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Abstract

Two dipole doglegs are widely used to translate the beam axis horizontally or vertically.
Quadrupoles are placed between the two consecutive dipoles to match first order dispersion
and provide betatron focusing. Similarly a four dipole chicane is usually employed to form a
bypass region, where the beam axis is transversely shifted first, then translated back to the
original axis. In order to generate an isochronous section, quadrupoles are again needed to
tune the first order transfer matrix element R56 equaling zero. Usually sextupoles are needed
to correct second order dispersion in the bending plane, for both the dogleg optics and the
chicane (with quad) optics. In this paper, an alternative optics design is introduced, which is
based on a simple FODO cell and does not need sextupoles assistance to form a second-order
achromat. It may provide a similar function of either a dogleg or a bypass, by using 2 or 4 of
such combined supercells.

1 Overview

A transverse dogleg beamline or a bypass beamline is needed for many accelerator systems from
the requirement on shifting the beam axis in some region, which is sometimes due to realistic
constraints. Some of these constraints are: existing infrastructure on the original beam axis; upgrade
of an old accelerator; multi-function linac which feeds several downstream beamlines, and so on.
A special example which has wide applications is a Free Electron Laser driving linac. At the
end of such an FEL linac the electron beam can be used to feed several different undulators to
generate photons for different purposes. There are also other systems which make use of the
dispersion generated in the bending plane to do a momentum collimation on the beam and to
remove the halo particles. In 1970s K. Brown developed a systematic approach to design second
order achromats from investigating matrices formulae [1], which uses at least four identical cells
with dipoles, quadrupoles and sextupoles and can eliminate all geomeric and chromatic terms up
to second order. Then W. Wan developed another approach with Lie algebra to design achromat to
arbitrary order, taking advantage of the midplane symmetry and using multipole magnets for each
order (for example, octupoles for third order achromat) [2]. Usually these systems are designed
with dipoles, quadrupoles and sextupoles, to zero both first order and second order dispersion in
the bending plane, and to provide an isochronous transfer system in the bypass case. Generally the
use of sextupole magnets implies a strict tolerance on the beamline alignments.
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At the same time, in many of these beamlines, the electron beam is transported with a large
energy spread which is in the percent level. To transport such a beam through the dogleg (or
bypass) and preserve the transverse emittance at the same time is a difficult task. In the following
sections, a FODO cell based optics design is described which eliminates the use of sextupoles. In
one supercell, both the first order (R16 and R26) and second order dispersion (T166 and T266) terms
are closed, which guarantees no chromatic emittance growth as the beam transports through this
section. Usually the initial transverse beam emittance is small in such systems being considered
and one can neglect the small impact of the non-zero geometrical terms. Macro particle tracking
simulations have been performed in the code Elegant [3], to evaluate the property of this optics
design.

2 Equation of motion and matrix treatment

A moving coordinate system origined on the central trajectory of the beam line is employed here.
Each particle in the beam has a coordinates of (x, x′, y, y′, z, δp). The divergence x′ and y′ are defined
as the ratio of transverse momentum to longitudinal momentum. Without any approximations, the
vector differential equation of motion is

d2
T

dT 2
=

q

p

dT

dT
× B (1)

where T denotes the position vector of any particle moving along its trajectory, T the distrance
travelled, q the particle charge and B the magnetic field.

With magnetic field expansion in three directions, the linearized (first order) differential equation
of motion for the transverse coordinates x and y is [4]

x′′ + (1 − n)h2x = hδ (2)

y′′ + nh2y = 0 (3)

where δ = ∆p/p0 denotes the relative momentum deviation from the on momentum particle, h =
By(0, 0, t)/Bρ and the dimensionless parameter n given in terms of the vertical magnetic field
component as shown in the following formula.

n = −
1

hBy

∂By

∂x x=0,y=0
(4)

Consider only the linear (first order) effect, after passing by a beam line, the final coordinates
of any particle can be expressed by a linear function of its initial coordinates, as illustrated in the
following formula.

x1 = (x|x0)x0 + (x|x′

0)x
′

0 + (x|δ)δ (5)

where (x|x0) denotes the coefficient of x0 in the equation for x1, which is R11 in the following matrix
formula.
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Regarding the longitudinal motion, the path length difference depends on the initial coordinates
(x, x′, y, y′, z, δp). From the vector differential equation of motion, the difference in path length of
an arbitrary particle is calculated as an integral [4].

l =

∫ t

0





[

(

dx

dτ

)2

+

(

dy

dτ

)2

+ (1 + hx)2

] 1

2

− 1



 dτ (6)

The transport of particle’s coordinates can be treated in a general matrix style as shown below.
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where R denotes the first order transport matrix of a beam line.
Given the magnetic field of a specified type of element, such as a dipole magnet, one can solve the

linearized equation of motion and get the transfer matrix R. Shown below are the first order transfer
matrices of a dipole, a quadrupole, a sextupole and a drift, under thin lens approximation [4] [5].
Note that the discussion here is under the ultra relativistic condition.

The 6 by 6 transport matrix of the normal dipole magnet with bending angle θ and bending
radius ρ can be written as

RB(θ,ρ) =

















cos θ ρ sin θ 0 0 0 ρ(1 − cos θ)
− sin θ/ρ cos θ 0 0 0 sin θ

0 0 1 ρθ 0 0
0 0 0 1 0 0

− sin θ ρ(cos θ − 1) 0 0 1 ρ(sin θ − θ)
0 0 0 0 0 1

















(8)

The 6 by 6 transport matrix of a quadrupole magnet with integrated strength K1 can be written
as

RQuad =

















1 LQ 0 0 0 0
−K1 1 0 0 0 0

0 0 1 LQ 0 0
0 0 K1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(9)

The 6 by 6 transport matrix of a drift space with length L can be written as

RDrift =

















1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(10)
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Sextupole is a type of second order magnetic element which does not change the first order
optics. Its first order transport matrix is the same with a drift space of same length.

For monochromatic beams which occupies a very small phase space, first order transport matrix
is a good approximation to describe the transmission properties of a beam line. For a realistic beam
which usually has large energy spread, second order and higher order aberrations have to be taken
in consideration. A general matrix notation for the transport of particles’ coordinates is shown in
the following formula, which has both first order and second order terms [4].

xi(1) =
∑

j

Rijxj(0) +
∑

j,k

Tijkxj(0)xk(0) (11)

where second order matrix T has entries of the quadratic terms in the expansion of the final
coordinates as a function of the initial coordinates.

To derive the second-order matrix elements for individual magnets, as has been done for the first
order matrix, one need to again solve the equation of motion up to second order. Take a second
order expansion in the transverse coordinates, and apply magnetic field expansion, the equation of
motion is (rectangular coordinate system) [4]

x′′+(1−n)h2x = hδ+(2n−1−β)h3x2+h′xx′+
1

2
hx′2+(2−n)h2xδ+

1

2
(h′′−nh3+2βh3)y2+h′yy′−

1

2
hy′2−hδ2

(12)
y′′ + nh2y = 2(β − n)h3xy + h′xy′ − h′x′y + hx′y′ + nh2yδ (13)

A general solution of the above two differential equations consists of the solution of the homoge-
neous equation, and a particular solution of the inhomogeneous equation. The second order matrix
element can be calculated as the Green’s function integral of the associated driving term. The path
length difference can be calculated using the same integration while retaining terms up to second
order. Now, same as the calculation of the R (first order) matrices elements, one can calculate
all the T (second order) matrices elements, given the magnetic field of a specified type of element,
such as a quadrupole magnet. As discussed before, a drift space has no second order effects on the
transport of particles’ transverse coordinates. However, a drift does have two non-zero longitudi-
nal T (second order) matrices elements, T522,D = T544,D = −1

2
LD. For a quadrupole magnet with

integrated strength K1 and length LQ, its non-zero second order matrices elements are listed below.

T116,Q =
1

2
K1LQ, T126,Q = −

1

2
LQ, T216,Q = K1, T226,Q =

1

2
K1LQ (14)

T336,Q = −
1

2
K1LQ, T346,Q = −

1

2
LQ, T436,Q = −K1, T446,Q = −

1

2
K1LQ (15)

T512,Q =
1

2
K1LQ, T522,Q = −

1

2
LQ, T534,Q = −

1

2
K1LQ, T544,Q = −

1

2
LQ (16)

For a sextupole magnet with integrated strength K2 and length LS, its non-zero second order
matrices elements are listed below.

T111,S = −
1

2
K2LS, T112,S = −

1

3
K2L

2
S, T122,S = −

1

12
K2L

3
S (17)
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T133,S =
1

2
K2LS, T134,S =

1

3
K2L

2
S, T144,S =

1

12
K2L

3
S (18)

T211,S = −K2, T212,S = −K2LS, T222,S = −
1

3
K2L

2
S (19)

T233,S = K2, T234,S = K2LS, T244,S =
1

3
K2L

2
S (20)

T313,S = K2LS, T314,S =
1

3
K2L

2
S, T323,S =

1

3
K2L

2
S, T324,S =

1

6
K2L

3
S (21)

T413,S = 2K2, T414,S = K2LS, T423,S = K2LS, T424,S =
2

3
K2L

2
S (22)

T522,S = −
1

2
LS, T544,S = −

1

2
LS (23)

For a dipole magnet with bending angle θ and bending radius ρ, its critical second order matrices
elements are listed below.

T111,B = −
1

2ρ
sin2 θ, T112,B = sin θ cos θ, T122,B =

1

2
ρ cos θ(1 − cos θ) (24)

T133,B = 0, T134,B = 0, T144,B = −
1

2
ρ(1 − cos θ) (25)

T116,B = sin2 θ, T126,B = ρ sin θ(1 − cos θ), T166,B = −
1

2
ρ sin2 θ (26)

T211,B = 0, T212,B = 0, T222,B = −
1

2
sin θ (27)

T233,B = 0, T234,B = 0, T244,B = −
1

2
sin θ (28)

T216,B =
sin θ

ρ
, T226,B = 0, T266,B = − sin θ (29)

T313,B = 0, T314,B = sin θ, T323,B = 0, T324,B = ρ(1 − cos θ), T336,B = 0, T346,B = ρθ − ρ sin θ (30)

T413,B = 0, T414,B = 0, T423,B = 0, T424,B = 0, T436,B = 0, T446,B = 0 (31)

T511,B = 0, T512,B = 0, T522,B = −
1

2
ρ sin θ (32)

T533,B = 0, T534,B = 0, T544,B = −
1

2
ρ sin θ (33)

T516,B = 0, T526,B = −ρ(1 − cos θ), T566,B = 0 (34)

Given known first order and second order transport matrices of all the magnetic elements in a
lattice, one could multiply them subsequently to get the transport matrice of the whole system. As
an example, for a lattice which consists of a dipole magnet, a drift and a quadrupole magnet, the
overall transfer matrix reads (note the sequence of the multiplication)

Rall = RQuad · RDrift · RB(θ,ρ) (35)
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Tall = TQuad · TDrift · TB(θ,ρ) (36)

To transport particle’s coordinates through a beam line using up to second order matrices
approach, in general one need a combined overall transport matrix which has 42-by-42 entries, which
is reduced to 27-by-27 entries neglecting all the duplicated terms. In a simplified form (neglect all
the zero and duplicated terms), the transport of the particle’s coordinates in the bending plane is
(up to second-order)
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(37)

The second-order transfer matrix in the bending plane can be expressed in the sub-matrix form
of

Tx,[17×17] =





T11,[4×4] T12,[4×10] T13,[4×3]

0[10×4] T22,[10×10] 0[10×3]

0[3×4] 0[3×10] T33,[3×3]



 (38)

where 0[3×6] denotes a three-by-six zero matrix, T22,[10×10] a ten-by-ten matrix, and all five sub-
matrices are listed in Appendix. The transport of the particle’s coordinates in the non-bending
plane is much easier and not discussed in detail here.

3 First order optics

In this section, a standard FODO lattice is studied, to investigate the first order achromat condition
and the associated relation between parameters of different magnets. A schematic plot of one super
period which is composed of four identical standard FODO cells is shown in Figure 1. One FODO
cell starts from a half focusing quadrupole with integrated strength K1f , plus a drift with length l,
followed by a dipole magnet with bending angle θ and bending radius ρ, another drift with same
length and a full defocusing quadrupole with integrated strength 2K1d. This FODO cell ends at
another half focusing quadrupole magnet.
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Figure 1: Sketch of one super period of the optics under study.

Applying the matrices approach discussed in the previous section, the overall first order transport
matrice of one FODO cell is

RFODO = RQfh · RD · RB · RD · RQD · RD · RB · RD · RQfh (39)

Under some simplification and thin lens approximation, the 6 by 6 transport matrix RFODO of
this FODO cell can be calculated. Here, in particular, three entries which are the dispersion terms
are listed below.

R16,FODO =
[

−4K1dl
2 + (4 − 2K1dρθ)l + ρθ

]

θ (40)

R26,FODO =
[

4K1dK1f l
2 + (2K1dK1fρθ − 4K1f − 2K1d)l − K1fρθ + 2

]

θ (41)

R56,FODO = 2
(

K1dl
2 − l

)

θ2 (42)

One need to note that ρ, θ and K1f are all positive, and K1d is negative. Given these conditions,
it is obvious to observe that for such a FODO cell: the first order dispersion term R16,FODO is always
positive; the value of the first order angular dispersion term R26,FODO depends on the choice of ρ,
θ, l, K1d and K1f , which can be either positive or negative; the longitudinal first order dispersion
term R56,FODO is always negative.

To illustrate the relations between the dispersion terms and the magnet parameters, here we
fix some of the magnets parameters and plot the dispersion terms as a function of K1d, as shown
in Figure 2. For the dipole magnet, the bending angle is chosen to be 2.5 degree with a bending
radius of ρ = 4.6m. The integrated strength of the half focusing quadrupole is K1f = 1.6, with a
half effective magnetic length of 0.1m. The drift space length is l = 0.25m. As illustrated in Figure
2, for a larger absolute value of K1d, the absolute value of R16,FODO and R56,FODO are both larger.
At the same time, for given ρ, θ, l, K1d and K1f , there is a unique defocusing quadrupole strength
K1d,0, to zero the first order angular dispersion R26,FODO at the end of this FODO cell.

To achieve a first order achromat (R16 = R26 = 0) in one supercell as shown in Figure 1, the
angular dispersion term R26 has to be zero at the middle point, due to symmetry requirement. This
condition can be approximately extended to a zero angular dispersion at the end of the first FODO
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Figure 2: Dispersion terms R16,FODO, R26,FODO and R56,FODO of one FODO arc cell, versus the
integrated strength of the defocusing quadrupole K1d.

cell, which is the middle point of half supercell. One can then solve the equation and express the
required defocusing quadrupole strength as a function of ρ, θ, l and K1f , as shown below.

K1d =
4K1f l + K1fρθ − 2

4K1f l2 + (2K1fρθ − 2)l
(43)

One can calculate the first order transport matrix of a half supercell as shown below, and get a
precise solution of K1d,0. That is much more complicated and is not discussed in details here.

Rhalf,supercell = RFODO · RFODO (44)

In designing a lattice, one also needs to constrain the amplitude of the betatron function β
in a proper range, which has a maximum and minimum value depending on the cell length and
quadrupole strength (for a standard FODO cell), as shown below.

β± =
2(1 ± Lcell

4
K1)

K1

√

1 − (Lcell

4
K1)2

(45)

where β± denotes the maximum and minimum beta functions, Lcell the FODO cell length and K1

the integrated quadrupole strength.
Under the following considerations, an optics is designed as sketched in Figure 1. A dipole

magnet with a length of 0.2 m and a bending angle of 2.5 degree is chosen. The drift space length
is l = 0.15m for thick quadrupoles which length is 0.2m. The variation range of the beta functions
is constrained between 0.5m and 10m. The quadrupole strengths K1d and K1f are estimated by
using formulae (43) and (45), and further optimized by matching in the accelerator design code
MAD8 [6]. After optimization, the first order TWISS parameters are shown in Figure 3, where a
first order achromat condition is achieved.
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Figure 3: First order dispersion and beta functions of one supercell which consists of four identical
FODO cells: black curve denotes horizontal beta function, red curve vertical beta function, blue
curve horizontal dispersion function and green curve horizontal angular dispersion function. The
color notation is the same for the first order optics in the following figures.

In order to make this supercell extendable, the beta functions need to be identical at the entrance
and at the exit. At the same time, the alpha function which is proportional to the derivative of the
beta function need to equal zero. The second order horizontal dispersion terms T166 and T266 are
not zero under these constraints. One can then add sextupoles in the optics and zero the second
order dispersion.

4 Second order optics

As discussed above, the second order transport matrices of a half supercell can be calculated as in
the following formula, which is the multiplication of two identical FODO cell matrices. The second
order transport matrix of one FODO cell is the multiplication of the matrices of its subsequent
elements, also shown below.

Thalf,supercell = TFODO · TFODO (46)

TFODO = TQfh · TD · TB · TD · TQD · TD · TB · TD · TQfh (47)

Now one can get the expression of the second order dispersion T166 and the angular dispersion
T266, which are all functions of ρ, θ, l, K1d and K1f (still under thin lens approximation). The
detailed expression of T166 and T266 are more complicated than R16 or R26, so not listed here for
simplicity. Similarly as the first order optics, to achieve a second order achromat (T166 = T266 = 0)
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Figure 4: First order dispersion and beta functions of one supercell which consists of four FODO
cells, under the missing dipole configuration.

in one supercell as shown in Figure 1, the angular dispersion term T266 has to be zero at the middle
point, due to symmetry requirement. For a supercell which consists of four identical FODO cells,
this requirement is not easy to fulfill.

However, through some analytical and numerical manipulations, one finds that by adopting
the missing dipole option, it is possible to get a second order achromat without the assistance of
sextupoles. In the analytical manipulations, a small angle approximation is adopted for the dipole
magnet model, and one then has sin θ ≈ θ and cos θ ≈ 1. With this treatment, the expression of
the second order dispersions T166 and T266 is simplified and much easier to manipulate. In general a
second order achromatic condition is solved by finding parameter relations which fulfill T266,mid = 0
at the middle point of the supercell, and T166,end = 0 at the end of the supercell, plus the first
order achromat condition R26,mid = 0 and R16,end = 0. These four expressions (R26,mid, R16,end,
T266,mid and T166,end) are all functions of ρ, θ, l, K1d and K1f (under thin lens approximation). The
four zero conditions of the dispersion terms are manipulated analytically using a computer algebra
system in MAXIMA [7]. As discussed in details below, one could find reasonable solutions of ρ,
θ1 (θ2), l, K1d and K1f under the missing dipole configuration. The solution is unique if two of
the six variables are fixed. Then these estimated magnet and drift parameters are further matched
and optimized in the accelerator design code MAD8 [6], by setting a proper matching constraint
(such as T266 = 0 at the middle, T166 = 0 at the end, reasonable beta functions plus the first order
dispersion requirements). The variables ρ, θ1 (θ2), l, K1d and K1f are all constrained in a reasonable
range.

Under the missing dipole configuration, the second and the seventh dipole are removed in the
supercell while the other six dipoles are kept. By slightly modifying the drift length, quadrupole
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Figure 5: Second order dispersion T166 and angular dispersion T266 of one supercell which consists
of four FODO cells, under the missing dipole configuration.

strength and also the periodic TWISS parameters, one can easily get a first order achromat, as
shown in Figure 4. The first order dispersion oscillation along this beamline is different from the
one in Figure 3, due to the impact from two missing dipoles. The second order disperison terms
T166 and T266 are much smaller at the end than the previous case, but still not zero.

One possible second order achromat condition is achieved by further slightly adjusting the
bending angle of the first and last dipole magnets. At the same time, the quadrupole strength
and drift length are also slightly tuned, with the constraints that both first order and second order
dispersion terms are zero (R16 = R26 = 0 and T166 = T266 = 0). That optimization changes the
evolution of the second order dispersion and keeps the first order dispersion oscillation similar with
the same dipole strength case. The final bending angle of the first and last dipole is chosen to be
1.65 degree each, and it is 1.72 degree each for the other four dipoles in the center two FODO cells.
The drift length is minimized and a final length of 0.15 m is achieved. The quadrupole strength
is also minimized and the final choice is an integrated strength of -1.6 and +2.6, respectively. The
first order optics is almost the same as the one shown in Figure 4. The maximum beta function βy

and dispersion function Dx are 6 m and 0.04 m, respectively.
The evolution of the second order dispersion T166 and T266 is illustrated in Figure 5, where one

observes that the middle point symmetry is always maintained. The maximum absolute value of
the second order dispersions is 0.17 m which is relatively small. Notice that for this design either
the focusing quadrupoles or the defocusing quadrupoles have the same strength. Here we note that
there are also other possible manipulations of this supercell, to achieve a second order achromat,
except the missing dipole configuration described here.

In the following section, two application examples using this supercell design is presented. One is
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Figure 6: Sketch of a dogleg beamline and a bypass beamline, R56 = 0 in both cases.

a dogleg beamline design, while the other is a bypass beamline design. Both of these two beamlines
are isochronous (R56 = 0).

5 Possible applications

As discussed above, the beta functions βx and βy are symmetric at the two ends of this supercell, and
the beta function derivative α equals zero. That feature makes this supercell easy to be extended.
Two possible applications are described here, with their sketch shown in Figure 6. In the dogleg
beamline, there is one normal supercell followed by a second supercell in which all six dipole magnets
switch sign and bend the beam to the opposite direction. This turns the direction of the beamline
back (there is an angle due to the first supercell) to the original one, but generates an offset in
the bending plane. Using the magnets parameters as specified in the above section, one can do
the calculation (matching) and find that each supercell has a first order longitudinal dispersion
R56 = 2.5mm. One can then add a small three (four) dipole chicane after the second supercell,
which generates a longitudinal dispersion R56 = −5mm and makes the overall system isochronous.
There is a small second order longitudinal dispersion T566 left on the system which effect should be
negligible.

The lower plot in Figure 6 is one possible design of a bypass using these supercells, where one
need to shift the beamline with an offset in the bending plane first, then shift it back to the original
beamline. Four supercells are employed here to construct this bypass. One may easily flip the
two supercells in the dogleg (previous example) and add the flipped one after the small chicane
which is in the middle. The middle small chicane also need to be adjusted to provide two times
longitudinal dispersion R56 = −10mm, either by using a stronger dipole or by lengthening the drift
length between the dipoles. The length of the straight section in the middle can be lengthened or
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Figure 7: First order and second order optics of a dogleg beamline and a bypass beamline. Left
top: First order dispersion and beta functions of the dogleg beamline; Left bottom: Second order
dispersion T166 and angular dispersion T266 of the dogleg beamline; Right top: First order dispersion
and beta functions of the bypass beamline; Right bottom: Second order dispersion T166 and angular
dispersion T266 of the bypass beamline.
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shortened according to the real constraints, and one only need to add more quadrupoles if a longer
straight is necessary.

The first order and second order optics of these two beamlines are matched in MAD8 [6] and
presented here in Figure 7. The length of the dogleg beamline is 14 meters, which implies an offset
of 1 meter in the bending plane. The offset can be increased by lengthening the drift between
the two supercells and one also need to insert several quadrupoles to match the optics there. As
mentioned above, the first order longitudinal dispersion R56 = 0 and there is a small second order
dispersion T566 left. The length of the bypass beamline is 30 meters in all, where 8 meters is devoted
on the middle straight section. Similarly, the offset of 1 meter in the bending plane can be tuned by
adjusting the drift length. The length of the middle straight is also easy to tune, to accommodate
different beamline elements in a real bypass. A middle plane symmetry is maintained in the bypass
beamline and in the two supercells of the dogleg beamline, which is useful in cancelling optics
abberations. One may also need to note that the betatron phase advance in the middle straight of
the bypass beamline is important in a fine tuning of the system.

The maximum beta function is 8 meters in both beamlines, accompanied by a maximum disper-
sion Dx = 0.05m. The transport matrices elements R56 and T566, also the dipole and quadrupole
parameters are listed in Table 1 below, assuming a beam energy of 1GeV . The pole tip field of
the dipole and quadrupole magnets is calculated by using the following two formulae, where a half
gap of 1.5cm is assumed. Note that for higher beam energy one may need to increase the dipole
magnets length (current length 0.2m) to maintain a weaker pole-tip field and partially suppress the
incoherent synchrotron radiation effects.

Bdipole =
Bρ · θ

Ldipole

(48)

Bquad = K1 · Bρ · a (49)

Table 1: Beamline parameters (at a beam energy of 1GeV ).
Name L [m] Bend number θ [d] Bdipole [kG] Bquad [kG] R56 [mm] T566 [mm]
Dogleg 14 16 1.7 4.8 5.4 0 22
Bypass 30 28 1.7 4.8 5.4 0 47

6 Elegant simulation

In order to evaluate the property of these two beamlines in transporting a real beam, the optics
described in the above section is converted into the accelerator code Elegant [3]. First of all, the
linear and second order optics (all the transport matrices elements) are compared between MAD8
and Elegant, where a good agreement is achieved. Second, a beam which consists of one million
macro particles is transported through these two beamlines. Then different beam parameters, such
as projected normalized emittance, sliced normalized emittance, sliced energy spread and the longi-
tudinal phase space shape are investigated. A beam of one million macro particles (x, x′, y, y′, z, δp)
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Figure 8: RMS bunch length and projected normalized emittance evolution along the bypass beam-
line. Left: RMS bunch length; Right: projected normalized emittance.

Figure 9: Sliced normalized emittance and energy spread along the longitudinal direction in a bunch.
Left: sliced normalized emittance; Right: sliced energy spread.

Figure 10: Longitudinal phase space of the beam. Left: initial phase space before injected into the
bypass; Right: at the end of the bypass beamline.
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Figure 11: Left: relative change in projected normalized emittance versus the mismatched beta
function, for two different emittance, γǫx = γǫy = 0.5µm and γǫx = γǫy = 5µm. Right: relative
change in projected normalized emittance versus initial alpha function when generating the beam.

is generated in Elegant, with an RMS normalized transverse emittance of γǫx = γǫy = 0.5µm, an
RMS energy spread of σδp

= 1%, an RMS bunch length of σz = 300µm and a beam energy of 1GeV .
The simulation results of these two beamlines are very similar, and here only the results of the

dogleg beamline is presented, for simplicity. The RMS bunch length and projected normalized emit-
tance evolution along the bypass beamline is shown in Figure 8. From Figure 8 (left) one observes
that the RMS bunch length changes along the beamline as the summed longitudinal dispersion R56

changing. However, at the end of the bypass the initial bunch length is resumed due to a total
dispersion R56 = 0. With a relatively large energy spread of σδp

= 1%, this also demonstrates that
the effect from small residual second order dispersion T566 is negligible. On the other hand, the
projected normalized emittance is also preserved through the transport in this beamline, as shown
in Figure 8 (right). In the dispersive region between the dipole magnets, the large momentum offset
couples into the projected emittance and make it much larger.

Many accelerator applications, for example the Free Electron Laser, concern more on the lon-
gitudinally sliced property of the beam, such as emittance and energy spread. The beam which
contains one million macro particles is dumped at the end of the bypass beamline, and it is ana-
lyzed along its longitudinal direction. The sliced normalized emittance and energy spread along the
bunch is shown in Figure 9 (left) and (right). It is demonstrated again that the sliced property of
the beam is also preserved. One observes that the slice emittance is γǫx = γǫy = 0.5µm and the
slice energy spread is 10MeV (σδp

= 1% at a beam energy of 1GeV ).
The longitudinal phase space is also compared at two different locations in the bypass beamline,

say at the injection point and at the end, as shown in Figure 10. Again one observes there is a small
deformation on the phase space from the large energy spread and a residual second order dispersion
T566. The overall effect of the first order dispersion R56 is zero.

Then an initial beam generated from mismatched TWISS parameters (with respect to the optics)
is used and the projected emittance evolution is investigated again under this condition. The
matched TWISS parameters are from the periodic solution of the supercell discussed above, which
are βx0 = βy0 = 2m and αx0 = αy0 = 0. An electron beam is generated either by employing
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Figure 12: First order and second order optics of a supercell composed of five FODO cells. The
horizontal and vertical betatron phase advances are both 90 degree. The four dipole magnets at each
end have a bending angle which is roughly a half of the two central dipoles. The dipole strength and
phase advance are slightly tuned to generate a second order achromat. Left: First order dispersion
and beta functions; Right: Second order dispersion T166 and angular dispersion T266.

a mismatched beta function in the bending plane, or taking a mismatched alpha function in the
bending plane. An RMS energy spread of σδp

= 1% is again used. The tracking simulation is done
with two different transverse beam emittance settings, γǫx = γǫy = 0.5µm and γǫx = γǫy = 5µm.

The relative variation in projected normalized emittance versus the mismatched beta function is
shown in Figure 11. For the case with a mismatched beta function of 50%, the growth in projected
emittance is roughly 10%. Within ±20%, the change in projected emittance is negligible. One
also need to note that the sliced emittance is preserved much better than the projected emittance.
There is no obvious change in slice emittance even with a mismatched beta function of 50%.

7 Conclusion and discussion

A compact supercell is investigated which composes of four FODO arc cells with two missing
dipoles. Second order achromat condition is achieved without sextupoles by tuning the strength
of the two dipole magnets at two ends. It is proposed to design dogleg or bypass beamlines with
these supercells, which can transport an electron beam with large energy spread and preserve its
emittance. The elimination of employing sextupoles makes the tolerance on alignment easier to
live with. There are also other possible ways to design such supercells with FODO arc cells which
may use more dipole and quadrupole magnets. One possible solution is evolved from the classic
dispersion suppressor design approach [8], with the first order and second order optics of its supercell
shown in Figure 12.
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A Second order sub matrices

The sub matrices of the second order transport matrix are listed below.

Tx,11 =









R11 R12 R15 R16

R21 R22 R25 R26

R51 R52 R55 R56

0 0 R65 1









(50)

Tx,12 =









T111 T112 T115 T116 T122 T125 T126 T155 T156 T166

T211 T212 T215 T216 T222 T225 T226 T255 T256 T266

T511 T512 T515 T516 T522 T525 T526 T555 T556 T566

0 0 0 0 0 0 0 0 0 0









(51)

Tx,13 =









T133 T134 T144

T233 T234 T244

T533 T534 T544

0 0 0









(52)
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If one tries to write down every entry in matrix T22,[10×10], it reads

Tx,22 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

R2

11
2R11R12 2R11R15 2R11R16 R2

12
2R12R15 2R12R16 R2

15
2R15R16 R2

16

R11R21 R11R22 R11R25 R11R26 R12R22 R12R25 R12R26 R15R25 R15R26 R16R26

+R12R21 +R15R21 +R16R21 +R15R22 +R16R22 +R16R25

R11R51 R11R52 R11R55 R11R56 R12R52 R12R55 R12R56 R15R55 R15R56 R16R56

+R12R51 +R15R51 +R16R51 +R15R52 +R16R52 +R16R55

R11R61 R11R62 R11R65 R11R66 R12R62 R12R65 R12R66 R15R65 R15R66 R16R66

+R12R61 +R15R61 +R16R61 +R15R62 +R16R62 +R16R65

R2

21
2R21R22 2R21R25 2R21R26 R2

22
2R22R25 2R22R26 R2

25
2R25R26 R2

26

R21R51 R21R52 R21R55 R21R56 R22R52 R22R55 R22R56 R25R55 R25R56 R26R56

+R22R51 +R25R51 +R26R51 +R25R52 +R26R52 +R26R55

R21R61 R21R62 R21R65 R21R66 R22R62 R22R65 R22R66 R25R65 R25R66 R26R66

+R22R61 +R25R61 +R26R61 +R25R62 +R26R62 +R26R65

R2

51
2R51R52 2R51R55 2R51R56 R2

52
2R52R55 2R52R56 R2

55
2R55R56 R2

56

R51R61 R51R62 R51R65 R51R66 R52R62 R52R65 R52R66 R55R65 R55R66 R56R66

+R52R61 +R55R61 +R56R61 +R55R62 +R56R62 +R56R65

R2

61
2R61R62 2R61R65 2R61R66 R2

62
2R62R65 2R62R66 R2

65
2R65R66 R2

66

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(53)

Tx,33 =





R2
33 2R33R34 R2

34

R33R43 R33R44 + R34R43 R34R44

R2
43 2R43R44 R2

44



 (54)
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