of the errors (i.e. the square root of the variance)
rather than the ratio of the variance. The ratio of the noise terms is estimated for halos of mass M = 1014 M� (thin lines) and
M = 1015 M� (thick lines) for three different redshifts, z = 0.1 (solid), z = 0.5 (dashed), and z = 0.9 (dotted). We can see that
source clustering is always significantly smaller than the corresponding shape noise terms, so that it can be safely neglected in
our forecast. It is worth remarking, however, that the ratio of these two noise terms is dependent on the assumed radial bin
width, with broader bins leading to smaller ratios reflecting the decreased shape noise. Figure 9 assumes our fiducial bin width
±∆ log10 = 0.02. If we were to use relative broad radial bins of width ±∆ log10 R = 0.1, the error ratio can drop to a factor of 3
for the 1015 M� halos and down to a factor of ∼ 10 for the 1014 M� halos. Thus, even when employing broad radial bins, the
errors are dominated by shape noise rather than by source clustering.

THE MEAN AND VARIANCE OF d∆Σ
′

The estimator ∆̂Σ
′

takes the form ∆̂Σ
′

= Σ̄cx/y where

x =
∑

i

∆Ω(1 + δi)eiWi (B1)

y =
∑

i

∆Ω(1 + δi)Wi. (B2)

We write x = x̄ +∆x and y = ȳ +∆y, and use the binomial expansion to solve for ∆̂Σ
′

assuming ∆y/ȳ � 1 to expand up to second
order. We find

∆̂Σ
′

= Σc
x̄
ȳ

[
1 +

∆x
x̄

−
∆y
ȳ

−
∆x∆y

x̄ȳ
+

∆y2

ȳ2

]
. (B3)

Upon taking the expectation value, and using the fact that x̄ = Ag and ȳ = A, we arrive at
〈
∆̂Σ

′
〉

= Σcg, as per equation 23.
Squaring equation B3, we find

(∆̂Σ
′

)2 = Σ
2
c

(
x̄
ȳ

)2 [
1 +

∆x2

x̄2 +
3∆y2

ȳ2 −
4∆x∆y

x̄ȳ

]
. (B4)

To compute the expectation value, we use the fact that x̄ = gA, ȳ = A, and

〈
∆x2〉 =

(
g2 +

1
2
σ2

e

)
A

µq/2n̄
(B5)
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〈∆x∆y〉=
gA

µq/2n̄
(B6)

〈
∆y2〉 =

A
µq/2n̄

. (B7)

The expectation value of
〈
∆̂Σ

′2〉
simplifies to

〈
(∆̂Σ

′

)2
〉

= Σ
2
cg2

[
1 +

1
µq/2n̄A

σ2
e

2g2

]
, (B8)

which leads directly to equation 24.

A MODEL FOR CLUSTER GALAXIES

In order to compute this systematic error due to δrcl we must first estimate the ratio n̄cl/n̄. For this, we derive an order-of-
magnitude estimate as follows: let ε be the fraction of galaxies within a narrow redshift slice ±∆z about the redshift of the
cluster, and ±L be the corresponding physical width of the slice. These two quantities are related to the redshift width of the slice
via

ε =
1
n̄

dn̄
dz

2∆z =
f (z)∫ ∞

0 dz′ f (z′)
2∆z (C1)

where f (z) is given by equation 14, and

L =
∆z

1 + z
cH−1. (C2)

Now, the mean three dimensional galaxy density ρg within the redshift slice is

ρ̄g =
εn̄

2LD2
A
. (C3)

Letting δg be the galaxy density contrast field, the projected cluster galaxy density is given by

n̄cl = D2
A

∫
dχ

1 + z
ρg = D2

Aρ̄g

∫
dχ

1 + z
(1 + δg) =

εn̄
2L

∫
dχ

1 + z
(1 + δg). (C4)

Assuming galaxies trace mass, we can set δm = δg, and therefore

(1 + δg) = (1 + δm) =
ρm

ρ̄m(z)
. (C5)

Replacing in our expression for n̄cl,

n̄cl =
εn̄
2L

∫
dχ

1 + z
ρm

ρ̄m(zL)
=

εn̄
2Lρ̄m(z)

Σ (C6)

Inserting our expressions for ε and L, and setting ρ̄m = Ωmρc(1 + z)3 we arrive finally at

n̄cl

n̄
=

f (z)∫ ∞

0 dz′ f (z′)
Σ

(1 + z)2ΩmρccH−1(z)
. (C7)




