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Abstract. We give an overview of the light-front holographic approach to strongly coupled
QCD, whereby a confining gauge theory, quantized on the light front, is mapped to a
higher-dimensional anti de Sitter (AdS) space. The framework is guided by the AdS/CFT
correspondence incorporating a gravitational background asymptotic to AdS space which
encodes the salient properties of QCD, such as the ultraviolet conformal limit at the AdS
boundary at z → 0, as well as modifications of the geometry in the large z infrared region
to describe confinement and linear Regge behavior. There are two equivalent procedures for
deriving the AdS/QCD equations of motion: one can start from the Hamiltonian equation
of motion in physical space time by studying the off-shell dynamics of the bound state
wavefunctions as a function of the invariant mass of the constituents. To a first semiclassical
approximation, where quantum loops and quark masses are not included, this leads to a light-
front Hamiltonian equation which describes the bound state dynamics of light hadrons in terms
of an invariant impact variable ζ which measures the separation of the partons within the hadron
at equal light-front time. Alternatively, one can start from the gravity side by studying the
propagation of hadronic modes in a fixed effective gravitational background. Both approaches
are equivalent in the semiclassical approximation. This allows us to identify the holographic
variable z in AdS space with the impact variable ζ. Light-front holography thus allows a precise
mapping of transition amplitudes from AdS to physical space-time. The internal structure of
hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.

1. Introduction
The AdS/CFT correspondence between gravity or string theory on a higher dimensional anti
de Sitter (AdS) space and conformal field theories in physical space time [1] has led to a
semiclassical approximation for strongly-coupled QCD, which provides physical insights into its
non-perturbative dynamics. The correspondence is holographic in the sense that it determines a
duality between theories in different number of space-time dimensions. In practice, the duality
provides an effective gravity description in a (d + 1)-dimensional AdS space-time in terms of
a flat d-dimensional conformally-invariant quantum field theory defined at the AdS asymptotic
boundary [2, 3]

eiWCFT[J=Φ0] = Zgrav[Φ] =

∫
DeiSeff [Φ], (1)

where WCFT is the generating functional of the conformal theory and Z is the string partition
function given in terms of fields Φ in AdS space. Thus, in principle, one can compute physical
observables in a strongly coupled gauge theory in terms of a classical gravity theory.
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Anti-de Sitter AdS5 space is the maximally symmetric space-time with negative curvature
and a four-dimensional space-time boundary. The most general group of transformations that
leave the AdSd+1 differential line element

ds2 =
R2

z2

(
ηµνdx

µdxν − dz2
)
, (2)

invariant, the isometry group, has dimensions (d+ 1)(d+ 2)/2. Five-dimensional Anti-de Sitter
space AdS5 has 15 isometries, in agreement with the number of generators of the conformal
group in four dimensions.

Since the AdS metric (2) is invariant under a dilatation of all coordinates xµ → λxµ and
z → λz, it follows that the additional dimension, the holographic variable z, acts as a scaling
variable in Minkowski space: different values of z correspond to different energy scales at which
the hadron is examined. As a result, a short space-like or time-like invariant interval near the
light-cone, xµx

µ → 0, maps to the conformal AdS boundary near z → 0. This also corresponds
to the Q → ∞ ultraviolet (UV) zero separation distance. On the other hand, a large invariant
four-dimensional interval of confinement dimensions xµx

µ ∼ 1/Λ2
QCD maps to the large infrared

(IR) region of AdS space z ∼ 1/ΛQCD.
QCD is fundamentally different from conformal theories since its scale invariance is broken

by quantum effects. A gravity dual to QCD is not known, but the mechanisms of confinement
can be incorporated in the gauge/gravity correspondence by modifying the AdS geometry near
a large infrared value z ∼ 1/ΛQCD, where ΛQCD, sets the scale of the strong interactions. In
this simplified approach, hadronic modes propagate in a fixed effective gravitational background
which encodes salient properties of the QCD dual theory, such as the ultraviolet conformal
limit at the AdS boundary at z → 0, as well as modifications of the background geometry for
large z which yields confinement. The modified theory generates the point-like hard behavior
expected from QCD, instead of the soft behavior characteristic of extended objects. [4] It is
striking that the QCD dimensional counting rules [5, 6] are also a key feature of nonperturbative
models [4] based on the gauge/gravity duality. Although the mechanisms are different, both the
perturbative QCD and the AdS/QCD approaches depend on the leading-twist (dimension minus
spin) interpolating operators of the hadrons and their structure at short distances.

Incorporating the AdS/CFT correspondence as a useful guide, light-front holographic
methods were originally introduced [7] by matching the expression for electromagnetic (EM)
current matrix elements in AdS space [8] with the corresponding matrix elements using light-
front theory in physical space time. This allows us to identify the holographic variable z in AdS
space with an impact variable ζ. [7] It was also shown that one obtains identical holographic
mapping using the matrix elements of the gravitational or energy-momentum tensor [9] by
perturbing the AdS metric [10] around its static solution (2).

Light-front quantization is the ideal framework to describe the structure of hadrons in terms
of their quark and gluon degrees of freedom. The simple structure of the light-front (LF) vacuum
allows an unambiguous definition of the partonic content of a hadron in QCD and of hadronic
light-front wavefunctions (LFWFs), the underlying link between large distance hadronic states
and the constituent degrees of freedom at short distances. The LFWFs of relativistic bound
states in QCD provide a description of the structure and internal dynamics of hadronic states
in terms of their constituent quark and gluons at the same LF time τ = x0 + x3, the time
marked by the front of a light wave, [11] instead of the ordinary instant time t = x0. The
constituent spin and orbital angular momentum properties of the hadrons are also encoded in
the LFWFs. In fact, the definition of quark and gluon angular momentum is unambiguous
in Dirac’s front form in light-cone gauge A+ = 0, and the gluons have physical polarization
Szg = ±1. Unlike ordinary instant-time quantization, the Hamiltonian equation of motion in the
light-front is frame independent and has a structure similar to eigenmode equations in AdS space.



This makes a direct connection of QCD with AdS/CFT methods possible. The identification
of orbital angular momentum of the constituents is a key element in our description of the
internal structure of hadrons using holographic principles, since hadrons with the same quark
content, but different orbital angular momentum, have different masses. In the usual AdS/QCD
approach [12, 13] fields in the bulk geometry are introduced to match the chiral symmetries of
QCD and axial and vector currents, and these become the primary entities as in effective chiral
theory. In contrast, in light-front holography a direct connection with the internal constituent
structure of hadrons is established using light-front quantization. [7, 9, 14]

A physical hadron in four-dimensional Minkowski space has four-momentum Pµ and invariant
hadronic mass states determined by the light-front Lorentz-invariant Hamiltonian equation
for the relativistic bound-state system PµP

µ|ψ(P )〉 = M2|ψ(P )〉, where the operator PµP
µ

is determined canonically from the QCD Lagrangian. The physical states in AdS space are
represented by normalizable modes ΦP (x, z) = e−iP ·xΦ(z), with plane waves along Minkowski
coordinates xµ and a profile function Φ(z) along the holographic coordinate z. The hadronic
invariant mass PµP

µ = M2 is found by solving the eigenvalue problem for the AdS wave
equation. Each light-front hadronic state |ψ(P )〉 is dual to a normalizable string mode ΦP (x, z).
For fields near the AdS boundary z → 0, the behavior of Φ(z) depends on the scaling (twist)
dimension of the corresponding interpolating operators.

We have shown recently a remarkable connection between the description of hadronic modes
in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the
light-front at equal light-front time τ . [14] The light-front Hamiltonian equation of motion in
physical space-time are the relativistic wave equations which determine the off-shell dynamics
of the frame-independent light-front bound-state wavefunctions. [14] To a first semiclassical
approximation, where quantum loops and quark masses are not included, this leads to a light-
front Hamiltonian equation which describes the bound-state dynamics of light hadrons in terms
of an invariant impact variable ζ, which measures the separation of the partons within the hadron
at equal light-front time. In fact, this procedure leads to relativistic light-front wave equations
which are equivalent to the equations of motion which describe the propagation of hadronic
modes in AdS space. [14] Remarkably, the AdS equations correspond to the kinetic energy terms
of the partons inside a hadron, whereas the interaction terms build confinement and correspond
to the truncation of AdS space in an effective dual gravity approximation. [14] Early attempts to
derive effective one-body equations in light-front QCD are described in reference. [15] We should
also mention previous work by ’t Hooft, who obtained the spectrum of two-dimensional QCD in
the large NC limit in terms of a Schrödinger equation as a function of the parton x-variable. [16]
In the scale-invariant limit, this equation is equivalent to the equation of motion for a scalar
field in AdS3 space. [17] In this case, there is a mapping between the variable x and the radial
coordinate in AdS3.

2. Higher Spin Hadronic Modes in AdS Space 1

The description of higher spin modes in AdS space is a notoriously difficult problem. [19, 20, 21]
A spin-J field in AdSd+1 is represented by a rank J tensor field Φ(xM )M1···MJ

, which is totally
symmetric in all its indices. Such a tensor contains also lower spins, which can be eliminated by
imposing gauge conditions. The action for a spin-J field in AdSd+1 space time in presence of a
dilaton background field ϕ(z) is given by

S =
1

2

∫
ddx dz

√
g eϕ(z)

(
gNN

′
gM1M ′

1 · · · gMJM
′
JDNΦM1···MJ

DN ′ΦM ′
1···M ′

J

−µ2gM1M ′
1 · · · gMJM

′
J ΦM1···MJ

ΦM ′
1···M ′

J
+ · · ·

)
, (3)

1 This section is based on our collaboration with Hans Guenter Dosch and Josh Erlich. Further details will be
given in a joint paper [18] and an upcoming Physics Report.



where DM is the covariant derivative which includes parallel transport

[DN , DK ]ΦM1···MJ
= −RLM1NKΦL···MJ

− · · · −RLMJNK
ΦM1···L, (4)

and the omitted terms refer to terms with different contractions. Conformal invariance in (3)
is broken by the dilaton profile ϕ(z) which is a function of the holographic coordinate z and
vanishes in the conformal limit z → 0. The coordinates of AdS are the Minkowski coordinates
xµ and the holographic variable z labeled xM = (xµ, z), with M,N = 1, · · · , d+ 1.

A physical hadron has plane-wave solutions and polarization indices µi, i = 1 · · · J , along
the 3 + 1 physical coordinates ΦP (x, z)µ1···µJ = e−iP ·xΦ(z)µ1···µJ , with four-momentum Pµ and
invariant hadronic mass PµP

µ = M2. All other components vanish identically: Φzµ2···µJ =
· · · = Φµ1µ2···z = 0. One can then construct an effective action in terms of high spin modes
Φµ1µ2···µJ , with only the physical degrees of freedom. [22, 18] In this case the system of coupled
differential equations which follow from (3) reduce to a homogeneous equation in terms of the
field ΦP (x, z)µ1···µJ with all the polarization indices along the physical 3 + 1 coordinates. In
terms of fields with tangent indices

Φ̂A1A2···AJ
= eM1

A1
eM2
A2
· · · eMJ

AJ
ΦM1M2···MJ

=
( z
R

)J
ΦA1A2···AJ

, (5)

we find the effective action [18]

S =
1

2

∫
ddx dz

√
g eϕ(z)

(
gNN

′
ηµ1µ

′
1 · · · ηµJµ′J∂N Φ̂µ1···µJ∂N ′Φ̂µ′1···µ′J (6)

−µ2ηµ1µ
′
1 · · · ηµJµ′J Φ̂µ1···µJ Φ̂µ′1···µ′J

)
,

upon rescaling the fifth dimensional mass µ. The vielbein eAM is defined by gMN = eAMe
B
NηAB,

where A,B = 1, · · · , d+ 1 are tangent AdS space indices.
The variation of the fifth-dimensional action gives the AdS wave equation for the spin-J mode

Φµ1···µJ [
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)

zd−1−2J
∂z

)
+

(
µR

z

)2
]

Φ(z)µ1···µJ =M2Φ(z)µ1···µJ , (7)

where Φ̂(z)µ1···µJ = (z/R)JΦ(z)µ1···µJ has scaling behavior Φ̂J(z → 0) ∼ zτ and scaling
dimension τ given by the relation (µR)2 = (τ−J)(τ−d+J). Eq. (7) is the basic equation which
we shall use here to describe the propagation of spin-J hadronic modes in a fixed gravitational
background, asymptotic to AdS space. Its eigenvalues determine the invariant mass M2 of
hadronic states |ψ(P )〉 dual to the hadronic modes ΦP (x, z)µ1···µJ . We describe below how
Eq. (7) is mapped to the QCD light-front wave equations in physical space-time. A detailed
derivation of (7) and comparison with the scaling described in Ref. [22] will be given in Ref. [18].
The wave equation (7) also follows from considering the wave equation for a scalar mode Φ in AdS
and rescaling the solution by shifting dimensions according to ΦJ(z) = (z/R)−JΦ(z). [14, 23]

3. Light-Front Quantization of QCD
One can express the hadron four-momentum generator P = (P+, P−,P⊥), P± = P 0 ± P 3,
in terms of the dynamical fields, the Dirac field ψ+, where ψ± = Λ±ψ, Λ± = γ0γ±, and the
transverse field A⊥ in the A+ = 0 gauge [24] quantized on the light-front at fixed light-cone



time x+, x± = x0 ± x3

P− =
1

2

∫
dx−d2x⊥ψ+ γ

+ (i∇⊥)2 +m2

i∂+
ψ+ + (interactions), (8)

P+ =

∫
dx−d2x⊥ψ+γ

+i∂+ψ+, (9)

P⊥ =
1

2

∫
dx−d2x⊥ψ+γ

+i∇⊥ψ+, (10)

where the integrals are over the null plane x+ = 0, the hyper-plane tangent to the light cone.
This is the initial-value surface for the fields where the commutation relations are fixed. The LF
Hamiltonian P− generates LF time translations [ψ+(x), P−] = i ∂

∂x+
ψ+(x), to evolve the initial

conditions to all space-time, whereas the LF longitudinal P+ and transverse momentum P⊥ are
kinematical generators. For simplicity we have omitted from (8 - 10) the contributions from the
gluon field A⊥.

According to Dirac’s classification of the forms of relativistic dynamics, [11] the fundamental
generators of the Poincaré group can be separated into kinematical and dynamical generators.
The kinematical generators act along the initial surface and leave the light-front plane invariant:
they are thus independent of the dynamics and therefore contain no interactions. The dynamical
generators change the light-front position and depend consequently on the interactions. In
addition to P+ and P⊥, the kinematical generators in the light-front frame are the z-component
of the angular momentum Jz and the boost operator K. In addition to the Hamiltonian P−,
Jz and Jy are also dynamical generators. The light-front frame has the maximal number of
kinematical generators.

A physical hadron in four-dimensional Minkowski space has four-momentum Pµ and invariant
hadronic mass states PµP

µ = M2 determined by the Lorentz-invariant Hamiltonian equation
for the relativistic bound-state system

PµP
µ|ψ(P )〉 =

(
P−P+ −P2

⊥
)
|ψ(P )〉 =M2|ψ(P )〉, (11)

where the hadronic state |ψ〉 is an expansion in multiparticle Fock eigenstates |n〉 of the free
light-front Hamiltonian: |ψ〉 =

∑
n ψn|ψ〉. The state |ψ(P+,P⊥, J

z)
〉

is an eigenstate of the
total momentum P+ and P⊥ and the total spin Jz. Quark and gluons appear from the light-
front quantization of the excitations of the dynamical fields ψ+ and A⊥, expanded in terms of
creation and annihilation operators at fixed LF time τ . The Fock components ψn(xi,k⊥i, λ

z
i ) are

independent of P+ and P⊥ and depend only on relative partonic coordinates: the momentum
fraction xi = k+

i /P
+, the transverse momentum k⊥i and spin component λzi . Momentum

conservation requires
∑n

i=1 xi = 1 and
∑n

i=1 k⊥i = 0. The LFWFs ψn provide a frame-
independent representation of a hadron which relates its quark and gluon degrees of freedom to
their asymptotic hadronic state.

4. A Semiclassical Approximation to QCD
We can compute M2 from the hadronic matrix element

〈ψ(P ′)|PµPµ|ψ(P )〉 =M2〈ψ(P ′)|ψ(P )〉, (12)

expanding the initial and final hadronic states in terms of its Fock components. The computation
is simplified in the frame P =

(
P+,M2/P+,~0⊥

)
where P 2 = P+P−. We find

M2 =
∑
n

∫ [
dxi
][
d2k⊥i

]∑
q

(k2
⊥q +m2

q

xq

)
|ψn(xi,k⊥i)|2 + (interactions), (13)



plus similar terms for antiquarks and gluons (mg = 0). The integrals in (13) are over the internal
coordinates of the n constituents for each Fock state∫ [

dxi
]
≡

n∏
i=1

∫
dxi δ

(
1−

n∑
j=1

xj

)
,

∫ [
d2k⊥i

]
≡

n∏
i=1

∫
d2k⊥i
2(2π)3

16π3 δ(2)
( n∑
j=1

k⊥j

)
, (14)

with phase space normalization
∑

n

∫ [
dxi
] [
d2k⊥i

]
|ψn(xi,k⊥i)|2 = 1.

The LFWF ψn(xi,k⊥i) can be expanded in terms of n− 1 independent position coordinates
b⊥j , j = 1, 2, . . . , n− 1, conjugate to the relative coordinates k⊥i, with

∑n
i=1 b⊥i = 0. We can

also express (13) in terms of the internal impact coordinates b⊥j with the result

M2 =
∑
n

n−1∏
j=1

∫
dxj d

2b⊥j ψ
∗
n(xj ,b⊥j)

∑
q

(
−∇2

b⊥q
+m2

q

xq

)
ψn(xj ,b⊥j) + (interactions). (15)

The normalization is defined by
∑

n

∏n−1
j=1

∫
dxjd

2b⊥j |ψn(xj ,b⊥j)|2 = 1. To simplify the
discussion we will consider a two-parton hadronic bound state. In the limit of zero quark
mass mq → 0

M2 =

∫ 1

0

dx

x(1− x)

∫
d2b⊥ ψ

∗(x,b⊥)
(
−∇2

b⊥

)
ψ(x,b⊥) + (interactions). (16)

The functional dependence for a given Fock state is given in terms of the invariant mass

M2
n =

( n∑
a=1

kµa

)2
=
∑
a

k2
⊥a +m2

a

xa
→

k2
⊥

x(1− x)
, (17)

giving the measure of the off-energy shell of the bound state, M2−M2
n. Similarly, in impact

space the relevant variable for a two-parton state is ζ2 = x(1−x)b2
⊥. Thus, to first approximation

LF dynamics depend only on the boost invariant variableMn or ζ, and hadronic properties are
encoded in the hadronic mode φ(ζ) from the relation

ψ(x, ζ, ϕ) = eiLϕX(x)
φ(ζ)√
2πζ

, (18)

thus factoring out the angular dependence ϕ and the longitudinal, X(x), and transverse mode
φ(ζ). This is a natural factorization in the light front since the corresponding canonical
generators, the longitudinal and transverse generators P+ and P⊥ and the z-component of
the orbital angular momentum Jz are kinematical generators which commute with the LF
Hamiltonian generator P−. We choose the normalization of the LF mode φ(ζ) = 〈ζ|ψ〉 as
〈φ|φ〉 =

∫
dζ |〈ζ|φ〉|2 = 1.

We can write the Laplacian operator in (16) in circular cylindrical coordinates (ζ, ϕ) and
factor out the angular dependence of the modes in terms of the SO(2) Casimir representation
L2 of orbital angular momentum in the transverse plane. Using (18) we find [14]

M2 =

∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1

ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ

+

∫
dζ φ∗(ζ)U(ζ)φ(ζ), (19)

where L = Lz. In writing the above equation we have summed the complexity of the interaction
terms in the QCD Lagrangian by the introduction of the effective potential U(ζ), which is



modeled to enforce confinement at some IR scale. The LF eigenvalue equation PµP
µ|φ〉 =M2|φ〉

is thus a light-front wave equation for φ(
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) =M2φ(ζ), (20)

a relativistic single-variable LF Schrödinger equation. Its eigenmodes φ(ζ) determine the
hadronic mass spectrum and represent the probability amplitude to find n-partons at transverse
impact separation ζ, the invariant separation between pointlike constituents within the
hadron [7] at equal LF time. Extension of the results to arbitrary n follows from the
x-weighted definition of the transverse impact variable of the n − 1 spectator system [7]:

ζ =
√

x
1−x

∣∣∣∑n−1
j=1 xjb⊥j

∣∣∣, where x = xn is the longitudinal momentum fraction of the active

quark. One can also generalize the equations to allow for the kinetic energy of massive quarks
using Eqs. (13) or (15). In this case, however, the longitudinal mode X(x) does not decouple
from the effective LF bound-state equations.

5. Light-Front Holographic Mapping and Hadronic Spectrum
The structure of the QCD Hamiltonian equation (11) for the state |ψ(P )〉 is similar to the
structure of the wave equation (7) for the J-mode Φµ1···µJ in AdS; they are both frame-
independent and have identical eigenvaluesM2, the mass spectrum of the color-singlet states of
QCD. This provides a profound connection between physical QCD and the physics of hadronic
modes in AdS space. However, important differences are also apparent: Eq. (11) is a linear
quantum-mechanical equation of states in Hilbert space, whereas Eq. (7) is a classical gravity
equation; its solutions describe spin-J modes propagating in a higher dimensional warped space.
Physical hadrons are composite and thus inexorably endowed of orbital angular momentum.
Thus, the identification of orbital angular momentum is of primary interest in establishing a
connection between both approaches.

As shown in Sect. 4, one can indeed systematically reduce the LF Hamiltonian eigenvalue
Eq. (11) to an effective relativistic wave equation (20), analogous to the AdS equations, by
observing that each n-particle Fock state has an essential dependence on the invariant mass of
the system and thus, to a first approximation, LF dynamics depend only on M2

n. In impact
space the relevant variable is the boost invariant variable ζ, which measures the separation of
the constituents and which also allows one to separate the dynamics of quark and gluon binding
from the kinematics of the constituent internal angular momentum.

Upon the substitution z→ζ and φJ(ζ) = (ζ/R)−3/2+J eϕ(z)/2 ΦJ(ζ), in (7), we find for d = 4
the QCD light-front wave equation (20) with effective potential [23]

U(ζ) =
1

2
ϕ′′(z) +

1

4
ϕ′(z)2 +

2J − 3

2z
ϕ′(z). (21)

The fifth dimensional mass µ is not a free parameter but scales as (µR)2 = −(2− J)2 + L2.
If L2 < 0, the LF Hamiltonian is unbounded from below 〈φ|PµPµ|φ〉 < 0 and the spectrum

contains an infinite number of unphysical negative values of M2 which can be arbitrarily large.
AsM2 increases in absolute value, the particle becomes localized within a very small region near
ζ = 0, since the effective potential is conformal at small ζ. ForM2 → −∞ the particle is localized
at ζ = 0, the particle “falls towards the center”. [25] The critical value L = 0 corresponds to
the lowest possible stable solution, the ground state of the light-front Hamiltonian. For J = 0
the five dimensional mass µ is related to the orbital momentum of the hadronic bound state
by (µR)2 = −4 + L2 and thus (µR)2 ≥ −4. The quantum mechanical stability condition
L2 ≥ 0 is thus equivalent to the Breitenlohner-Freedman stability bound in AdS. [26] The



scaling dimensions are 2 + L independent of J , in agreement with the twist-scaling dimension
of a two-parton bound state in QCD. It is important to notice that in the light-front the SO(2)
Casimir for orbital angular momentum L2 is a kinematical quantity, in contrast with the usual
SO(3) Casimir L(L+1) from non-relativistic physics which is rotational, but not boost invariant.

We consider here the positive-sign dilaton profile exp(+κ2z2) which explicitly confines the
constituents to distances 〈z〉 ∼ 1/κ [27, 28]. It is also the solution compatible with (7), which
naturally encodes the internal structure of hadrons and their orbital angular momentum. From
(21) we obtain the effective potential [27] U(ζ) = κ4ζ2 + 2κ2(L + S − 1), where Jz = Lz + Sz,
which corresponds to a transverse oscillator in the light-front. Equation (20) has eigenfunctions

φn,L(ζ) = κ1+L

√
2n!

(n+L)!
ζ1/2+Le−κ

2ζ2/2LLn(κ2ζ2), (22)

and eigenvalues

M2
n,L,S = 4κ2

(
n+ L+

S

2

)
. (23)

The meson spectrum has a string-theory Regge form: the square of the masses are linear with
the same slope in both the internal orbital angular momentum L and radial quantum number n,
where n counts the number of nodes of the wavefunction in the radial variable ζ. The spectrum
also depends on the internal spin S. The lowest possible solution for n = L = S = 0 has
eigenvalue M2 = 0. This is a chiral symmetric bound state of two massless quarks with scaling
dimension 2 and size 〈ζ2〉 ∼ 1/κ2, which we identify with the lowest state, the pion. Thus one
can compute the hadron spectrum by simply adding 4κ2 for a unit change in the radial quantum
number, 4κ2 for a change in one unit in the orbital quantum number and 2κ2 for a change of one
unit of spin to the ground state value ofM2. Remarkably, the same rule holds for baryons. [29]
This is an important feature of light-front holography, which predicts the same multiplicity of
states for mesons and baryons as it is observed experimentally. [30]
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Figure 1. Regge trajectories for π-meson family with κ = 0.6 GeV (left); I = 1 ρ-meson and I = 0
ω-meson families with κ = 0.54 GeV (right). Only confirmed PDG states [31] are shown.

Individual hadron states are identified by their interpolating operators at z → 0. Pion
interpolating operators are constructed by examining the behavior of bilinear covariants ψΓψ
under charge conjugation and parity transformation. Thus, for example, a pion interpolating



operator qγ5q create a state with quantum numbers JPC = 0−+, and a vector meson
interpolating operator qγµq a state 1−−. Likewise the operator qγµγ5q creates a state with
1++ quantum numbers, the a1(1260) positive parity meson. If we include orbital excitations the
pion interpolating operator is O2+L = qγ5D{`1 · · ·D`m}q. This is an operator with total internal
orbital momentum L =

∑m
i=1 `i, twist τ = 2 + L and canonical dimension ∆ = 3 + L. The

scaling of the AdS field Φ(z) ∼ zτ at z → 0 is precisely the scaling required to match the scaling
dimension of the local meson interpolating operators. The spectral predictions for light meson
and vector meson states are compared with experimental data in Fig. 1 for the positive sign
dilaton model discussed here.

The predictions for the positive-parity light baryons are shown in Fig. 2. As in the meson
sector, the increase in the mass squared for higher baryonic states is ∆n = 4κ2, ∆L = 4κ2

and ∆S = 2κ2, relative to the lowest ground state, the proton. [29] Only confirmed PDG [31]
states are shown. The Roper state N(1440) and the N(1710) are well accounted for in this
model as the first and second radial states. Likewise, the ∆(1660) corresponds to the first radial
state of the ∆ family. The model is successful in explaining the important parity degeneracy
observed in the light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair and the
∆(1905),∆(1910),∆(1920),∆(1950) states which are degenerate within error bars. The parity
degeneracy of baryons is also a property of the “hard wall” model, but radial states are not
well described by this model. [32] For other recent calculations of the hadronic spectrum in the
framework of AdS/QCD, see Refs. [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50].
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Figure 2. Positive parity Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV. Data
from [31].

The proton in light-front holography is described by a two component wave function
ψ(ζ) = ψ+(ζ)u+ + ψ−(ζ)u−, where u± are four-dimensional spinors. The Lz = 0 and Lz = +1
orbital components are combined with spin components Sz = +1/2 and Sz = −1/2 respectively.
An interesting feature of light-front holography for baryons and massless quarks is the fact
that the lowest valence Fock states with Lz = 0 and Lz = ±1 have the same probability∫
dζ |ψ+(ζ)|2 =

∫
dζ |ψ−(ζ)|2, a manifestation of the chiral invariance of the theory for massless

quarks. [51] This implies that the quarks carry zero angular momentum 〈Sz = 0〉 in the proton
with Jz = ±1/2 and 〈Lz = 1/2〉.



6. Light Front Holographic Mapping of Current Matrix Elements
The great advantage of the front form – as emphasized by Dirac – is that boost operators are
kinematic. Unlike the instant form, the boost operators in the front form have no interaction
terms. The calculation of a current matrix element 〈P + q|Jµ|P 〉 requires boosting the hadronic
eigenstate from |P 〉 to |P +q〉, a task which becomes hopelessly complicated in the instant form.

The form factor is computed in the light front from the matrix elements of the plus-component
of the current J+, in order to avoid coupling to Fock states with different numbers of constituents

〈ψ(P ′)|J+(0)|ψ(P )〉 = (P + P ′)+F (q2), (24)

where Q = P ′− P and J+(x) =
∑

q eq(x)qγ+q(x) is the quark current which couples locally
to the quarks in the hadron. Expanding the initial and final Fock states in terms of Fock
components, we obtain Drell-Yan-West (DYW) expression [52, 53] upon integration over the
intermediate variables in the q+ frame:

F (q2) =
∑
n

∫ [
dxi
] [
d2k⊥i

]∑
j

ejψ
∗
n(xi,k

′
⊥i, λi)ψn(xi,k⊥i, λi), (25)

where the variables of the light cone Fock components in the final-state are given by k′⊥i =
k⊥i + (1− xi) q⊥ for a struck constituent quark and k′⊥i = k⊥i − xi q⊥ for each spectator. The
formula is exact if the sum is over all Fock states n. The form factor can also be conveniently
written in impact space

F (q2) =
∑
n

n−1∏
j=1

∫
dxjd

2b⊥j exp
(
iq⊥ ·

n−1∑
j=1

xjb⊥j

)
|ψn(xj ,b⊥j)|2 , (26)

corresponding to a change of transverse momentum xjq⊥ for each of the n− 1 spectators.
On the higher dimensional gravity theory, the hadronic matrix element corresponds to the

non-local coupling of an external electromagnetic field AM (x, z) propagating in AdS with the
extended mode Φ(x, z) [8]∫

d4x dz
√
g eϕ(z)AM (x, z)Φ∗P ′(x, z)

←→
∂ MΦP (x, z). (27)

Can the transition amplitudes be related? How can we recover hard pointlike scattering at large
Q from the soft collision of extended objects? [8] Although the expressions for the transition
amplitudes look very different, one can show that a precise mapping of the J+ elements can
be carried out at fixed light-front time, using the semiclassical approximation discussed in Sect.
4. In fact, if both expressions for the form factor are identical for arbitrary values of q, then

the factorization (18) is required. For a two parton state we find φ(ζ) = (ζ/R)−3/2 eϕ(z)/2 Φ(ζ)
as before, and X(x) =

√
x(1− x). In this case the longitudinal mode does not decouple, but

instead a specific form for X(x) is obtained. [7] A precise mapping can be established for an
arbitrary number of partons. [7] Identical results are obtained for the mapping of the matrix
elements of the energy momentum tensor. [9]

The results described above correspond to a “free” current propagating on AdS space and
dual to the EM pointlike current in the DYW LF formula, which allow us to map state-by-
state. 2 This mapping has the shortcoming that the pole structure of the form factor is not built
on the timelike region. Furthermore, the moments of the form factor at Q2 = 0 diverge, giving
for example an infinite charge radius. The pole structure is generated when the EM current is

2 In general the mapping relates the AdS density Φ2(z) to an effective LF single particle transverse density. [7]
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confined, this means, when the EM current propagates on a IR deformed AdS space to mimic
confinement. This also leads to finite moments at Q2 = 0, as illustrated on Fig. 3. Since
the computation of the form factor involves a twist-3 current J+, the poles do not correspond
to the physical poles of the twist-2 transverse current J⊥ present in the annihilation channel.
Consequently, the location of the poles in the final result should be rescaled to their physical
positions. When this is done the results agree extremely well with available data. The non-
perturbative effects from the “dressed” current correspond to an infinite sum of diagrams. One
should however be careful to avoid a double counting of terms. This important point deserves
further investigation.

7. Conclusions
The light-front holographic approach described in this paper provides a direct correspondence
between an effective gravity theory defined in a fifth-dimensional warped space with a
semiclassical approximation to strongly coupled QCD quantized on the light-front. This
duality leads to a Lorentz-invariant relativistic Schrödinger wave equation [14] which provides a
successful prediction for the light-quark meson and baryon spectra as a function of hadron spin,
quark angular momentum, and radial quantum numbers. It also predicts the same multiplicity of
states for mesons and baryons which is observed experimentally. Thus this AdS/QCD approach
encodes the salient features of QCD.

We originally derived light-front holography using the identity between electromagnetic and
gravitational form factors computed in AdS and light-front theory. [7, 9] The results for hadronic
form factors are also successful, and the predicted power law fall-off agrees with dimensional
counting rules as required by conformal invariance at small z. In particular, we have shown the
importance of including non-perturbative effects corresponding to the infinite sum of diagrams
contained in the structure of the currents propagating in the confining geometry. This “dressed”
current is required to reproduce the time-like pole structure and finite moments near Q2 = 0,
effects which are not seen in the semiclassical approximation when comparing state by state.
The semiclassical approximation to light-front QCD described in this paper does not account for
particle creation and absorption; it is thus expected to break down at short distances where hard
gluon exchange and quantum corrections become important. Other shortcomings of holographic
methods are discussed in Ref. [56].
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