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Abstract

In this contribution we describe computational tools that permit the evaluation of multi-loop

scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills

theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows

from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least

four loops.
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I. INTRODUCTION

It is well known that quantum gravity is non-renormalizable by power counting, due to

the dimensionful nature of Newton’s constant, GN = 1/M2
Pl. String theory cures these di-

vergences by introducing a new length scale, related to the string tension, at which particles

are no longer point-like. The question we wish to address in this contribution is whether a

non-point-like theory is actually necessary for perturbative finiteness. Perhaps with enough

symmetry a point-like theory of quantum gravity could have an ultraviolet-finite pertur-

bative expansion. In particular, we shall consider the theory of gravity with the maximal

supersymmetry compatible with having particles of at most spin two — the ungauged version

of N = 8 supergravity [1–3].

The on-shell ultraviolet divergences of N = 8 supergravity, i.e. those which cannot be

removed by field redefinitions, can be probed by studying the ultraviolet behavior of multi-

loop on-shell amplitudes for graviton scattering. Such scattering amplitudes would be very

difficult to compute in a conventional framework using Feynman diagrams. However, tree

amplitudes in gravity can be expressed in terms of tree amplitudes in gauge theory, by making

use of the Kawai-Lewellen-Tye (KLT) relations [4], or more recent relations found by three of

the present authors [5]. Loop amplitudes can be constructed efficiently from tree amplitudes

via generalized unitarity [6–10], particularly in theories with maximal supersymmetry. Using

these methods, the four-graviton amplitude in N = 8 supergravity has been computed at

two [11], three [12, 13] and (most recently) four loops [14, 15]. Aspects of this program have

been reviewed previously in refs. [16–19].

There are many other proposals for making sense of quantum gravity with point-like

particles. For example, the asymptotic safety program [20] proposes that the Einstein action

for gravity flows in the ultraviolet to a nontrivial, Lorentz-invariant fixed point. It has also

been suggested that the ultraviolet theory could break Lorentz invariance [21]. In contrast

to these two particular approaches, here we will do conventional perturbation theory around

a (possible) Gaussian fixed point.

The remainder of this article is organized as follows. In Section II we review what is known

about the potential counterterms for N = 8 supergravity, based on constraints coming from

both N = 8 supersymmetry and E7(7) invariance. In Section III we briefly mention the

connection between amplitude divergences in various dimensions and the associated coun-
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terterms, for both N = 8 supergravity and the (closely related) N = 4 super-Yang-Mills

theory. In Section IV we review the KLT relations between gravity and gauge tree ampli-

tudes. In Section V we review how generalized unitarity permits the efficient reconstruction

of multi-loop amplitudes from tree amplitudes. In Section VI we show how the combina-

tion of unitarity and the KLT relations simplifies the computation of N = 8 supergravity

loop amplitudes, by relating them to (planar and non-planar) loop amplitudes in N = 4

super-Yang-Mills theory. Finally, in Section VII we describe the four-graviton amplitudes

that have been determined at two, three and four loops using these methods, and we discuss

their ultraviolet properties. We present our conclusions in Section VIII.

II. COUNTERTERM CONSTRAINTS

In field theory, ultraviolet divergences are associated with local counterterms. The di-

vergences that survive in on-shell scattering amplitudes should respect the symmetries of

the theory; in theories of gravity the counterterms should be generally covariant. Thus they

are expressible as products of the Riemann tensor Rµ
νσρ, along with covariant derivatives Dµ

acting on it. (If matter is present, then the energy momentum tensor Tµν can also appear.)

The loop-counting parameter GN has mass dimension −2, while the Riemann tensor has

mass dimension 2: Rµ
νσρ ∼ ∂ρΓ

µ
νσ ∼ gµκ∂ρ∂νgκσ. Therefore, by dimensional analysis, an

L-loop counterterm has the generic form (suppressing all Lorentz indices) D2(L+1−p)Rp for

some power p.

Nonlinear field redefinitions of the Einstein action allow the removal of the Ricci tensor

Rµν and scalar R from potential counterterms. After making such redefinitions, the only

available one-loop counterterm (in a theory of pure gravity), RµνσρR
µνσρ, is equivalent to

the Gauss-Bonnet term. The latter is a total derivative, and cannot be generated in pertur-

bation theory. This fact explains why pure gravity is finite at one loop, although there are

divergences if matter is present [22].

In any pure supergravity theory, i.e. one in which all states are related by supersymmetry

to the graviton, there are also no divergences at two loops. The reason is that the unique

potential counterterm, R3 ≡ Rλρ
µνR

µν
στR

στ
λρ , is incompatible with N = 1 supersymmetry.

When sandwiched between four graviton plane-wave states, R3 produces a nonzero matrix

element [23–25] for helicity configurations (±+++) that are forbidden by supersymmetry
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Ward identities [26]. Again, if matter super-multiplets are present, other counterterms are

available, and lower-loop divergences are possible, even at one loop [27].

In pure supergravity, the first potential counterterm appears at three loops [24, 28–31],

and is often abbreviated as R4. It has long been known to be compatible with not just

N = 1 supersymmetry, but the full N = 8, because it appears as the first subleading term

(after the Einstein action) in the low-energy limit of the four-graviton scattering amplitude

in type II closed superstring theory [32],

〈R4〉|4−point = stuM tree
4 (1, 2, 3, 4) . (2.1)

Here the momentum invariants are s = (k1 + k2)
2, t = (k2 + k3)

2, u = (k1 + k3)
2, and M tree

4

stands for any of the 2564 four-point amplitudes in N = 8 supergravity (after removing

the gravitational coupling constant). The R4 operator was ruled out as a counterterm for

N = 8 supergravity by analyzing the ultraviolet behavior of the three-loop four-graviton

amplitude [12, 13] (see Section VII).

Recently, Elvang, Freedman and Kiermaier [33] studied the constraints of N = 8 super-

symmetry on counterterms of higher operator dimension, and also with more than four pow-

ers of the Riemann tensor. The latter only affect amplitudes with more than four external

legs. The first non-vanishing n-graviton tree amplitudes are the maximally-helicity-violating

(MHV) ones, which contain two negative graviton helicities, and (n− 2) positive helicities.

For MHV amplitudes, the supersymmetry Ward identities [26] imply that the amplitudes,

divided by a simple prefactor, are Bose symmetric [34]. All non-vanishing four-point am-

plitudes are MHV (for gravitons only, the only non-vanishing case is (−−++)). Therefore

N = 8-supersymmetric on-shell counterterms of the form D2kR4 can be classified in terms

of Bose-symmetric polynomials Pk(s, t, u) of degree k, where s + t + u = 0. This analysis

leads to one independent operator each of the form R4 and D2kR4 for k = 2, 3, 4, 5, with

multiple operators appearing first at order D12R4. By dimensional analysis, D2kR4 coun-

terterms are associated with divergences in D = 4 at loop order L = k + 3. All five-point

amplitudes are MHV as well (for gravitons only, either (−−+++) or its parity conjugate),

so the Bose-symmetry constraints (in more variables) are still valid. For n = 6, 7, a much

more sophisticated analysis of the N = 8 supersymmetry Ward identities on next-to-MHV

amplitudes is required [35]. The upshot is that N = 8 supersymmetry alone is sufficient to

rule out all counterterms through seven loops except for R4, D4R4 and D6R4. (Earlier work
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ruled out the four-loop counterterms D2R4 and R5 [36, 37].)

However, there is another constraint on counterterms in N = 8 supergravity in D = 4,

and that is invariance under the continuous symmetry E7(7), a non-compact form of the

exceptional Lie group E7 [3]. The theory contains 70 massless scalars, which parametrize

the coset space E7(7)/SU(8). The non-SU(8) part of E7(7) is realized nonlinearly, through

motions on the coset manifold parametrized by the scalar fields. Therefore it imposes another

set of amplitude Ward identities, which are associated with soft limits as the momentum of

one or more scalar particles approaches zero [38–40]. For example, in the limit that a single

scalar becomes soft, all the matrix elements of a potential counterterm should vanish. If

E7(7) is also a symmetry at the quantum level, then these properties can be used to constrain

potential counterterms. The SU(8) subgroup of E7(7) was shown to be non-anomalous at one-

loop long ago [41]. More recently, Bossard, Hillmann and Nicolai [42], using a formulation

for the vector fields that has manifest electric-magnetic duality, but is not Lorentz covariant,

have extended this result to the full E7(7) symmetry, and to all orders in perturbation theory.

In ref. [43] it was found that the single-soft-scalar limit was non-vanishing for the op-

erator e−6φR4 generated by string theory, where φ is the dilaton (plus terms generated by

N = 8 supersymmetry). This result suggested that the R4 operator might be ruled out as

a counterterm. A more refined analysis [44] isolated the matrix elements generated solely

by the SU(8)-singlet operator R4 (i.e. removing effects of the dilaton), and still found a

nonvanishing single-soft limit, thereby demonstrating at the amplitude level that the R4

counterterm is not allowed by linearized E7(7). Later this analysis was extended [45] to a

large set of higher-dimension operators, and has served to rule out, via E7(7), the D4R4 and

D6R4 potential counterterms mentioned above, as well as to constrain the potential seven-

loop counterterm to have a unique form, corresponding to D8R4 (plus terms generated by

N = 8 supersymmetry; see ref. [46]). In other words, the seven-loop finiteness of N = 8

supergravity in D = 4 can be assessed purely by computing the four-graviton scattering am-

plitude. Similar conclusions about the finiteness of N = 8 supergravity through seven loops

(as well as results concerning first divergences in higher-dimensional versions of the theory),

were arrived at in ref. [47], based also on the E7(7) invariance of counterterms, but using

three different lines of analysis, including the dimensional reduction of higher-dimensional

counterterms.

A seven-loop, N = 8 supersymmetric counterterm was constructed long ago [30], but that
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construction was not manifestly E7(7) invariant. More recently it was found [48] that this

candidate counterterm can be identified with the volume of the on-shell N = 8 superspace,

and that it is E7(7) invariant, although it is still possible that it vanishes after using the

classical field equations. However, it seems more likely that the volume coincides with the

D8R4 potential counterterm that passes the E7(7) constraints also studied in ref. [45]. On the

other hand, ref. [49] has discussed the constraints from E7(7) in the context of a light-cone

superspace approach, and argues that the theory is perturbatively finite to all loop orders.

III. FOUR-GRAVITON SCATTERING AMPLITUDES

Even if a counterterm is allowed by all known symmetries, that does not necessarily mean

that its coefficient is nonzero. Only an explicit computation can determine this property for

certain. Seven-loop four-graviton scattering amplitudes are still a bit beyond present tech-

nology. However, the four-loop amplitude can, and has been, computed [14], and further-

more it also allows access to the D8R4 potential counterterm, albeit in a different spacetime

dimension.

In general, we can test the ultraviolet behavior of the four-graviton scattering amplitude in

N = 8 supergravity at any loop order L by increasing the spacetime dimension D associated

with the loop-momentum integration, until the amplitude starts to diverge. It is instructive

to compare this behavior with the corresponding behavior of the maximally supersymmetric

gauge theory, N = 4 super-Yang-Mills theory (N = 4 sYM). The latter theory is known to

be finite to all loop orders in D = 4 [50]. However, it diverges in D > 4. The critical

dimension Dc(L), in which the theory first diverges as D increases, depends on the number

of loops, and is given by the formula [11],

Dc(L)|N=4 sYM = 4 +
6

L
(L > 1). (3.1)

The surprising result from the four-graviton computations to be described below, is that,

through four loops, N = 8 supergravity is just as well behaved,

Dc(L)|N=8SUGRA = 4 +
6

L
(L = 2, 3, 4). (3.2)

In both theories, the one-loop case is special, and the first divergence is in eight dimensions

(Dc(1) = 8). Clearly, the equality between (3.1) and (3.2) must break at some point, if

N = 8 supergravity is to diverge in four dimensions.
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For N = 4 sYM, the divergences in the critical dimension are all associated with a single

type of counterterm, for L > 1, of the general form D2F 4, where F is the gluon field

strength and the color structure is generic. Given this fact, and recalling that the loop-

counting parameter for gauge theory is dimensionless, while that for gravity is dimensionful,

GN = 1/M2
Pl, the only way that the two formulas for Dc(L) can coincide, is if each successive

N = 8 supergravity divergence in the critical dimension for L = 2, 3, 4 is associated with a

counterterm with two more derivatives (additional powers of the curvature beyond R4 would

not produce a divergence in the four-graviton amplitude). Indeed, the associated higher-

dimensional counterterms have the form D2LR4, L = 2, 3, 4. Thus the D8R4 potential

counterterm would correspond to the divergence of the four-loop four-graviton scattering

amplitude in Dc(4) = 5.5. (We do not yet know for sure whether the amplitude diverges in

this dimension; we do know that it does not diverge in lower dimensions.)

Furthermore, when the divergence in the five-loop amplitude is computed, one of two

things must happen: Either (1) the equality of eqs. (3.1) and (3.2) must break, or else (2)

the appropriate operator for describing the five-loop divergence in the critical dimension

must be D10R4. Because this operator has two more derivatives on it than the potential

seven-loop counterterm in D = 4, D8R4, possibility (2) would be a strong indicator that

this counterterm is not present. On the other hand, there have been predictions, based on

the general structure of contributions in a world-line formalism using the non-minimal pure

spinor formalism [51, 52], that the equally good ultraviolet behavior of N = 8 supergravity

and N = 4 sYM will break at five loops. Clearly the ultraviolet behavior of the five-loop

four-graviton amplitude is an important outstanding question, which will shed strong light

on the potential seven-loop divergence of N = 8 supergravity in four dimensions.

In the remainder of this contribution, we will outline the technical tools that have made

possible the computation of the complete four-graviton scattering amplitude in N = 8 su-

pergravity through four loops, as well as the extraction of its ultraviolet divergence in the

appropriate higher spacetime dimensions.

IV. THE KLT RELATIONS

As mentioned in the introduction, tree amplitudes in gravity can be expressed in terms of

tree amplitudes in gauge theory, specifically as bilinear combinations of gauge amplitudes.
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The reason this will prove so useful to us is that, by using generalized unitarity, we will be

able to chop the gravity loop amplitudes up into products of gravity trees. Then we can use

the gravity-gauge relations to write everything in terms of products of gauge-theory trees,

products which actually appear in cuts of gauge loop amplitudes. In this way, multi-loop

gauge amplitudes provide the information needed to construct multi-loop gravity amplitudes.

The original gravity-gauge tree amplitude relations were found by Kawai, Lewellen and

Tye [4], who recognized that the world-sheet integrands needed to compute tree-level ampli-

tudes in the closed type II superstring theory were essentially the square of the integrands

appearing in the open-superstring tree amplitudes. KLT represented the closed-string world-

sheet integrals over the complex plane as products of contour integrals, and then deformed

the contours until they could be identified as integrals for open-string amplitudes, thus

deriving relations between closed- and open-string tree amplitudes.

Because the low-energy limit of the perturbative sector of the closed type II superstring

in D = 4 is N = 8 supergravity, and that of the open superstring is N = 4 sYM [53], as

the string tension goes to infinity the KLT relations express any N = 8 supergravity tree

amplitude in terms of amplitudes in N = 4 sYM. More recently, there have been a variety of

studies of “KLT-type” relations from various perspectives [54]. One set of relations, found

by three of the present authors [5], follows from [55] a color-kinematic duality satisfied by

gauge theory amplitudes. These relations promise to greatly simplify future computations of

N = 8 supergravity loop amplitudes [56–58]. However, in this article we will only describe

the use of the KLT relations, because those were employed in the two-, three- and four-loop

supergravity computations reviewed here.

The KLT relations for N = 8 supergravity amplitudes are bilinear in the N = 4 sYM

amplitudes, for two complementary reasons: (1) Integrals over the complex plane naturally

break up into pairs of contour integrals, and (2) the N = 8 supergravity Fock space naturally

factors into a product of “left” and “right” N = 4 sYM Fock spaces,

[N = 8] = [N = 4]L ⊗ [N = 4]R . (4.1)

The 256 = 162 massless states of N = 8 supergravity are tabulated in the upper half of

Table I. Each state can be associated with a unique pair of states from N = 4 sYM, which

has 16 massless states (excluding color degrees of freedom), tabulated in the lower half of

the table. For example, the eight helicity +3/2 gravitino states are products of helicity +1
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N = 8 supergravity

h −2 −3
2 −1 −1

2 0 1
2 1 3

2 2

# of states 1 8 28 56 70 56 28 8 1

field h− ψ−
i v−ij χ

−
ijk sijkl χ

+
ijk v

+
ij ψ

+
i h+

N = 4 super-Yang-Mills

h −1 −1
2 0 1

2 1

# of states 1 4 6 4 1

field g− λ−A φAB λ+
A g+

TABLE I: Table of state multiplicities, as a function of helicity h, for the 28 = 256 states in N = 8

supergravity and for the 24 = 16 states in N = 4 super-Yang-Mills theory.

gluon and helicity +1/2 gluino states in two possible ways: ψ+
A = g+ ⊗λ+

A, ψ+
A+4 = λ+

A ⊗ g+,

A = 1, 2, 3, 4.

In the open string theory, color degrees of freedom for gluons appear as Chan-Paton

factors, but these factors are not present in the closed string. Hence the gauge theory

amplitudes appearing in the KLT relations are those from which the Chan-Paton factors have

been stripped off, which are known in the QCD community as color-ordered subamplitudes

(see e.g. ref. [59] for a review). The full color-dressed gauge-theory tree amplitude Atree
n is

given as a sum over permutations of the color-ordered subamplitudes Atree
n ,

Atree
n ({ki, ai}) = gn−2

∑

ρ∈Sn/Zn

Tr(T aρ(1)T aρ(2) . . . T aρ(n))Atree
n (ρ(1), ρ(2), . . . , ρ(n)) , (4.2)

where g is the gauge coupling, ai is an adjoint index, T ai is a generator matrix in the

fundamental representation of SU(Nc), the sum is over all (n− 1)! inequivalent (non-cyclic)

permutations ρ of n objects, and the argument i of Atree
n labels both the momentum ki and

state information (helicity hi, etc.).

In the case of supergravity tree amplitudes, Mtree
n , only powers of the gravitational cou-

pling κ have to be stripped off, where κ is related to Newton’s constant by κ2 = 32π2GN .

We define M tree
n by

Mtree
n ({ki}) =

(κ

2

)n−2

M tree
n (1, 2, . . . , n) . (4.3)
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Disc =

Disc =

+ +

FIG. 1: Unitarity relations for the four-point amplitude at one and two loops. The number of holes

in a blob indicates the number of loops in the corresponding amplitude.

Then the first few KLT relations have the form,

M tree
3 (1, 2, 3) = i Atree

3 (1, 2, 3)Ãtree
3 (1, 2, 3) , (4.4)

M tree
4 (1, 2, 3, 4) = −is12 A

tree
4 (1, 2, 3, 4) Ãtree

4 (1, 2, 4, 3) , (4.5)

M tree
5 (1, 2, 3, 4, 5) = is12s34 A

tree
5 (1, 2, 3, 4, 5)Ãtree

5 (2, 1, 4, 3, 5) + P(2, 3) , (4.6)

M tree
6 (1, 2, 3, 4, 5, 6) = −is12s45A

tree
6 (1, 2, 3, 4, 5, 6)

×
[

s35 Ã
tree
6 (2, 1, 5, 3, 4, 6) + (s34 + s35) Ã

tree
6 (2, 1, 5, 4, 3, 6)

]

+ P(2, 3, 4) , (4.7)

where sij ≡ (ki + kj)
2, and “+P” indicates a sum over the m! permutations of the m

arguments of P. Here Atree
n indicates a tree amplitude for which the external states are

drawn from the left-moving Fock space [N = 4]L in the tensor product (4.1), while Ãtree
n

denotes an amplitude from the right-moving copy [N = 4]R.

V. GENERALIZED UNITARITY

The scattering matrix is a unitary operator between in and out states: S†S = 1, or in

terms of the more standard “off-forward” scattering matrix, T ≡ (S − 1)/i,

2 DiscT = T †T , (5.1)

where DiscT ≡ (T − T †)/2i. This simple relation generates the well-known unitarity re-

lations, or cutting rules [60], for the discontinuities (or absorptive parts) of perturbative
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amplitudes. If one inserts a perturbative expansion for T into eq. (5.1), say

T4 = g2 T tree
4 + g4 T 1-loop

4 + g6 T 2-loop
4 + . . . , (5.2)

T5 = g3 T tree
5 + g5 T 1-loop

5 + g7 T 2-loop
5 + . . . , (5.3)

for the four- and five-point amplitudes, then one obtains the unitarity relations shown in

Fig. 1.

At order g4, the discontinuity in the one-loop four-point amplitude is given by the product

of two order g2 four-point tree amplitudes. The product must be summed over all possible

intermediate states crossing the cut (indicated by the dashed line in Fig. 1), and integrated

over all possible intermediate momenta. At two loops, or order g6, there are two possible

types of cuts: the product of a tree-level and a one-loop four-point amplitude (g2 × g4), and

the product of two tree-level five-point amplitudes (g3 × g3).

To get the complete scattering amplitude, not just the absorptive part, one could try to

reconstruct the real part via a dispersion relation. However, in the context of perturbation

theory, an easier method is available, because one knows that the amplitude could have

been calculated in terms of Feynman diagrams. Therefore it can be expressed as a linear

combination of appropriate Feynman integrals, with coefficients that are rational functions

of the kinematic variables. The unitarity method [61] matches the information coming

from the cuts against the set of available loop integrals in order to determine these rational

coefficients. Using unitarity in D = 4 − 2ε dimensions [8, 62], one can also determine the

so-called “rational terms”, which have no cuts in D = 4.

Generalized unitarity [6] consists of imposing more than the minimal number of cut

lines. It often simplifies enormously the information required to compute many terms in the

amplitude [7–10], especially in highly supersymmetric theories [12, 63–65]. Fig. 2 provides

an example of generalized unitarity at the multi-loop level. One starts with an ordinary

three-particle cut for a three-loop four-point amplitude. The information in this cut can be

extracted more easily by cutting the one-loop five-point amplitude on the right-hand side of

the cut, decomposing it into the product of a four-point tree and a five-point tree, in three

inequivalent ways.

Fig. 2 illustrates a particular class of generalized unitarity cuts, in which all cut momenta

are allowed to be real. It is possible, however, to impose more and more on-shell constraints

on intermediate legs, dissolving the amplitude into products of more tree amplitudes, each
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FIG. 2: An example of multi-loop generalized unitarity. The one-loop five-point amplitude, appear-

ing on the right side of the ordinary cut, is further cut into products of trees, in three inequivalent

ways.

with fewer legs (and hence simpler). For four-point amplitudes, the maximal cuts are the

limiting cases in which all tree amplitudes are three-point ones, which can be dissolved no

further. Fig. 3 shows how one of the real-momentum configurations in Fig. 2 generates several

maximal cuts (which contain complex momenta). The method of maximal cuts [13, 15, 57, 64]

for constructing a multi-loop amplitude begins with the evaluation of the maximal cuts, and

the construction of a candidate ansatz for the loop-momentum integrand that is consistent

with them. For simplicity we will discuss here the evaluation of four-dimensional cuts, that

is, cuts in which the cut loop momenta are taken to be in four dimensions. For complete

generality the cut loop momenta should be in D dimensions. However, for the four-point

amplitudes in maximally supersymmetric gauge theory or gravity, the D-dimensional cuts

have yet to reveal any new terms, beyond those found using the four-dimensional cuts [15].

For real momenta, the kinematics of the three-point process with all massless legs is sin-

gular — all three momenta must be parallel. However, for complex momenta it is perfectly

nonsingular [66, 67]. The maximal cuts for four-point amplitudes are enumerated simply by

drawing all cubic graphs. Their evaluation is also very simple, for four-dimensional cuts, be-

cause three-point tree amplitudes are always given by a simple expression in the usual spinor

products, in either 〈i j〉 = εαβλ
α
i λ

β
j or [i j] = εα̇β̇λ̃

α̇
i λ̃

β̇
j , where λα

i (λ̃α̇
i ) is the two-component

positive-chirality (negative-chirality) spinor associated with the massless momentum ki. For
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+

+ ...
FIG. 3: A generalized cut with real momenta generates several maximal cuts; the latter contain

only three-point tree amplitudes.

example, for three gluons there are only two non-vanishing amplitudes,

Atree
3 (1−, 2−, 3+) = i

〈1 2〉4

〈1 2〉 〈2 3〉 〈3 1〉
, Atree

3 (1+, 2+, 3−) = −i
[1 2]4

[1 2] [2 3] [3 1]
. (5.4)

There are two types of three-point complex kinematics; for each type, one of the two am-

plitudes in eq. (5.4) is non-vanishing and the other one vanishes [10, 67]. Three-point

amplitudes for gravity can be obtained directly as products of two gauge amplitudes, using

eq. (4.4).

Even though the maximal cuts are very simple to evaluate analytically, they provide a

great deal of information, and an ansatz that satisfies the maximal cuts is an excellent start-

ing point for constructing the full answer. For example, for the contributions to four-gluon

scattering in N = 4 sYM that are planar (the dominant terms in the large Nc limit), the

maximal cuts find all terms present in the amplitude at one, two and three loops. They

only start to miss planar terms at four loops (and non-planar terms at three loops). The

remaining terms, whether planar or non-planar, can be found systematically by collapsing

one propagator in each maximal cut to generate the next-to-maximal cuts; one more propa-

gator to generate the next-to-next-to-maximal cuts; and so on. At each stage the ansatz is

improved by adding more terms in order to fit the new information. Each additional term

should contain at least one power of an inverse (collapsed) propagator `2i , corresponding to

the fact that it was invisible on the maximal cut (`2i = 0), and only became visible on the

next-to-maximal cut (`2i 6= 0). The process of amplitude construction terminates when no

more terms need to be added. Then the amplitude can be checked, by a comparison (usually

numerical) against a complete, or “spanning” [15], set of unitarity cuts.
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VI. COMBINING UNITARITY WITH KLT

The general strategy [11] we have adopted for computing multi-loop N = 8 supergravity

amplitudes is to first compute the loop-momentum integrands for the corresponding ampli-

tudes in N = 4 sYM. The integrands are described by a sum of Feynman integrals for cubic

graphs, with standard scalar propagator factors and additional numerator polynomials. In

the four-point case, the pth such integral has the form,

I(p),N=4 sYM = C(p) × (−i)L

∫
( L

∏

j=1

dD`j
(2π)D

)

N (p)(`j, km)
∏3L+1

n=1 l2n
, (6.1)

where km, m = 1, 2, 3, are the three independent external momenta, `j are the L independent

loop momenta, and ln are the momenta of the (3L+1) propagators (internal lines of the graph

p), which are linear combinations of the `j and the km. As usual, dD`j is the D-dimensional

measure for the jth loop momentum. The numerator polynomial N (p)(`j, km) is a polynomial

in both internal and external momenta. The color factor C(p) can be written as a product of

structure constants fabc for the gauge group. It can also be written diagrammatically, using

three-vertices for fabc factors, and lines (propagators) for δab contractions. In this form, it

is given just by the associated cubic graph.

These integrands can then be cut in any desired fashion. Through the KLT relations,

they provide the data needed to evaluate very efficiently the generalized cuts for N = 8

supergravity. In particular, the N = 8 supergravity cuts require a sum over the 256 states

in the N = 8 supergravity multiplet, for every cut line. However, the corresponding cut

N = 4 sYM loop integrands already contain a sum over the 16 states in the N = 4 sYM

multiplet. The KLT relations express the N = 8 supergravity cuts as sums of products of

two copies of N = 4 sYM cuts. The N = 8 sum factorizes as,

∑

N=8

=
∑

[N=4]L

∑

[N=4]R

, (6.2)

and the N = 4 sums have already been carried out in the course of constructing the N = 4

sYM integrand.

Because gravity has no notion of color, planar and non-planar contributions cannot be

separated in graviton amplitudes. The KLT relations therefore must relate the gravity cuts

to both planar and non-planar gauge theory cuts. In other words, the complete N = 4 sYM

amplitude, both planar (large Nc) and non-planar terms, is required in this method.
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FIG. 4: Evaluation of a generalized cut in N = 8 supergravity at three loops, in terms of planar

and non-planar cuts in N = 4 sYM.

Fig. 4 sketches how the method works for a particular generalized cut at three loops.

The N = 8 supergravity cut contains one four-point tree amplitude and two five-point

ones. We use the KLT relations (4.5) and (4.6). We relabel them, and use the fact that

s12s23A
tree
4 (1, 2, 3, 4) is totally symmetric in legs 1,2,3,4 to rewrite them as,

M tree
4 (`1, `2, `3, `4) = −i

s`1`2s`2`3

s`1`3

Atree
4 (`1, `2, `3, `4) Ã

tree
4 (`1, `2, `3, `4) , (6.3)

M tree
5 (1, 2, `2, `1, `5) = −is`51s2`2 A

tree
5 (1, 2, `2, `1, `5) Ã

tree
5 (1, `1, 2, `2, `5) + P(1, 2) ,

M tree
5 (4, 3, `3, `4, `5) = −is`54s3`3 A

tree
5 (4, 3, `3, `4, `5) Ã

tree
5 (4, `4, 3, `3, `5) + P(3, 4) .

In this way, both occurrences of the four-point N = 4 sYM amplitude carry the same cyclic

ordering as the N = 8 supergravity one, as shown in the figure. One of the two five-point

amplitudes carries the same ordering, as shown in the left copy. This copy can be evaluated

using the planar N = 4 sYM amplitude. The other five-point amplitude is twisted, leading

to the right copy, which is non-planar, so it requires non-planar terms in the N = 4 sYM

amplitude. A reflection symmetry under the permutation (1 ↔ 4, 2 ↔ 3) is preserved by

this representation. The two-fold permutation sum in M tree
5 in eq. (6.3) leads to a four-fold

permutation sum in the figure; one must add the permutations (1 ↔ 2), (3 ↔ 4), and

(1 ↔ 2, 3 ↔ 4).

Note that for terms that are detected in the maximal cuts, because of the simple relation

between gravity and gauge three-point amplitudes (eq. (4.4)), the numerator factors are

always simply squared in passing from gauge theory to gravity.
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FIG. 5: The two-loop amplitude in N = 4 sYM. The blob on the right represents the color-ordered

tree amplitude Atree
4 . In the brackets, black lines are kinematic 1/p2 propagators, with scalar (φ3)

vertices. Green lines are color δab propagators, with structure constant (fabc) vertices.

VII. EXPLICIT RESULTS

A. Two loops

The full two-loop four-point amplitude in N = 4 sYM is given by [11, 68]

A2-loop
4 = −s12s23A

tree
4

[

CP
1234 s12 I

2-loop,P
4 (s12, s23) + CNP

1234 s12 I
2-loop,NP
4 (s12, s23)

+ P(2, 3, 4)
]

, (7.1)

where I2-loop,(P,NP)
4 are the scalar planar and non-planar double box integrals shown in Fig. 5,

and C
(P,NP)
1234 are color factors constructed from structure constant vertices, with the same

graphical structure as the corresponding integral. The quantity s12s23A
tree
4 is totally sym-

metric under gluon interchange, and its square is the R4 matrix element in eq. (2.1), up

to a factor of i. Because all terms in eq. (7.1) are detected by the maximal cuts, the com-

plete two-loop four-point amplitude in N = 8 supergravity is found simply by squaring the

prefactors in eq. (7.1) (and removing the color factors, as appropriate for gravity):

M2-loop
4 = −i(s12s23A

tree
4 )2

[

s2
12 I

2-loop,P
4 (s12, s23) + s2

12 I
2-loop,NP
4 (s12, s23) + P(2, 3, 4)

]

= s12s23s13M
tree
4

[

s2
12 I

2-loop,P
4 (s12, s23) + s2

12 I
2-loop,NP
4 (s12, s23) + P(2, 3, 4)

]

.

(7.2)

Because the loop integrals appearing in the two amplitudes, eqs. (7.1) and (7.2), are precisely

the same, the critical dimension Dc is automatically the same for both theories at two loops.

This value is Dc = 7, the dimension in which the two-loop, seven-propagator integrals,

∼
∫

d2D`/(`2)7, are log divergent, in agreement with eqs. (3.1) and (3.2). The two-loop

N = 8 supergravity divergence is associated with a counterterm of the form D4R4 in D = 7.

This type of counterterm is permitted by the field-theoretic duality constraints of ref. [47].
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FIG. 6: Cubic four-point graphs entering the four-point three-loop amplitudes.

B. Three loops

At three loops, the integrand of the N = 4 sYM four-point amplitude begins to have

dependence on the loop-momentum in its numerator, as well as (non-planar) terms that

cannot be detected in the maximal cuts. For this reason, the three-loop N = 8 supergravity

amplitude, in its initial two forms [12, 13], was not given by simply squaring the N = 4 sYM

results — except for a subset of the graphs that could be inferred using only two-particle

cuts. More recently, three of the present authors rearranged the three-loop N = 4 sYM

amplitude so as to make manifest its color-kinematic duality [56]. In this form the N = 8

supergravity amplitude can once again be found by a simple squaring procedure. Here we

will give the amplitudes in the form found in ref. [13], which requires only the nine cubic

graphs shown in Fig. 6. (Three more cubic graphs, containing three-point subdiagrams,

enter the solution in ref. [56].)

Both the N = 4 sYM and N = 8 supergravity amplitudes are described by giving the

loop-momentum numerator polynomials N (p) for these graphs. In addition, the N = 4 sYM

graphs are multiplied by the corresponding color structure, as in Fig. 5.
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Integral I(p) N (p) for N = 4 super-Yang-Mills

(a)–(d) s212

(e)–(g) s12 s46

(h) s12(τ26 + τ36) + s23(τ15 + τ25) + s12s23

(i) s12s45 − s23s46 −
1
3(s12 − s23)`

2
7

TABLE II: The numerator factors N (p) for the integrals I(p) in Fig. 6 for N = 4 super-Yang-Mills

theory. The first column labels the integral, the second column the relative numerator factor. An

overall factor of s12s23A
tree
4 has been removed. The invariants sij and τij are defined in eq. (7.3).

Table II gives the values of N (p) for N = 4 sYM in terms of the following invariants,

sij = (ki + kj)
2 , (i, j ≤ 4)

sij = (ki + `j)
2 , τij = 2ki · `j , (i ≤ 4, j ≥ 5)

sij = (`i + `j)
2 . (i, j ≥ 5) (7.3)

The external momenta ki are taken to be outgoing in Fig. 6; the directions of the loop

momenta `i are indicated by arrows. Note that sij is quadratic in the loop momenta `i, if

j > 4, but τij is linear. Every N (p) in Table II is manifestly quadratic (or better) in the loop

momenta.

Table III gives the values of N (p) for N = 8 supergravity, in a form [13] which is also

manifestly quadratic in the loop momenta. (In the first version of the amplitude [12], the

quadratic nature was not yet manifest.) Comparing the two sets of numerators, we see that

the N = 8 supergravity ones are the squares of the N = 4 sYM ones, up to contact terms,

as expected from the KLT relations. For example, in graphs (e)–(g), s46 = τ46+`26 = τ35+`25,

so s2
12τ35τ46 ≈ [s12s46]

2 (modulo `2i terms).

Because the numerator factors for both N = 8 supergravity and N = 4 sYM are mani-

festly quadratic in the loop momenta, the critical dimensions Dc(L) at three loops remain

equal, Dc(L) = 4+6/L = 6 for L = 3. Indeed, when the ultraviolet poles in the integrals for

N = 8 supergravity are evaluated, no further cancellation is found, and the resulting pole is

M3-loop, D=6−2ε
4

∣

∣

pole
=

1

ε

5 ζ3
(4π)9

(s12s23s13)
2M tree

4 , (7.4)
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Integral I(p) N (p) for N = 8 supergravity

(a)–(d) [s212]
2

(e)–(g) s212 τ35 τ46

(h) (s12(τ26 + τ36) + s23(τ15 + τ25) + s12s23)
2

+ (s212(τ26 + τ36) − s223(τ15 + τ25))(τ17 + τ28 + τ39 + τ4,10)

+ s212(τ17τ28 + τ39τ4,10) + s223(τ28τ39 + τ17τ4,10) + s213(τ17τ39 + τ28τ4,10)

(i) (s12 τ45 − s23 τ46)
2 − τ27(s

2
12 τ45 + s223 τ46) − τ15(s

2
12 τ47 + s213 τ46)

− τ36(s
2
23 τ47 + s213 τ45) + `25 s

2
12 s23 + `26 s12 s

2
23 −

1
3`

2
7 s12 s13 s23

TABLE III: Numerator factors N (p) for N = 8 supergravity. The first column labels the integral,

the second column the relative numerator factor. An overall factor of s12s13s14M
tree
4 has been

removed.

(a) (c)(b) (e)(d)

FIG. 7: Cubic vacuum graphs at four loops.

corresponding to a counterterm of the form D6R4 in D = 6. Again, the existence of this

counterterm is consistent with the field-theoretic duality constraints of ref. [47].

The form of the divergence (7.4) was reproduced from string-theoretic duality arguments

in ref. [69]; however, the rational number predicted there does not agree with eq. (7.4).

Whether or not this indicates an issue in decoupling massive states from string theory to

obtain N = 8 supergravity [70] remains unclear.

C. Four Loops

At four loops, the same general strategy still works, but the bookkeeping issues are

greater [15]. One can start by classifying the cubic vacuum graphs. At three loops there
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were only two; at four loops there are five, shown in Fig. 7.

The next step is to decorate the five vacuum graphs with four external legs to get the

cubic four-point graphs. As at lower loops, graphs containing triangles (three propagators

or fewer on a loop) or other three point subgraphs can be dropped. (This statement would

not be true for representations obeying the color-kinematic duality, as at three loops [56].)

Fig. 7(a) only gives rise to triangle-containing graphs, so it can be dropped. Altogether

there are 50 cubic four-point graphs with nonvanishing numerators. Graphs (b) and (c) do

generate four-point graphs without triangles, but the numerators for all such graphs can

be determined, up to possible contact terms, by iterated two-particle cuts. Because of the

structure of these cuts [68], the associated numerator polynomials turn out to be very simple.

Graphs (d), and particularly (e), give rise to the most complex numerators.

The method of maximal cuts was used to determine the numerator polynomials for N = 4

sYM. At four loops, the maximal cuts have 13 cut conditions `2i = 0. Then near-maximal

cuts with only 12 cut conditions are considered, followed by ones with 11 cut conditions. At

this point the N = 4 sYM ansatz is complete; no more terms need to be added. The result

was verified by comparison against a spanning set of generalized cuts.

In Fig. 8 we show three of the 50 numerator polynomials. These three are associated with

the one non-planar cubic vacuum graph (e), and they have the most complex numerators.

Integral (50) is required for the ansatz for the integrand to match various cuts. However,

it integrates to zero and has vanishing color factor, so it does not contribute to the N = 4

sYM amplitude. In constructing the amplitude, it proved very useful to have simple pictorial

rules that allow one to generate numerator polynomials for many graphs from those for other

graphs, either at the same loop order or at lower loop order. An old rule [68], called the

rung rule, applies whenever a graph has a two-particle cut. A newer rule is the box cut

rule [15, 64]. It can be applied to any graph that contains a four-point subdiagram, and

it generates that graph’s numerator polynomial (modulo certain contact terms) from the

polynomials associated with particular lower-loop graphs. Together, these rules are quite

powerful; of the 50 graphs, only four have neither two-particle cuts nor box cuts. (Three of

the four appear in Fig. 8.)

After the N = 4 sYM amplitude was computed, the 50 numerator polynomials for the

N = 8 supergravity amplitude were then constructed, using information provided by the

KLT relations. The results are quite lengthy, but are provided as Mathematica readable
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s12s28s4,12 − s12s37s1,11 − s23s16s3,10

+ s23s25s49 + 1
2s12s23(s13,15 − s13,14)

+ s12(l
2
6l

2
10 − l25l

2
9) + s23(l

2
7l

2
11 − l28l

2
12)

7 8

6
15

9

10

11
125

13

14

1

2

4

3

(50)

(49)

6 17

12

8

10

9

7

5

1116
15

14

13

1

2 3

4

+ s13(l
2
7l

2
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2
7 + l211l

2
12 + l210l

2
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2
17 − l29l

2
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2
11)
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2
6l

2
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2
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2
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2
10 + l217))

+ l213(s12s23 + s12s38 − s23s6,11) + l214(s23s12 + s23s17 − s12s5,12)
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2
16)
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2
5l

2
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2
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2
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2
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FIG. 8: Integrals (48)-(50) for the four-loop N = 4 sYM amplitude [15]. The factor in front of

each graph is the numerator polynomial N (p) for the integral I(p), where (p) is the label below the

graph. The kinematic variables are defined as sij = si,j = (li + lj)
2 and si,j = (li − lj)

2, where li is

the momentum of line i.

files in ref. [14], along with some tools for manipulating them.

From the numerator polynomials for the N = 8 supergravity amplitude, the amplitude’s

ultraviolet behavior could be extracted, by expanding the integrals in the limit of small

external momenta, relative to the loop momenta [71]. Unlike the three-loop representations

in refs. [13, 56], the ultraviolet behavior for the form in ref. [14] is not manifest. That
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means that each integral is more divergent than the sum, and hence subleading terms in

the expansion are required. It is necessary to expand to third order, in order to show that

N = 8 supergravity is as well behaved as N = 4 sYM at four loops, in this representation

of the amplitude. More concretely, the numerator polynomials, omitting an overall factor

of stuM tree
4 , have a mass dimension of 12, i.e. each term is of the form k12−m`m, where k

and ` stand respectively for external and loop momenta. The maximum value of m turns

out to be 8 for every integral. The integrals all have 13 propagators, so they have the form

I ∼
∫

d4D` `8−26. The amplitude is manifestly finite in D = 4, because 4 × 4 + 8 − 26 < 0.

(This result is not unexpected, given the absence of a D2R4 counterterm [36, 37].) The

amplitude is not manifestly finite in D = 5; to see that requires cancellation of the k4`8,

k5`7 and k6`6 terms, after expansion around small k.

The cancellation of the k4`8 terms is relatively simple, because one can simply set the

external momenta ki to zero inside the integrals that appear. At this point, the potentially

divergent integrals all reduce to one of two types of scalar vacuum integrals — there are no

loop-momentum tensors appearing in the numerator, and no doubled propagator factors in

the denominator. In fact, only two of the five vacuum graphs in Fig. 7 appear, (d) and (e).

Collecting all terms, one finds that the coefficients of (d) and (e) both vanish. The cancella-

tion of the k5`7 terms (and the k7`5 terms) is trivial: Using dimensional regularization, with

no dimensionful parameter, Lorentz invariance does not allow an odd-power divergence. The

most intricate cancellation is that of the k6`6 terms, corresponding to the vanishing of the

coefficient of the potential counterterm D6R4 in D = 5. In the expansion of the integrals

to the second subleading order as ki → 0, thirty different four-loop vacuum integrals are

generated. These integrals often have doubled (and sometimes tripled) propagators, arising

from the Taylor expansion of the loop-momentum integrand in the external momentum.

Some integrals also contain tensors in the loop-momentum in their numerators. However,

there are consistency relations between the integrals, corresponding to the ability to shift

the loop momenta by external momenta before expanding around ki = 0. These consistency

relations are powerful enough to imply the cancellation of the ultraviolet pole in D = 5−2ε.

As a check, we evaluated all 30 ultraviolet poles directly, with the same conclusion. We did

not yet evaluate the ultraviolet pole near D = 11/2 = 5.5 (the critical dimension for N = 4

sYM at this loop order), so in principle it could cancel, although that seems unlikely to be

the case.
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In summary, the four-loop four-point amplitude of N = 8 supergravity is ultraviolet finite

for D < 11/2 [14], the same bound found for N = 4 super-Yang-Mills theory. Finiteness

in 5 ≤ D < 11/2 is a consequence of nontrivial cancellations, beyond those already found

at three loops [12, 13]. These results provide the strongest direct support to date for the

possibility that N = 8 supergravity might be a perturbatively finite quantum theory of

gravity.

VIII. CONCLUSIONS

In every explicit computation to date, through four loops, the ultraviolet behavior of

N = 8 supergravity has proven to be no worse than that of N = 4 super-Yang-Mills theory.

On the other hand, there are several recent arguments [45, 47] in favor of the existence of a

seven-loop counterterm [30] of the form D8R4. As argued in Section III, the five-loop four-

graviton scattering amplitude, when evaluated in higher dimensions for the loop momentum,

should provide a fairly decisive test for what will happen at seven loops. Although this

computation is difficult, it may well prove feasible using new ideas related to the color-

kinematic duality [5, 55–58].

Suppose that N = 8 supergravity turns out to be finite to all orders in perturbation

theory. This result still would not prove that it is a consistent theory of quantum gravity

at the non-perturbative level. There are at least two reasons to think that it might need a

non-perturbative ultraviolet completion:

1. The (likely) L! or worse growth of the coefficients of the order L terms in the per-

turbative expansion, which for fixed-angle scattering, would imply a non-convergent

behavior ∼ L! (s/M2
Pl)

L.

2. The fact that the perturbative series seems to be E7(7) invariant, while the mass

spectrum of black holes is non-invariant (see e.g. ref. [72] for recent discussions).

QED is an example of a perturbatively well-defined theory that needs an ultraviolet comple-

tion; it also has factorial growth in its perturbative coefficients, ∼ L!αL, due to ultraviolet

renormalons associated with the Landau pole. Yet for small values of α QED works ex-

tremely well: it predicts the anomalous magnetic moment of the electron to 10 digits of

accuracy. Also, there are many pointlike non-perturbative ultraviolet completions for QED,
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namely asymptotically free grand unified theories. Are there any imaginable pointlike com-

pletions for N = 8 supergravity? Maybe the only completion is string theory; or maybe this

cannot happen because of the impossibility of decoupling non-perturbative string states not

present in N = 8 supergravity [70].

Another question is whether N = 8 supergravity might point the way to other, more

realistic finite (or well behaved) theories of quantum gravity, having less supersymmetry

and (perhaps) chiral fermions. One step in this direction could be to examine the multi-

loop behavior of theories that can be thought of as spontaneously broken gauged N = 8

supergravity [73], which are known to have improved ultraviolet behavior at one loop [74].

In any event, the excellent perturbative ultraviolet behavior of N = 8 supergravity has

already provided many surprises. Although the theory may not itself be of direct phe-

nomenological interest, perhaps it will some day lead to more realistic theories also having

excellent ultraviolet behavior. As a “toy model” for a pointlike theory of quantum gravity,

it has been extremely instructive, and further exploration will no doubt be fruitful as well.
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