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Abstract

We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral
Φ̃6 with all external legs massless, in terms of classical polylogarithms. We show
that this integral is closely connected to two integrals appearing in one- and two-
loop amplitudes in planar N = 4 super-Yang-Mills theory, Ω(1) and Ω(2). The
derivative of Ω(2) with respect to one of the conformal invariants yields Φ̃6, while
another first-order differential operator applied to Φ̃6 yields Ω(1). We also introduce
some kinematic variables that rationalize the arguments of the polylogarithms,
making it easy to verify the latter differential equation. We also give a further
example of a six-dimensional integral relevant for amplitudes in N = 4 super-
Yang-Mills.



1 Introduction and outline

Recent years have seen dramatic progress in the understanding of multi-loop and multi-leg scat-
tering amplitudes in N = 4 super Yang-Mills theory (SYM), especially in the planar limit. The
planar amplitudes have a hidden dual conformal symmetry [1, 2, 3] that leads to powerful con-
straints. There is also a surprising correspondence between scattering amplitudes and Wilson
loops [4, 5, 6]; see refs. [7, 8, 9, 10] for recent developments. A dual conformal Ward identity [11],
derived for Wilson loops, can be used to fix the functional form of multi-loop scattering ampli-
tudes, up to a priori undetermined functions of dual conformal cross-ratios. For example, the
functional form of the four- and five-point amplitudes is uniquely fixed to all orders in the coupling
constant, in agreement with explicit computations in field theory [2, 12, 13, 14, 15, 16, 17, 18, 19]
and string theory [4]. For maximally-helicity-violating (MHV) amplitudes, the difference between
the (logarithms of the) particular solution to the Ward identity (the BDS ansatz [13]) and the
amplitude is called the remainder function [16, 20]. For six external particles, this remainder
function can depend only on three dual conformal cross ratios u1, u2 and u3.

Another important consequence of dual conformal symmetry is a powerful restriction on the
planar loop integrand, which had been observed in dimensional regularization [1, 2, 21], and can
be made rigorous on the Coulomb branch of N = 4 SYM [22, 23, 24, 25].

The six-point remainder function at two loops is known analytically [26, 27, 28], thanks to
the correspondence between scattering amplitudes and Wilson loops. On the amplitude side, so
far results are available numerically [16] and analytically in certain kinematical limits [29, 30, 31].
Recently, iterative differential equations were used to directly evaluate integrals that contribute
to the scattering amplitudes [32].

The motivation of the present paper is to show how to derive analytical results for loop
integrals relevant for multi-leg scattering amplitudes, using differential equations. We concentrate
on the six-point case, but our method is also applicable to more external legs.

The “even” part of the planar six-particle MHV scattering amplitude at two loops was first
given in ref. [16] in terms of fifteen separate integrals with simple dual conformal properties. It
can be represented alternatively [31, 33] in terms of six dual conformal two-loop integrals, five
of which are infrared divergent and one of which is finite. The finite integral, denoted by Ω(2),
depends on the three dual conformal cross-ratios u1, u2, u3. It is reasonable to believe that it
contains an essential part of the two-loop six-point remainder function. In ref. [32] it was found
that Ω(2) satisfies several simple second-order differential equations, one of which relates it to an
analogous one-loop integral, called Ω(1).

In this paper we observe that the one-loop scalar hexagon integral in six space-time dimensions
is related to the aforementioned four-dimensional integrals via first-order differential equations.
The relations that we find are (schematically)

Ω(2)(u1, u2, u3) −→ Φ̃6(u1, u2, u3) −→ Ω(1)(u1, u2, u3) , (1)

where the arrows denote certain first-order differential operators in the ui. (See fig. 1.) Here Φ̃6

stands for the six-dimensional scalar hexagon integral, after two simple rescalings. The first (to
Φ6) makes it invariant under dual conformal transformations. The second removes an algebraic
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Figure 1: Three dual conformal integrals which are related to each other by the action of first-order
differential operators, as discussed in the text. The labels i, j, 1, 2, . . . , 6 are indices k for dual (or region)
coordinates xk. Solid lines indicate propagators; dashed lines indicate numerator factors of x2

ai or x2
bi,

as explained in the text. The central integral Φ̃6 has no such numerator factors, but is evaluated in
dimension D = 6 instead of D = 4. The standard hexagon integral H is rescaled to obtain a dual
conformal invariant integral Φ6, which is rescaled once again to obtain the pure degree 3 function Φ̃6.

prefactor. It is natural to consider Φ̃6 as an intermediate step between Ω(1) and Ω(2). Thanks
to the high degree of symmetry of the hexagon integral, the first-order differential equation
relating Φ̃6 (or Φ6) and Ω(1) in fact leads to a system of three inequivalent equations. Together
with a simple boundary condition, the latter completely determines the three-variable function
Φ6(u1, u2, u3).

From a practical viewpoint, the intermediate step between Ω(2) and Ω(1) in eq. (1) is very
useful. It is also very natural, since the Ω(i) functions are expected to be given by linear com-
binations of functions defined through iterated (poly)logarithmic integrals, such as logn, Lin,
and generalizations thereof. If we associate a “degree of transcendentality” with the number of
iterated integrals, then Ω(1), Φ̃6 and Ω(2) are pure functions of degree 2, 3 and 4, respectively. In
some sense, Φ̃6 represents a “one-and-a-half” loop function.

We find that the solution for Φ6 is given by a simple formula in terms of degree three functions,
eq. (26) below. It is remarkably similar in structure to the two-loop remainder function.

The six-dimensional hexagon integral Φ6 also is of inherent interest for a number of reasons.
In dimensional regularization with 4 − 2ε dimensions, it appears in the O(ε) part of the one-
loop six-particle MHV amplitude [34]. It is generated because a term in the numerator of the
one-loop integrand contains a factor of `2

[−2ε] ≡ µ2, where `[−2ε] denotes the components of the
loop momenta that lie outside of four dimensions. The integral of such a term yields −ε times
the scalar integral in six dimensions. Moreover, in order to determine the remainder function at
higher loops, one has to take the logarithm of the amplitude, in which case O(εi) terms at lower
loops get multiplied by pole terms ε−j (with j ≤ 2L, where L is the loop order.) The O(ε) terms
must be kept in order to obtain a consistent result at O(1). As an example, when computing
the two-loop remainder function in this way, Φ6 participates in a cancellation involving certain
two-loop “hexabox” integrals [16], where again there is a factor of µ2 in the numerator for the
hexagon loop. This link between higher-order terms in the ε expansion and higher-loop integrals
also motivates the idea that Φ6 should already know about some of the structure of the two-loop
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answer, and our result supports this expectation.
Another motivation for considering six-dimensional integrals in general is the known connec-

tion between scalar integrals in (D + 2) dimensions and tensor integrals in D dimensions (see
e.g. ref. [35].) In particular, many of the finite tensor integrals introduced in ref. [33] can be
viewed as higher-dimensional scalar integrals, or are related to them via differential equations.
This relation does not depend on dual conformal symmetry. As an example, we will show a
six-dimensional integral, and equivalently, a four-dimensional tensor integral, that computes the
finite part of the two-mass-easy box integral.

The hexagon integral Φ6 is a function of three dual conformally invariant cross-ratios u1, u2, u3.
Like the two-loop remainder function, it is conveniently expressed in terms of a set of redundant
variables xi± = uix±, where

x± =
−1 + u1 + u2 + u3 ±

√
∆

2u1u2u3
, ∆ = (−1 + u1 + u2 + u3)

2 − 4u1u2u3 . (2)

Later we will give a change of variables from ui to a set of variables v0, v±. Although these
variables do not manifest the cyclic symmetry, they have the feature that the arguments of the
polylogarithms in the result for the hexagon integral, and also all terms in the differential equa-
tions, are rational functions of v0, v±, with no square roots. This is very convenient for verifying
the differential equations. Analogous transformations may be also useful when considering other
six-point integrals.

Recently, the notion of symbols was advocated as a tool to think about iterated integrals
appearing in N = 4 SYM [28]. We compute the symbol of the hexagon integral and find that
it is given by a very simple expression. Its simplicity follows from the differential equations that
Φ6 satisfies.

This paper is organized as follows. We begin by defining the hexagon integral Φ6 and dis-
cussing its symmetry properties in section 2.1. We also explain how dual conformal symmetry
helps in obtaining a simple Feynman parametrization, which is a general feature. Another exam-
ple is given in Appendix C. We then point out the relation between Φ6 and integrals appearing
in the two-loop six-point MHV amplitude in N = 4 SYM, in the representation of ref. [33]. This
relation takes the form of first-order differential equations. We present the analytic solution to
these equations in section 2.3. In section 2.4 we introduce a convenient set of variables that
renders the arguments of the functions appearing in Φ6 rational, and directly verify the differen-
tial equations. In section 2.5 we discuss the symbol of Φ6. We conclude and give an outlook in
section 3.

2 Six-dimensional hexagon integral

2.1 Preliminaries

We consider the on-shell six-dimensional scalar hexagon integral H in D = 6 dimensions, with
external momenta pµ

j satisfying momentum conservation,
∑6

j=1 pµ
j = 0, and masslessness, p2

j = 0
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for j = 1, 2, . . . , 6. In terms of dual (or region) coordinates pµ
j = xµ

j − xµ
j+1, it is defined by

H =

∫

d6xi

iπ3

1
∏6

j=1 x2
ij

, (3)

where xµ
ij = xµ

i −xµ
j , and xµ

i is the dual coordinate corresponding to the loop momentum (see fig. 1
for the labeling). The integral is both ultraviolet (UV) and infrared (IR) finite. As a scalar
integral, H is a function of the external Lorentz invariants x2

j,j+2 = sj,j+1 and x2
j,j+3 = sj,j+1,j+2.

Here sj,j+1 = (pj + pj+1)
2 and sj,j+1,j+2 = (pj + pj+1 + pj+2)

2, and external indices are defined
modulo 6. We work in signature (−+++), so that the Euclidean region has all sj,j+1 and sj,j+1,j+2

positive. The on-shell conditions, p2
j = 0, are expressed in dual coordinates as x2

j,j+1 = 0.
Momentum conservation translates to xµ

j+6 ≡ xµ
j in the dual space.

Covariance of H under dual conformal symmetry [36, 1], in particular under the inversion of
all dual coordinates, xµ → xµ/x2, allows us to write

s123s234s345H(si,i+1, si,i+1,i+2) ≡ Φ6(u1, u2, u3) , (4)

where the cross-ratios

u1 =
x2

13x
2
46

x2
14x

2
36

=
s12s45

s123s345
, u2 =

x2
24x

2
51

x2
25x

2
41

=
s23s56

s234s123
, u3 =

x2
35x

2
62

x2
36x

2
52

=
s34s61

s345s234
, (5)

are invariant under dual conformal transformations.
We observe that Φ6 has both cyclic and reflection symmetries. This leads to a full permutation

symmetry in the {u1, u2, u3}, i.e.

Φ6(u1, u2, u3) = Φ6(u3, u1, u2) = Φ6(u2, u3, u1) , Φ6(u1, u2, u3) = Φ6(u2, u1, u3) . (6)

We will compute Φ6 in the Euclidean region, i.e. where sj,j+1 > 0, sj,j+1,j+2 > 0. Although we
will eventually compute Φ6 from differential equations, it is useful to have a simple parametric
representation for Φ6, for example for numerical checks. Here we give an instructive example
that highlights technical simplifications brought about by dual conformal symmetry that may be
of more general interest.

Introducing Feynman parameters in the standard way [37], we have

Φ6(u1, u2, u3) = 2 x2
14x

2
25x

2
36

∫ ∞

0

6
∏

i=1

dαi

δ(
∑6

i=1 ciαi − 1)
[

∑

i<j x2
ijαiαj

]3 . (7)

Note that we can choose the ci arbitrarily, as long as at least one of them is different from
zero [37].

We have already seen that dual conformal symmetry leads to the simplified variable de-
pendence (4). Moreover, dual conformal symmetry often leads to further simplifications in the
evaluation of loop integrals. For example, it is well known [36] that in the off-shell case, a com-
bination of a translation and an inversion in the dual space of the xi can be used to send one

5



of the dual points to infinity, thereby reducing the number of propagators by one. In this way,
Broadhurst demonstrated the equivalence of an infinite class of off-shell three- and four-point
ladder integrals.

In the present case, we cannot immediately use the same idea, due to the light-like constraints
p2

j = x2
j,j+1 = 0, which would make the above-mentioned inversion singular. However, we can

nevertheless exploit technical simplifications that dual conformal symmetry entails.
For a generic one-loop integral, a factor of (

∑

i αi)
a−D, where a is the number of propagators,

would be present under the integral sign on the right-hand side of eq. (7). Here, this factor is
absent since a = D = 6, which is precisely the condition for dual conformal symmetry. In this
case it is often convenient to choose one or more ci = 0, because the resulting integrals from 0
to ∞ in eq. (7) are easy to carry out. We will set c6 = c1 = c2 = 0, c3 = c4 = c5 = 1. We will
also use the redundancy in eq. (5) to set x2

46 = u1, x
2
24 = u2, x

2
26 = u3. (All other x2

jk appearing
in eq. (5) are set to 1.)

Performing the α6, α1, α2 integrations, we readily obtain

Φ6(u1, u2, u3) =

∫ 1

0

dα3,4,5 log

(

ad

bc

)

δ(
∑5

i=3 αi − 1)

ad − bc
, (8)

where ad = α3α5u3, b = α4u2 + α5 and c = α4u1 + α3. In this form, it is easy to see that the
answer will be built from degree three functions.

2.2 Relation to integrals appearing in the six-point MHV amplitude

As was mentioned in the introduction, Φ6 appears in the O(ε) part of the one-loop six-particle
MHV amplitude in dimensional regularization [34]. Moreover, when computing the logarithm of
that amplitude to two loops, Φ6 participates in a cancellation involving certain two-loop hexabox
integrals [16]. It is therefore not unreasonable to think that Φ6 already contains some of the
structure of the two-loop result.

In fact, one can find a very direct relation between integrals relevant for MHV scattering
amplitudes and Φ6. In refs. [33, 38], dual conformal integrals with a tensor structure in the
numerator were introduced for the description of scattering amplitudes in N = 4 SYM. One of
them is given by

Ω(1)(u1, u2, u3) = −x2
35x

2
26x

2
14

x2
ab

∫

d4xi

iπ2

x2
aix

2
bi

∏6
j=1 x2

ji

, (9)

where xµ
a is a solution to the four-cut condition x2

1a = x2
2a = x2

3a = x2
4a = 0, and xµ

b is obtained
from xµ

a by a rotation by 3 units (see fig. 1). The two choices for xa are related by parity. For the
finite integrals we consider here the result is independent of the choice. The numerator factor
x2

aix
2
bi is crucial in order to make the integral IR finite [33, 38]. The definition of the numerator

and the normalization in eq. (9) are easy to write out explicitly in twistor-space notation. We
refer the interested reader to refs. [33, 32] for further details.
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One might think that Ω(1) would be a rather complicated hexagon integral. However, dual
conformal symmetry and the specific choice of the numerator in eq. (9) allow it to be given by a
remarkably simple formula,

Ω(1)(u1, u2, u3) = log u1 log u2 + Li2(1 − u1) + Li2(1 − u2) + Li2(1 − u3) − 2ζ2 . (10)

The integral Ω(1) also plays an important role as the source term for a second-order differential
equation for Ω(2), an integral appearing in the two-loop six-particle MHV amplitude [32]. The
latter integral is defined by

Ω(2)(u1, u2, u3) = −x2
35x

2
26(x

2
14)

2

x2
ab

∫

d4xi

iπ2

∫

d4xj

iπ2

x2
aix

2
bj

x2
1ix

2
2ix

2
3ix

2
4ix

2
ijx

2
4jx

2
5jx

2
6jx

2
1j

, (11)

where the definition of xµ
a and xµ

b is the same as for Ω(1) in eq. (9). This integrals is also depicted
in fig. 1.

The differential equation obeyed by Ω(2) is [32]

u3∂u3
D̃(1)Ω(2) = Ω(1) , (12)

where D̃(1) is the first-order differential operator

D̃(1) = −u1(1 − u1)∂u1
− u2(1 − u2)∂u2

+ (1 − u1 − u2)(1 − u3)∂u3
. (13)

Given the factorized structure of the second-order differential operator in eq. (12), it is natural
to search for an object which sits “between” Ω(2) and Ω(1). The D = 6 scalar hexagon integral,
with transcendentality degree 3, is a particularly good candidate for such an object.

Inspecting the Feynman parametrization1 of Ω(1), it is easy to see that it is related to Φ6 in
the following way,

D(1)Φ6 = Ω(1) , (14)

where D(1) is the first-order differential operator

D(1) =
u3

u1u2
[u1(1 − u1)∂u1

+ u2(1 − u2)∂u2
− (1 − u1 − u2)(1 − u3)∂u3

− 1] u1u2 . (15)

This relation is not particularly surprising, since it is well known that tensor integrals in D
dimensions are often related to scalar integrals in (D + 2) dimensions [35]. We give a further
example in Appendix B. Relation (14) is easy to understand: when acting on the scalar integrand
of Φ6 in Feynman parameter form, see eq. (3), the differential operator (15) creates terms that
are equivalent to those coming from the numerator of Ω(1). Further, the increase in the power of
the denominator due to the differentiation can be absorbed by a shift in the dimension from 6
to 4.

1J. M. Henn thanks N. Arkani-Hamed and J. Bourjaily for collaboration on Feynman parametrizations of
twistor integrals.
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Let us comment further on the remarkable link between Φ6 and Ω(2). We can commute the
two first-order operators in eq. (12). Using

[

u3∂u3
, D̃(1)

]

= −(1 − u1 − u2)∂u3
, (16)

D(1) = −D̃(1)u3 + (1 − u1 − u2) , (17)

we have

D(1)∂u3
Ω(2) = −Ω(1) . (18)

Comparing eq. (18) with eq. (14), we find that

∂u3
Ω(2) = −Φ6 + K , (19)

where K satisfies D(1)K = 0. In fact we find numerically that K = 0. Thus Φ6 can be considered
as an intermediate step between Ω(1) and Ω(2). Only one more integration of Φ6 is required to
obtain Ω(2). Consistent with these differential equations, the degree of transcendentality increases
from Ω(1) to Φ6 to Ω(2) in steps of one. Considering its links to the six-particle MHV amplitudes
in N = 4 super Yang-Mills, it is of interest to understand better the function Φ6.

Let us proceed to evaluate the hexagon integral. The idea is to use eq. (14) in order to
determine Φ6. We will first put the equation into a more useful form. The zeroth-order piece in
eq. (15) suggests that Φ6 has some algebraic prefactor. Indeed, let us define

Φ̃6 :=
√

∆ Φ6 , (20)

where ∆ = (u1 +u2 +u3 − 1)2 − 4u1u2u3. Then, thanks to D(1)(1/
√

∆) = 0, it is straightforward
to commute the first-order part of D(1) around u1u2/

√
∆, and one obtains

− u3√
∆

D̃(1)Φ̃6 = Ω(1) , (21)

where the operator D̃(1) given in eq. (13) no longer contains zeroth-order terms. Due to the
permutation symmetry (6) in the arguments of Φ6, eq. (21) leads to two further non-trivial first-
order differential equations. This set of differential equations determines Φ6 up to one integration
constant. The latter can be fixed by the requirement that Φ6 should be non-singular at ∆ = 0,
which implies the vanishing of Φ̃6 on that locus.

Diagonalizing the set of differential equations generated by eq. (21), we have

∂u1
Φ̃6(u1, u2, u3) = − 1 − u1 + u2 − u3

(1 − u1)
√

∆
Ω(1)(u1, u2, u3) (22)

− 1 − u1 − u2 − u3

u1

√
∆

Ω(1)(u2, u3, u1) −
1 − u1 − u2 + u3

(1 − u1)
√

∆
Ω(1)(u3, u1, u2) ,

plus the two cyclically related equations. In the next subsection, we will present the full solution
for Φ6(u1, u2, u3).
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2.3 Result for Φ6(u1, u2, u3)

Here we present the solution to the differential equations (21), or equivalently (22). We first
define the variables

xi± = uix± , (23)

where x± and ∆ are given in eq. (2). The appearance of the xi± should not come as a surprise,
since they played a prominent role in the two-loop remainder function [28], and we have already
argued that Φ6 should capture some of its structure.

Further, we define

L3(x+, x−) =
2

∑

m=0

(−1)m

(2m)!!
logm(x+x−) [`3−m(x+) − `3−m(x−)] , (24)

`m(x) =
1

2
(Lim(x) − (−1)mLim(1/x)) , (25)

which is very similar to the function L4 defined in ref. [28]. As in ref. [28], the branch cuts of
Lin(x+) and Lin(1/x−) are taken to lie below the real axis, i.e. Lin(x+) := Lin(x+ + iε), etc., and
the branch cuts of Lin(x−) and Lin(1/x+) are taken to lie above the real axis.2

We found the following formula for Φ6,

Φ6(u1, u2, u3) =
Φ̃6(u1, u2, u3)√

∆
=

1√
∆

[

−2
3

∑

i=1

L3(xi+, xi−) + 2ζ2J +
1

3
J3

]

, (26)

where

J =
3

∑

i=1

[`1(xi+) − `1(xi−)] . (27)

Although individual terms in eq. (26) can be complex, their sum is always real in the Euclidean
region ui > 0.

In the next section, we prove directly that eq. (26) satisfies the differential equations (21). In
section 2.5, we will see another way to justify eq. (26) based on the differential equations for its
symbol.

2.4 Direct verification of the differential equations

We found the following change of variables to be convenient,

u1 =
v0 − v+v−

1 + v0 − v+ − v−
, u2 =

v0 − v+v−
(1 + v0 − v+ − v−)v0

, u3 =
v+v−
v0

. (28)

2We are grateful to M. Spradlin and C. Vergu for discussions and correspondence on the branch cut structure
of L4 in ref. [28].
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This definition is symmetric in v+ and v−. Choosing v+ > v− without loss of generality, the
inverse transformation is given by

v+ = u1u3x+ , v− = u1u3x− , v0 =
u1

u2
. (29)

We also have the following useful expressions for the xi±,

x1± =
v0

v∓
, x2± =

1

v∓
, x3± =

v±(1 + v0 − v+ − v−)

v0 − v+v−
. (30)

In terms of the variables v0,+,−, ∆ is a perfect square,

∆ =
(v+ − v−)2(v0 − v+v−)2

(1 + v0 − v+ − v−)2v2
0

. (31)

In the Euclidean region ui > 0 that we are considering, we can take the square root
√

∆ without
sign ambiguities, see eq. (28).

In the remainder of this section, we will assume ∆ > 0 for simplicity, so that the v± are real.
Note that the factor J defined in eq. (27) becomes simply

J = −1

2
log

v+

v−
. (32)

The differential equations (22) are easily expressed in the new variables, using Jacobian factors
such as

∂u1

∂v+
=

(v0 − v−)(1 − v−)

(1 + v0 − v+ − v−)2
. (33)

The differential equation in v0 turns out to be the simplest one, namely

∂v0
Φ̃6(v±, v0) =

v+ − v−
(v0 − v−)(v0 − v+)

log
(v0 − v+v−)

(1 + v0 − v+ − v−)v0
log

(v0 − v+v−)v0

(1 + v0 − v+ − v−)v+v−
. (34)

Using eqs. (30) and (32), it is easy to show that

∂v0
L3(x1+, x1−) =

1

8

v+ − v−
(v0 − v−)(v0 − v+)

log2

(

v+v−
v2
0

)

, (35)

∂v0
L3(x3+, x3−) = −1

8

v+ − v−
(v0 − v−)(v0 − v+)

log2

(

v+v−(1 + v0 − v+ − v−)2

(v0 − v+v−)2

)

, (36)

∂v0
L3(x2+, x2−) = 0 , (37)

∂v0
J = 0 . (38)

Hence Φ̃6 as defined in eq. (26) satisfies eq. (34). We have checked numerically that the differential
equations with respect to v+ and v− are satisfied as well.
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2.5 Symbol of Φ̃6(u1, u2, u3)

The notion of symbols has proven to be a useful tool for thinking about transcendental functions
appearing in N = 4 SYM; see ref. [28] and references therein.

The symbol [Φ̃6] of Φ̃6 is very simple, namely,

[Φ̃6(u1, u2, u3)] = −[Ω(1)(u1, u2, u3)] ⊗
x+(1 − x3−)

x−(1 − x3+)
+ cyclic , (39)

where

[Ω(1)(u1, u2, u3)] = u1 ⊗ u2 + u2 ⊗ u1 −
3

∑

i=1

ui ⊗ (1 − ui) . (40)

Note that the first of the three entries in [Φ̃6] is always either u1, u2 or u3. Because the ui are
ratios of the distances x2

ij , using standard properties of the symbol the first entry can always be
expressed as a distance. This property has been argued to follow from the branch-cut structure
of loop integrals [10].

In order to see directly that eq. (39) is the symbol of eq. (26) it is helpful to introduce to some
projective variables wi ∈ CP

1 for i = 1, . . . , 6. Choosing homogeneous coordinates wi = (1, zi),
they coincide with the zi variables of [28]. We can represent the three cross-ratios as follows,

u1 =
(23)(56)

(25)(36)
, u2 =

(34)(61)

(36)(41)
, u3 =

(45)(12)

(41)(52)
, (41)

where (ij) = −(ji) = εabw
a
i w

b
j . In terms of these variables ∆ is a perfect square,

∆ =

[

(12)(34)(56) + (23)(45)(61)

(14)(25)(36)

]2

(42)

and all entries of the symbol factorize into two-brackets (ij). Thus one can canonically represent
the symbol as a sum of terms of the form

(ab) ⊗ (cd) ⊗ (ef) . (43)

Performing this on the symbol (39) and the symbol of (26) one finds immediately the same
expression.

One can easily check that the symbol of Φ̃6 is consistent with the differential equation (22)
for Φ̃6. We simply replace the functions Φ̃6 and Ω(1) in eq. (22) by their symbols, and use the
following simple identities,

∂u1
log

x+(1 − x1−)

x−(1 − x1+)
=

1 − u1 − u2 − u3

u1

√
∆

, (44)

∂u1
log

x+(1 − x2−)

x−(1 − x2+)
=

1 − u1 − u2 + u3

(1 − u1)
√

∆
, (45)

∂u1
log

x+(1 − x3−)

x−(1 − x3+)
=

1 − u1 + u2 − u3

(1 − u1)
√

∆
, (46)

11



and the differentiation rule for symbols,

∂x (a1 ⊗ . . . ⊗ an−1 ⊗ an) = ∂x log(an) × a1 ⊗ . . . ⊗ an−1 . (47)

This analysis can be used to justify the solution (26), following ref. [28]: We have already seen
that eq. (26) has the correct symbol. This leaves two ambiguities in Φ6, firstly where to place
the branch cuts, and secondly the freedom to add constants multiplied by functions of lower
transcendentality than three. The first ambiguity is resolved by requiring that Φ6 be real-valued
and smooth in the entire Euclidean region ui > 0. We have numerical evidence that this is the
case for Φ6 in eq. (26). The second ambiguity has to be fixed by other means. The ζ2 term in
eq. (10) for Ω(1), which enters the differential equation (14), suggests the corresponding term in
eq. (26). We have also checked that the resulting formula is in agreement with the parametric
representation (8) for several numerical values, which cover different regions according to the
signs of ∆, ui − 1 and u1 + u2 + u3 − 1.

3 Conclusions and outlook

In this paper, we have computed the six-dimensional one-loop on-shell scalar hexagon integral
Φ6, giving its full kinematical dependence in the Euclidean region. The result is a remarkably
simple formula, eq. (26). Interestingly, its structure is almost identical to that of the two-loop
remainder function in planar N = 4 SYM [28], although the latter is of transcendentality degree
4, while Φ6 is of degree 3.

Our calculation was based on the observation that Φ6 is related to a known four-dimensional
one-loop tensor hexagon integral through first-order differential equations. The latter uniquely
determine the answer. It is interesting to note that both the two-loop remainder function and
Φ6 are best expressed in terms of a set of (redundant) variables xi±. For Φ6, one is led to these
variables in a very natural way when solving the aforementioned differential equations. This
approach should be very helpful when computing other integrals of this kind. In particular an
extension to degree five and six functions should provide valuable insight into the structure of
the remainder function at higher loops. Another interesting extension of this work could be to
consider the hexagon integral with massive corners, which may give hints about good sets of
kinematic variables for amplitudes with n > 6 external legs.

The procedure for finding a relation between Ω(2) and Ω(1) in ref. [32] was based on a Laplace
equation, which is second-order in nature, as are typical field equations for bosonic fields. On
the other hand, fermionic field equations are typically first order. One might speculate that
the first-order relations (1) between Ω(1), Φ6 and Ω(2) found in the present paper could have an
explanation based on supersymmetry. What is somewhat mysterious from this point of view is
why the function Φ6 which sits between Ω(1) and Ω(2) should have a full cyclic symmetry, when
neither Ω(1) nor Ω(2) do.

Finally, we comment that the fully off-shell version of H has a conventional conformal symme-
try in addition to its dual conformal symmetry. This is the case simply because it is built from φ3

vertices, and φ3 theory in D = 6 dimensions is classically conformal. By Fourier transforming the
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coordinate space conformal generators d, kµ, and accounting for a change in conformal dimension
coming from the amputation of external legs, we find their form in momentum space, acting on
H ,

d =
n

∑

i=1

[

pν
i ∂iν + 2

]

, kµ =
n

∑

i=1

[

− 1

2
pµ

i ∂ν
i ∂iν + 2∂µ

i + pν
i ∂iν∂

µ
i

]

. (48)

Invariance under these operators then implies homogeneous second-order differential equations.
If one takes some or all external legs on shell, as in the case of H (or Φ6), it can happen that the
action of the conformal generators becomes anomalous.

4 Acknowledgments

We thank M. Spradlin and C. Vergu for useful discussions. This research was supported by the
US Department of Energy under contract DE–AC02–76SF00515.

Note added. After this calculation was completed, we were informed by V. Del Duca,
C. Duhr and V. Smirnov of an independent computation of the hexagon integral presented here,
using a different method [39].

A A special case of Φ6

The differential equations simplify considerably in the special case u3 = 1, for which
√

∆ = u1−u2.
(This is true for u1 > u2, which we can assume without loss of generality since Φ6 is symmetric
in u1 and u2.) Starting from eq. (22), and using Ω(1)(u2, 1, u1) = Ω(1)(1, u1, u2), we find

∂u1
Φ̃6(u1, u2, 1) =

Ω(1)(u1, u2, 1)

1 − u1
− Ω(1)(1, u1, u2)

u1(1 − u1)
. (49)

One can easily find the solution

Φ6(u1, u2, 1) =
Φ̃6(u1, u2, 1)

u1 − u2
=

h(u1, u2) − h(u2, u1)

u1 − u2
, (50)

where
h(u1, u2) = log u1 (ζ2 − Li2(u1) − Li2(1 − u2)) + 2 Li3(u1) . (51)

B Relations between D = 6 integrals and D = 4 tensor

integrals

Here we give another example of a relation between a four-dimensional tensor integral and a six-
dimensional scalar integral. While the relation in the main text involved a first-order differential
operator, the relation we present here is simply an equality of two integrals.
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Let us consider the finite, dual conformal pentagon integral Ψ̃ [33, 32] that appears in the
representation of [33] of one-loop MHV amplitudes in N = 4 SYM. Up to a normalization factor,
it is given by

Ψ̃ ∝
∫

d4xi

iπ2

x2
ia

x2
2ix

2
3ix

2
5ix

2
6ix

2
8i

, (52)

where xµ
a is defined as one of the two solutions to the four-cut conditions x2

2a = x2
3a = x2

5a =
x2

6a = 0. As in the case of Ω(1), the numerator factor makes the integral IR finite.
We remark that dual conformal transformations can be used to remove the 1/x2

8i propagator,
by letting xµ

8 → ∞, as in ref. [36]. This is possible in this case because there are no light-like
constraints between xµ

8 and the neighboring xµ
2 and xµ

6 . In this way we obtain the equivalent
integral

I =

∫

d4xi

iπ2

x2
ia

x2
2ix

2
3ix

2
5ix

2
6i

. (53)

This integral is not dual conformally invariant, and is a function of x2
25, x

2
26, x

2
35, x

2
36. Up to a

normalization factor, it equals the finite part of the two-mass easy box integral [35, 40]

I =
−1

x2
26 + x2

35 − x2
25 − x2

36

[

Li2(1 − ξx2
26) + Li2(1 − ξx2

35) − Li2(1 − ξx2
25) − Li2(1 − ξx2

36)
]

, (54)

where ξ = (x2
26 + x2

35 − x2
25 − x2

36)/(x2
26x

2
35 − x2

25x
2
36). Since the finite part of the one-loop MHV

amplitude in N = 4 SYM is governed by this function (the divergent parts correspond to one-
mass and two-mass triangle integrals), this gives a very direct relation between six-dimensional
integrals and four-dimensional amplitudes.

In order to see the relation of I to a scalar integral in D = 6 dimensions, one can introduce
Feynman parameters, treating the numerator x2

ia as an inverse propagator 1/(x2
ia)

−1+δ with some
auxiliary analytic regularization δ. Integrating out the Feynman parameter corresponding to this
inverse propagator and letting δ → 0, one readily obtains

I =

∫ 1

0

dα2,3,5,6

δ(1 − ∑

i=2,3,5,6 αi)

α2α5x
2
25 + α3α5x

2
35 + α2α6x

2
26 + α3α6x

2
36

, (55)

which is nothing else than the Feynman parametrization of the following scalar integral in D = 6
dimensions,

I =

∫

d6xi

iπ3

1

x2
2ix

2
3ix

2
5ix

2
6i

. (56)

We remark that by combining propagators pairwise (see appendix C) and integrating out
the resulting finite bubble integral, one obtains a Wilson-loop type of representation for this
integral [6, 41].
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Figure 2: Interpretation of the hexagon integral as a line integral, according to eqs. (59) and (60).

C Wilson-loop representation of Φ6

In section 2.1, we explained how dual conformal symmetry helps to obtain a convenient Feynman
parametrization for H , where in particular the number of parameter integrals is equal to the
degree of the function. Here, we present a second way of exploiting dual conformal symmetry,
which in addition allows for an interpretation of H as a Wilson-loop integral.

Let us start from the definition of H given in eq. (3). It is well-known that for on-shell
integrals it is often desirable to introduce Feynman parameters in steps, i.e. to combine two
adjacent propagators at a time, using the formula

1

x2
1ix

2
2i

=

∫ 1

0

dξ1
1

[(y1 − xi)2]2
, x2

12 = 0 , (57)

where

yµ
1 (ξ1) = xµ

1 (1 − ξ1) + xµ
2ξ1 . (58)

For example, the two-mass easy box integral is “easy” precisely because it contains two pairs of
propagators separated by a massless leg; eq. (57) can be applied to each pair.

Repeating this procedure for the other two pairs of adjacent propagators leads to

H =

∫ 1

0

dξ1,3,5

∫

d6xi

iπ3

1

[(y1 − xi)2]2[(y3 − xi)2]2[(y5 − xi)2]2
, (59)

where yµ
3 (yµ

5 ) is defined like yµ
1 in eq. (58), but with i → i + 2 (i → i + 4). At the cost of having

introduced three parameter integrals, the innermost integral now depends on three “effective
propagators” only, see Fig. 2(a). For a triangle integral, however, dual conformal symmetry
fixes the answer uniquely to be a constant multiple of 1/[(y1 − y3)

2(y1 − y5)
2(y3 − y5)

2]. The
constant can be determined from a boundary condition, e.g. y5 → ∞. This is nothing else than
the star-triangle (or uniqueness) relation [42], of course. Hence the answer is simply

H =

∫ 1

0

dξ1,3,5
1

(y1 − y3)2(y1 − y5)2(y3 − y5)2
, (60)
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which is depicted in see Fig. 2(b). More explicitly, we have (y1−y3)
2 = x2

13ξ̄1ξ̄3+x2
14ξ3ξ̄1+x2

24ξ1ξ3,
where ξ̄ := 1 − ξ, etc. In this form, the Feynman loop integral is reminiscent of a Wilson-loop
integral in the dual space of the xi. See ref. [41] for a similar discussion of related integrals.
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