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A key problem in making precise perturbative QCD predictions is the uncertainty in de-
termining the renormalization scale of the running coupling αs(µ

2). It is common practice to
guess a physical scale µ = Q which is of order of a typical momentum transfer Q in the pro-
cess, and then vary the scale over a range Q/2 and 2Q. This procedure is clearly problematic
since the resulting fixed-order pQCD prediction will depend on the renormalization scheme,
and it can even predict negative QCD cross sections at next-to-leading-order [1]. Other
heuristic methods to set the renormalization scale, such as the “principle of minimal sensi-
tivity” [2], give unphysical results [3] for jet physics, sum physics into the running coupling
not associated with renormalization, and violate the transitivity property of the renormaliza-
tion group [4]. Such scale-setting methods also give incorrect results when applied to Abelian
QED. Note that the factorization scale in QCD is introduced to match nonperturbative and
perturbative aspects of the parton distributions in hadrons; it is present even in conformal
theory and thus is a completely separate issue from renormalization scale setting.

Scales in QED: There is no ambiguity in setting the renormalization scale in quantum
electrodynamics: In the standard Gell-Mann–Low scheme for QED, the renormalization scale
is simply the virtuality of the virtual photon. For example, in electron-muon elastic scatter-
ing, the renormalization scale is the momentum transfer t; i.e., α(t) = α(t0)/(1 − Π(t, t0))
where Π(t, t0) = (Π(t) − Π(t0))/(1 − Π(t0)) sums all vacuum contributions in the dressed
photon propagator, proper and improper. Although the initial choice of renormalization
scale t0 is arbitrary, the final scale t is not. In the case of muonic atoms, the modified
muon-nucleus Coulomb potential is precisely α(~q 2)/~q 2. One can use other renormalization
schemes in QED, such as MS scheme, but the physical result will be the same after allowing
for the displacement of scales. For example, if Q2 >> m2

` , αMS(e−5/3t) = αGM−L(t). The
same underlying principle for scale setting must hold in QCD since the nF terms in the QCD
β function have the same role as the lepton N` vacuum polarization contributions in QED.

PMC and BLM: The purpose of the running coupling in gauge theory is to sum
all terms involving the β function; when the renormalization scale µ is set properly, all
nonconformal β 6= 0 terms in a perturbative expansion arising from renormalization are
summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent
“renormalon” series of order αn

sβ
nn! does not appear in the conformal series. Thus as in

QED, the renormalization scale µ is determined unambiguously by the “Principle of Maximal
Conformality (PMC)”. This is the principle underlying BLM scale setting [5] An important
feature of PMC is that its QCD predictions are independent of the choice of renormalization
scheme. The PMC procedure also agrees with QED in the NC → 0 limit. In the case of
e+e− annihilation to three jets, the BLM/PMC scale is set by the gluon jet virtuality.

Global PMC Scale: Ideally, as in the BLM method, one should allow for separate
scales for each skeleton graph; e.g., for to electron-electron scattering, one takes α(t) and
α(u) for the t-channel and u-channel amplitudes, respectively. Setting separate scales can
be a challenging task for complicated processes in QCD where there are many final-state
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particles and thus many possible Lorentz scalars q2
i . However, one can obtain a useful first

approximation to the full BLM-PMC scale-setting procedure using a single global scale µ̂
which appropriately weights the individual BLM scales. The global scale [6] can be deter-
mined by varying the subprocess amplitude with respect to each invariant, thus determining
the coefficients fi of log q2

i /µ
2
0 in the amplitude; the global PMC scale is then µ̂2 = CΠi(q

2
i )wi ,

where the weight wi = fi/
∑

j fj. C is the scheme displacement; e.g., C = e−5/3 for MS.
Commensurate Scale Relations (CSR) [7]: Relations between observables must be

independent of the choice of scale and renormalization scheme. CSRs are thus fundamental
tests of theory, devoid of theoretical conventions. For example, the PMC relates the effective
charge αg1(Q

2) determined by measurements of the Bjorken sum rule, to the effective charge
αR(s) measured in the total e+e− annihilation cross section: [1−αg1(Q

2)/π]×[1+αR(s∗)/π] =
1. Because all β 6= 0 nonconformal terms are absorbed into the running couplings using PMC,
one recovers the conformal prediction [8]; in this case, it is the Crewther relation [9]. The
ratio of PMC scales

√
s
∗
/Q ' 0.52 is set by physics; it guarantees that each observable

goes through each quark flavor threshold simultaneously as Q2 and s are raised . Thus by
applying PMC, the conformal commensurate scale relations between observables, such as
the Crewther relation, become valid for non-conformal QCD at leading twist.

Conclusions: The PMC provides a consistent method for determining the renormal-
ization scale in pQCD. The PMC scale-fixed prediction is independent of the choice of
renormalization scheme, a key requirement of renormalization group invariance. The results
avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC global scale can be derived efficiently at NLO from basic properties of the PQCD cross
section. The elimination of the renormalization scheme ambiguity using the PMC will not
only increases the precision of QCD tests, but it will also increase the sensitivity of colliders
to new physics beyond the Standard Model.
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