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ABSTRACT

This paper considers unitarity and CPT constraints on asymmetric freeze-in,
the use of freeze-in to store baryon number in a dark sector. In this scenario,
Sakharov’s out of equilibrium condition is satisfied by placing the visible and
hidden sectors at different temperatures while a net visible baryon number is
produced by storing negative baryon number in a dark sector. It is shown that
unitarity and CPT lead to unexpected cancellations. In particular, the transfer
of baryon number cancels completely at leading order.
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1 Introduction

Models of baryogenesis require CP violation, baryon number violation and a process
that goes out of thermodynamic equilibrium [1]. For processes in thermal equilibrium, the
constraints on the S-matrix that come from unitarity are already strong enough to prohibit
the production of a net baryon number. In most models of baryogenesis, the out of equi-
librium situation is produced by ‘freeze-out’; a heavy particle is sufficiently long-lived that
it survives into an era when it is not being produced by thermal processes. In the presence
of B and CP violation, the decays of this particle can be asymmetric, producing nonzero
baryon number [2,3,4,5,6,7,8,9].

Recently, [10] suggested another mechanism for obtaining an out-of-equilibrium situation.
Their mechanism, called ‘freeze-in’, involves a ‘dark’ sector that never achieves thermal
equilibrium with the ‘visible’ sector, particles with Standard Model quantum numbers. This
hidden sector interacts with the visible sector through a small coupling. The products of these
reactions reflect the out-of-equilibrium nature of the dark sector. In [10], freeze-in is used to
produce dark matter. [11] proposed using freeze-in as a mechanism for transferring baryon
number to a dark sector, creating an apparent baryon asymmetry; this mechanism was
termed asymmetric freeze-in. Asymmetric freeze-in is similar in spirit to Dirac leptogenesis
with a different production mechanism [12,13,14].
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Motivated by the asymmetric freeze-in scenario, this paper considers the transfer of
baryon number or any other U(1) charge between two sectors which are at different tem-
peratures. The unitarity of the S-matrix places strong constraints on the transfer of a U(1)
charge and forces the leading contribution to cancel. Specifically, let the coupling between
the two sectors be given by a small parameter λ. The U(1) charge transfer between the two
sectors cancels at order λ2, so that net baryon number is generated only at order λ3. This
result has an important effect on the analysis in [11]. It dramatically reduces the region of
parameter space in which the mechanism of [11] is effective. However, beyond this appli-
cation, the cancellation an interesting and nontrivial property of thermal field theory that
might well have other applications.

This paper is organized as follows: Sec. 2 introduces some useful notation. Sec. 3 gives
an explicit example that shows how baryon number generation cancels to leading order in
asymmetric freeze-in. Sec. 4 gives a general proof that unitarity requires the cancellation
of baryon number generation at order λ2, analogous to the standard unitarity argument
preventing baryon number violation at leading order [3]. Sec. 5 shows how the cancellation
of baryon number production at order λ2 appears from Feynman diagrams and exhibits
effects that generate baryon number at λ3. In Sec. 6, deviations from thermal equilibrium
are briefly discussed.

2 Notation

To reduce clutter, a few shorthand notations will be used. CP violation involves differ-
ences between particle and antiparticle production. Thus, let

|M(α→ β)|2 − |M(α→ β)|2 ≡ ∆|M(α→ β)|2 (1)

The terminology of visible and dark sectors and baryon number are only meant to be sug-
gestive. The results of this paper hold for the transfer of any U(1) charge, Q, between two
weakly coupled sectors. Each sector is in thermal equilibrium with itself, but the two sectors
have different temperatures.

A state is represented by a Greek letter while visible and hidden sector states are dis-
tinguished by their subscripts. A general state is simply the tensor product α = αvαh where
either of the states αv or αh may be the vacuum state, Ω.

A product of phase space densities, f , appear in the Boltzmann equations. The phase
space densities of the initial state are combined into the notation

fα =
∏
i

fα(i) (2)

The Pauli exclusion/stimulated emission factors of the final state will be written as

(1± fα) =
∏
i

(1± fα(i)) (3)
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In both formulas, the product runs over all the particles in a state. The two sectors are
assumed to be in thermal equilibrium with themselves so that if there exists a process
M(αvΩh → βvΩh), fαv(1± fβv) = fβv(1± fαv). This is consistent with thermal equilibrium
through the identity

fα
1± fα

=
∏
i

e−
Eα(i)−µα(i)

T (4)

since the sums of the particle energies and chemical potentials balance in equilibrium. This
identity is a direct consequence of Boltzmann’s H theorem [15].

3 Example

This section gives an explicit example of the cancellation of U(1) charge transfer at
O(λ2). Sec. 3.1 gives some background and an explicit calculation is done in Sec. 3.2.

3.1 Background

In baryogenesis, the matrix elements that contribute to the Boltzmann equation for parti-
cle densities are computed with finite temperature Feynman diagrams. Thermal field theory
propagators contain delta function interactions with the thermal bath. The cancellation of
CP asymmetries at leading order relies critically on this modification of the propagator.

In zero temperature field theory, the familiar matrix elements take into account all
possible ways of going from the initial state to the final state. However, the Boltzmann
equations already take into account the classical evolution of states. Including on-shell
processes which go from state α to β to γ both in the matrix elements and in the Boltzmann
equation would be double counting. Double counting is avoided by removing all matrix
elements which can be interpreted as a classical evolution from state α to β to γ. This is
a well-known procedure called real intermediate state subtraction (RISS) [15]. If there is a
matrix element M(α→ β → γ) where β goes on-shell, the subtraction scheme removes the
on-shell contribution

|MRISS(α→ γ)|2 = |M(α→ γ)|2 − |MNWA(α→ β → γ)|2 (5)

where NWA stands for the narrow width approximation. Roughly speaking, we remove any
matrix element which requires the use of the narrow width approximation.

Real intermediate state subtraction greatly simplifies CP violation. Without the subtrac-
tion, diagrams in which states go on-shell are regulated by the resummed width Γ. Since Γ
appears in the denominator, higher-order diagrams can cancel lower order diagrams. These
cancellations must occur; they are required by the unitarity of the unsubtracted matrix
elements. A simple example of this phenomenon is given in Appendix A.

Since the width is not needed to regulate subtracted diagrams, it is valid to consider
the diagrams with the widths of particles not resummed. For every partial width, there
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Figure 1: The Boltzmann equations account for the classical evolution of states. Real intermediate
state subtraction avoids double counting by removing matrix elements which are already taken into
account by the Boltzmann equations.

is a different diagram that will cancel its CP asymmetry. While real intermediate state
subtraction is unimportant to the unitarity proof in Sec. 4, in order to see the cancellation
as one diagram canceling against one other diagram, the widths must not be resummed.

The matrix elements considered will describe processes αvαh → βvβh with Q(αv) 6=
Q(βv). To calculate the CP asymmetry of these processes, we take M(α → β) =

∑
i λiFi

and M(α → β) =
∑

i λ
∗
iFi, where λi denotes the product of coupling constants and Fi

denotes the kinematics of the Feynman diagram. The rate difference in Eq. 1 is

∆|M(α→ β)|2 = 2
∑
i,j

Im(λiλ
∗
j)Im(FiF

∗
j ) (6)

= 4
∑
i,j

Im(λiλ
∗
j)Re(Fj)Im(Fi) (7)

In order for an imaginary part in a Feynman diagram to occur, there needs to be an
intermediate state, δ, which can go on-shell. Cutkosky’s rule is used to find its value. In the
presence of finite density, Cutkosky’s rule is modified. The thermal bath into which particles
are created must be taken into account, so an additional multiplicative factor of (1 ± fδ)
appears. Interference between the process M(α→ β) and M(α→ δ → β) gives

∆|M(α→ β)|2 ∝
∑

δ,diagrams

∫
dΠδ(1± fδ)Im[λα→βλ

∗
α→δλ

∗
δ→β]Fα→βFα→δFδ→β (8)

λ indicates the couplings associated with the diagram, F indicates the real part of Feynman
diagrams and

∫
dΠδ is a phase space integral. The sum over diagrams is simply the sum

over i and j from before. While |M(α → δ → β)|2 is removed by real intermediate state
subtraction, due to its classical interpretation, the interference between M(α → β) and
M(α → δ → β) is a quantum mechanical effect and must be included explicitly in the
Boltzmann equations. Throughout, λ will be used for couplings between the two sectors and
g for couplings within the sectors.

3.2 Model

This section uses an explicit model to show the differences between out of equilibrium
decay and freeze-in. In out of equilibrium decay, only a single particle goes out of equilibrium.
Therefore when calculating CP violation, the only initial state that is important is the
decaying particle. On the contrary, when we have two sectors at different temperatures,
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there are many different initial states, all of equal importance. The decay of a single particle
and 2-to-2 scattering must be treated on the same footing.

Consider a visible sector A and a dark sector B where A is at a nonzero temperature and
B is at zero temperature. There are particles A1,A2 and A3 in the A sector and particles
B0,B1,B2 and B3 in the B sector. The subscript labels their U(1) charge. Consider the
most general Lagrangian allowed by symmetries where the terms in the Lagrangian which
are relevant for the following discussion are

L ⊃ λ1A3B
∗
1B
∗
2 + λ2A3B

∗
3B
∗
0 + λ3A1A2B

∗
1B
∗
2

+ g1A3A
∗
1A
∗
2 + g2B3B0B

∗
1B
∗
2 (9)

There is initially no net baryon number in either sector. Interactions between the visible
sector and the dark sector store baryon number in the dark sector, creating an apparent
asymmetry.

There are two main types of cancellations in this model. The first is illustrated by
the decay of a particle A3. In a CP violating theory, A3 and A3 can decay differently and
generate a transfer of baryon number. However, the total decay widths of a particle and its
anti-particle are the same. Thus, if all of the channels are weighted equally, the effect sums
to zero. The dotted lines denote Cutkosky cuts used to find the imaginary part of diagrams.
Fig. 2 shows the mechanism of the cancellation. The interference of the two diagrams on
the top cancels with the interference of the two diagrams on the bottom. This cancellation
of CP asymmetries is well known in models of freeze-out baryogenesis [4].

A3

B1

B2

A3

B1

B3

B0

A3 A3

B1

B2

B2

B3

B3

B0

B0

λ1

λ1λ2

λ2

g∗2

g2

Figure 2: These two diagrams cancel so that no net baryon number is generated in the B sector.

An additional type of cancellation can occur in asymmetric freeze-in and is shown in
Fig. 3. The top two diagrams have an interference that is not cancelled over the sum of
final states because A1 → A2 + A3 does not transfer baryon number into the dark sector.
But because there are multiple possible initial states, the contribution from the decay of a
particle can cancel with an interference term in 2-to-2 scattering. The square of the bottom
right diagram is removed by the subtraction of real intermediate states, but the interference
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Figure 3: Freeze-in allows for new cancellations not seen in freeze-out and decay baryogenesis.
These two diagrams show that different initial states can have canceling CP asymmetries.

term is not. The CP asymmetry from the top two diagrams and the bottom two diagrams
are

ṅB,A3→B1+B2 = k

∫
dΠ Im(λ1λ

∗
3g
∗
1)fA3(1± fA1)(1± fA2)(1± fB1)(1± fB2) (10)

ṅB,A1+A2→B1+B2 = k

∫
dΠ Im(λ∗1λ3g1)fA1fA2(1± fA3)(1± fB1)(1± fB2) (11)

where k is a constant times momentum conserving delta functions. In particular

ṅB,A3→B1+B2

ṅB,A1+A2→B1+B2

=
Im(λ1λ

∗
3g
∗
1)

Im((λ1λ∗3g
∗
1)∗)

k
∫
dΠfA3(1± fA1)(1± fA2)

k
∫
dΠfA1fA2(1± fA3)

(12)

Because there exists a process M(A3 → A1 + A2), thermal equilibrium of the visible sector
enforces fA3(1± fA1)(1± fA2) = fA1fA2(1± fA3). The two CP asymmetries cancel and there
is no O(λ2) abundance generated. As will be shown in Sec. 4 and again in Sec. 5, these
cancellations are not a coincidence and are required by CPT and unitarity.

4 Unitarity and CPT

The cancellations illustrated in Sec. 3 are a consequence of unitarity. This section shows
the implications of unitarity for the transfer of U(1) charges between two sectors not in ther-
mal equilibrium with each other. In the context of finite densities, unitarity is modified [16].
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For states α and β, unitarity combined with CPT reads∑
β

∫
dΠβδ

4(pα − pβ)|M(α→ β)|2(1± fβ)

=
∑
β

∫
dΠβδ

4(pα − pβ)|M(α→ β)|2(1± fβ) (13)

∑
β

∫
dΠβδ

4(pα − pβ)|M(β → α)|2(1± fβ)

=
∑
β

∫
dΠβδ

4(pα − pβ)|M(β → α)|2(1± fβ) (14)

The stimulated emission/Pauli suppression factors were defined in Eq. 3. In the case of
single particle states α, Eq. 13 states the familiar fact that particles and antiparticles have
the same decay width. Eq. 14 is the CPT conjugate of this fact with the sum over β replaced
by the sum over β. Assuming thermal equilibrium, we can use Eq. 4 to replace (1± fβ) by
fβ on both sides of Eq. 14.

As an illustrative warm-up, we first show that the transfer of conserved charges between
two sectors in thermal equilibrium with each other is zero. Let Q denote the charge of a
state. The rate of change of Q in the visible sector is

ṅQ ∝
∑
β,α

∫
dΠβdΠα(2π)4δ4(pα − pβ)∆|M(αvαh → βvβh)|2

×fα(1± fβ)(Q(αv)−Q(βv)) (15)

The unitarity relation Eq. 13 states∑
β

∫
dΠβdΠα(2π)4δ4(pα − pβ)∆|M(αvαh → βvβh)|2fα(1± fβ)Q(αv) = 0 (16)

Similarly Eq. 4 and Eq. 14 require∑
α

∫
dΠβdΠα(2π)4δ4(pα − pβ)∆|M(αvαh → βvβh)|2fα(1± fβ)Q(βv) = 0 (17)

Together these equations show that ṅQ = 0. There is no net transfer of U(1) charge between
two sectors in thermal equilibrium with each other. These cancellations by sums over final
states or initial states in thermal equilibrium are seen in the diagrammatic approach to
unitarity in Sec. 5 and was seen to a lesser extent in Sec. 3.

The situation described in this paper is that in which the two sectors are not in thermal
equilibrium with each other. Consider processes to O(λ2)∗. We have matrix elements

M(α→ β) = Mβα = out〈βvβh | Hλ | αvαh〉in. (18)

∗For the decay of heavy particles, it was proven in [3] that baryon number generation in the freeze-out
and decay scenario requires baryon number violating couplings to the third power. This proof is a slight
modification of that argument.
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For the antiparticle process,

M(α→ β) = out〈βvβh | Hλ | αvαh〉in = out〈αvαh | H†λ | βvβh〉in (19)

=
∑
δ,γ

out〈αvαh | δvδh〉in in〈δvδh | H†λ | γvγh〉out out〈γvγh | βvβh〉in (20)

=
∑
δ,γ

SαvδvSαhδhM∗
δγSγvβvSγhβh (21)

where in the second step, CPT invariance was used and the third step involves the insertion
of a complete set of in and out states. When summing over states there is an implicit
phase space integration. S is the subtracted S-matrix in the limit λ→ 0 using the notation
S(α→ β) = Sβα. It satisfies the unitarity constraint∑

γv

S∗βvγv(1± fγv)Sγvαv = δαvβv(1± fαv) (22)

The phase space factor on the right side of the equation results because a fermion which
does nothing is not restricted by the Pauli exclusion principle. If the states involved are in
thermal equilibrium then using Eq. 4 and conservation laws, the unitarity relation can can
be rewritten as ∑

γv

S∗βvγvfγvSγvαv = δαvβvfαv (23)

Consider a specific negative baryon number transferring channel (Q(αv)−Q(βv) = −B).
Baryon number is a conserved quantity so that unitarity still holds when restricted to a
specific baryon number state. The baryon number transfer is proportional to∑

α,β

|M(α→ β)|2fαvfαh(1± fβv)(1± fβh)(Q(αv)−Q(βv))

=
∑

α,β,δ,γ,ρ,φ

SαvδvSαhδhM∗
δγSγvβvSγhβh(Q(δv)−Q(γv)) (24)

× S∗ρvαvS
∗
ρhαh
MφρS

∗
βvφvS

∗
βhφh

fαvfαh(1± fβv)(1± fβh)

In this first step, Eq. 21 is used. It is critical that S is the λ → 0 limit of the S-matrix so
that it treats the two sectors independently. This fact allows us to use conservation of U(1)
charge and relabel the charges so that unitarity relations, which involve sums over α and β,
can be used. Using the unitarity relation in Eq. 22 simplifies the expression into∑

α,β

|M(α→ β)|2fαvfαh(1± fβv)(1± fβh)(Q(αv)−Q(βv))

=
∑

α,δ,γ,ρ,φ

SαvδvSαhδhM∗
δγ(Q(δv)−Q(γv)) (25)

× S∗ρvαvS
∗
ρhαh
Mγρfαvfαh(1± fγv)(1± fγh)δφγ
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Finally using Eq. 23 gives the result∑
α,β

|M(α→ β)|2fαvfαh(1± fβv)(1± fβh)(Q(αv)−Q(βv))

=
∑
δ,γ

|M(δ → γ)|2fδvfδh(1± fγv)(1± fγh)(Q(δv)−Q(γv)) (26)

=
∑
α,β

|M(α→ β)|2fαvfαh(1± fβv)(1± fβh)(Q(αv)−Q(βv)) (27)

The baryon number transfer is equal and opposite to the baryon number transfer of the +B
sector,

∑
∆M = 0. Thus there is no baryon number transferred between the two sectors at

O(λ2).

5 Feynman Diagrams

In Sec. 4, it was proven that the baryon number generation vanishes to leading order.
The same results can be seen diagrammatically. The diagrammatic approach, while more
involved, lets one show exactly how an asymmetry is generated and places additional con-
straints on the two sectors.

For simplicity, we will assume that the hidden sector is at zero temperature. As which
states are in the Cutkosky cuts is very important, I will change notation slightly. Before,
the general state was α = αv ⊗ αh. Rather than explicitly writing out αv ⊗ Ωh, where Ωh is
the vacuum state for the hidden sector, I will simply represent it as αv. The state αvαh will
only be written when both αv 6= Ωv and αh 6= Ωh.

The U(1) charge transfer between the two sectors is

ṅB ∝
∑
αv ,β

∫
dΠαvdΠβ(2π)4δ4(pαv − pβ)∆|M(αv → β)|2

×fαv(1± fβ)(Q(αv)−Q(βv)) (28)

Diagrams can be grouped by their Cutkosky cuts†. There are six different types of interfer-
ence terms depending on if the intermediate state δ is δv,δh or δvδh and whether the final
state is βh or βvβh.

Consider the O(λ2) case where the intermediate particle is a state δv and the final state
is either βh or βvβh. For concreteness, consider the final state βh. Using the results of Eq. 8
gives

ṅB ∝
∑
αv ,δv

Q(αv)fαv(1± fβh)Im[λαv→βhg
∗
αv→δvλ

∗
δv→βh ]Fαv→βhFαv→δvFδv→βh (29)

Only the relevant terms are included in the sum and everything else was pushed into the
proportionality constant. The sum can be simplified by realizing that the kinematic part

†For the sake of simplicity, only s channel cuts are considered.
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of the Feynmann diagrams, the phase space factors and the charge are all symmetric under
αv ↔ δv. Conservation of charge allows the swap to have no effect on the charge while the
phase space factors obey fαv(1 ± fδv) = fδv(1 ± fαv) due to the assumption of equilibrium
values. Kinematics are independent of which state is the initial and which is the final so the
F are invariant. On the other hand, the couplings are odd under αv ↔ δv. Relabeling the
states changes the couplings by

Im[λαv→βhg
∗
αv→δvλ

∗
δv→βh ] + Im[λδv→βhg

∗
δv→αvλ

∗
αv→βh ] = 0 (30)

Since the coupling constants were odd under this transformation while the rest of the factors
were invariant, the sum vanishes. This cancellation was seen earlier in Sec. 4 as a sum over
initial states combined with thermal equilibrium. It is critical for thermal field theory to be
used in the calculation in order to see the cancellation. This cancellation occurs diagram by
diagram with each pair being obtained just by flipping the intermediate state and the initial
state. This cancellation is shown graphically in Figs. 4 and 5

αv δv βh αv βh

Figure 4: The CP violation comes from this interference where the δv intermediate state can go
onshell.

αvδv δvβh βh

Figure 5: Baryon asymmetry generated from this diagram cancels the baryon asymmetry generated
from the figure 4

A similar cancellation occurs for the other O(λ2) case where the final state is a state βh
and the intermediate state is a state δh.

ṅB ∝
∑
βh,δh

(1± fβh)(1± fδh)Im[λαv→βhλ
∗
αv→δhg

∗
δh→βh ]Fαv→βhFαv→δhFδh→βh (31)

= 0 (32)

As before, this cancellation relies on the fact that the couplings are odd under βh ↔ δh while
the rest of the factors are even. This cancellation was seen in Sec. 4 as a sum over final
states. Again the cancellation is in pairs of diagrams obtained by flipping the intermediate
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and final states. These two cases are the only O(λ2) contributions to the baryon asymmetry
and they both cancel completely.

Things are different at O(λ3) where the intermediate state is δvδh. By the previous
argument, one might expect that the CP violation from αv → δvδh → βh would cancel with
αv → βh → δvδh. This cancellation would occur except for the fact that final states δvδh and
βh transfer differing amounts of baryon number to the hidden sector. More explicitly, the
sum of αv → δvδh → βh and αv → βh → δvδh goes as

ṅB ∝
∑

βh,δvδh

Q(αv)(1± fβh)(1± fδvδh)Im[λαv→βhλ
∗
αv→δvδhλ

∗
δvδh→βh ]

×Fαv→βhFαv→δvδhFδvδh→βh (33)

+
∑

βh,δvδh

(Q(αv)−Q(δv))(1± fβh)(1± fδvδh)Im[λαv→δvδhλ
∗
αv→βhλ

∗
βh→δvδh ]

×Fαv→δvδhFαv→βhFβh→δvδh (34)

∝
∑

βh,δvδh

Q(δv)(1± fβh)(1± fδvδh)Im[λαv→βhλ
∗
αv→δvδhλ

∗
δvδh→βh ]

×Fαv→βhFαv→δvδhFδvδh→βh (35)

and so a contribution is left that does not cancel. Similarly, for a state where the imaginary
component comes from αv → δvδh → βvβh, the result is the same where βh is replaced by
βvβh and is weighted by Q(δv)−Q(βv). If the two sectors were in thermal equilibrium with
each other, these CP violation effects would be cancelled in a sum over initial states, like the
first case considered above.

All of the O(λ2) effects have cancelled and an asymmetry is generated at λ3. In minimal
cases λ itself must be CP violating in order for this reaction to cause a CP asymmetry. This
result is similar in spirit to those in Ref. [3] where it was shown that baryon number violation
effects come in at cubic order in baryon number violating couplings.

6 Deviations from thermal equilibrium

One has to be careful that there are not any O(λ2) higher order effects which have not
been cancelled. The previous computations showed that whenever the phase space factors
are not modified, the baryon number generated is O(λ3). There are multiple ways to change
the phase space factors. One way is to include the effect of λ on the phase space factors. The
phase space factors were assumed to be thermally distributed with different temperatures
for the different sectors. Because there exist matrix elements connecting the two sectors,
the phase space factors are modified to fαv = f eq

αv + δfαv . The deviation δfαv ∝ |M(αv →
βvβh)|2 ∝ λ2. The baryon asymmetry generated by this deviation is O(λ4) and is therefore
subdominant.

Another possible effect comes from the fact that fα will leave thermal equilibrium due
to Hubble expansion; particles can freeze-out. The effects from freeze-out typically scale as
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O(λ2), however freeze-out abundances scale differently than freeze-in abundances so which
effect dominates is a model dependent numerical question. The worst case is a hot relic
which becomes stable as λ goes to zero. The CP violating branching ratio into the dark
sector scales as λ rather than λ2. The asymmetry that results from freeze-out and decay
would be at best the same order effect as the freeze-in asymmetry and in most cases dominate
the freeze-in asymmetry. Other relics typically have O(λ2) CP violating branching ratios
into the dark sector and the issue which mechanism dominates is completely numerical.
In models of freeze-in baryogenesis, freeze-out typically yields CP asymmetries orders of
magnitude below the freeze-in asymmetries.

The cross section for production of particles in the dark sector is O(λ2) while the CP
asymmetry is O(λ3). Not overclosing the universe imposes strict constraints. The dark mat-
ter particles would need to be very light (eV or less) if there is anO(λ2) abundance. If there is
an efficient annihilation mechanism removing the O(λ2) component, the dark matter is MeV
scale or less and the model joins the long history of asymmetric dark matter [17,18,19,20].
Being able to annihilate well imposes constraints, for example, the dark sector must not have
any stable heavy particles that do not carry baryon number.
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Figure 6: A schematic drawing of how the different abundances scale. The asymmetric abundance
generated by freeze-in lags behind the symmetric component by a factor of λ.

7 Conclusion

This note has shown that if two sectors are in thermal equilibrium with themselves, but
not with each other, then the leading effect transferring conserved quantities between the
two sectors is of order the the weak coupling connecting them to the third power. When
freeze-in is used to produce a net baryon number density, the leading order effect comes from
O(λ3) diagrams where the intermediate state that goes on-shell has a different visible baryon
number than the final state visible baryon number. Models in which the correct baryon
number is generated with freeze-in as the dominant source of abundance, typically require
λ >∼ 10−6 and mbath >∼ TeV. mbath is the mass of the visible particle which communicates
with the hidden sector. The lower window is potentially observable at the LHC.
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A CP violation by diagrams regulated by the width

In Sec. 3.1, it was claimed that higher order diagrams could cancel lower order diagrams
for unsubtracted matrix elements. In the case of nonsubtracted matrix elements, the dia-
grams which cancel are shown in Fig. 7. A loop induced CP violation cancels tree level CP
violation with the narrow width approximation off setting the use of a loop. The width is an
infinite sum of diagrams. In this manner, the CP violation from an infinite set of diagrams
cancel the CP violation of a single tree level diagram.

A1
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B1
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B1
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B1

B2

A3

A1

A2

B1

B2

A1

A2

Figure 7: When the top diagram is resonantly produced and the narrow width approximation is
used, a factor of 1

Γ ∼ |M(A3 → A1 +A2)|−2 appears. This inverse coupling allows the higher order
diagram to cancel against a single tree level diagram. The infinite number of diagrams that go into
a width are responsible for canceling the tree level CP violation. Subtraction of real intermediate
states simplifies the cancellation of CP asymmetries.
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