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Abstract

We present and discuss the properties of the coherent electromagnetic fields of a
very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bend-
ing magnet. The analysis is based on the results of a direct numerical solution of
Maxwell’s equations together with Newton’s equations. We use a new dispersion-
free time-domain algorithm which employs a more efficient use of finite element
mesh techniques and hence produces self-consistent and stable solutions for very
short bunches. We investigate the fine structure of the CSR fields. We also discuss
coherent edge radiation. We present a clear picture of the field using the electric
field lines constructed from the numerical solutions. This method should be useful
in the study of existing and future concepts of particle accelerators and ultrafast co-
herent light sources, where high peak currents and very short bunches are envisioned.

PACs numbers: 29.27.Bd, 29.20.db,41.75.Ht, 41.60.Ap, 52.59.-f

1 Introduction

The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynam-
ics of very short bunches, which are moving in the bends of all kinds of magnetic elements.
They are responsible for additional energy loss and energy spread; micro bunching and
beam emittance growth. These fields may bound the efficiency of damping rings, electron-
positron colliders and ultrafast coherent light sources, where high peak currents and very
short bunches are envisioned. This is relevant to most high-brightness beam applications.
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On the other hand these fields together with transition radiation fields can be used for
beam diagnostics or even as a powerful resource of THz radiation.

A history of the study of CSR and a good collection of references can be found in [1]
and also in the well known papers [2] - [5]. The physics of the coherent fields of a bunch
rotating in a circle is very well understood. Steady state analytic solutions, which have
been found, describe the essential properties of the CSR fields. However, steady state
approach along with other assumptions restrict these formulas for practical applications.
By other assumptions we mean that a beam is considered to be rigid, radiation occurs
either in free space or between parallel plates and there are no transient effects or coherent
edge radiation. So for practical applications one has to rely on numerical solutions.
Electromagnetic theory suggests several methods on how to calculate CSR fields. The
most popular method is to use Lienard-Wiechert potentials. Other approach is to solve
numerically the approximate equations, which are a Schrodinger type equation. These
numerical methods are very well described in [6] - [9]. However these methods still have
several assumptions and not give a full description of the CSR fields. We suggest that a
direct solution of Maxwell’s equations together with Newton’s equations can describe the
detailed structure of the CSR fields.

There are a lot of finite-difference schemes, which numerically solve numerically Maxwell’s
equations since the first one was published in 1966 [10]. Most of them are so called ”‘ex-
plicit”’ schemes, which means that the value of the field at the new time step is calculated
only by the field values from the previous time step. Stability conditions for these schemes
do not allow a time step to be greater than or equal to a space (mesh) step. This limita-
tion brings an additional troublesome effect for wavelengths that are compared to a mesh
step. We state that this effect works like a frequency dispersion media, which is ”hidden”
in the finite-difference equation.

We propose to use an implicit method, which is free of dispersion. The method
has been used to solve the wake potential problem of the very short bunches [11]. A
further development of this methodology is to increase its capability for modeling coherent
radiation.

2 Method

The main strategy of the method is to use an implicit scheme for the field calculation;
Fourier expansion in the vertical direction, a traveling mesh and an ensemble of particles
for a bunch dynamics calculation.

2.1 Equations

We will solve numerically Maxwell’s and Newton’a equations for an ultra-relativistic bunch
of charged particles moving in a rectangular vacuum chamber inside a bending magnet.
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Electromagnetic components �E, �B must satisfy the equations

1

c

∂

∂t
�E = ∇× �B − 4π

c
�Jb ∇ · �E = 4πρb

�Ewall × �n = 0

1

c

∂

∂t
�B = −∇× �E ∇ · �B = 0 �Bwall · �n = 0 (1)

A charge density ρb and a charge current �Jb must satisfy a continuity equation

∇ · �Jb +
1

c

∂

∂t
ρb = 0

ρb =
∑
k

ρk (�x) �Jb =
∑
k

ρk (�x)�vk (2)

A Newton force �F includes electromagnetic components and a bending magnetic field
�Bbend

∂

∂t
�pk = �F = e �E +

�vk

c
× e

(
�B + �Bbend

)

�pk =
m�vk√
1 − v2

k

c2

(3)

2.2 Implicit scheme and wake field calculations

Modeling ultrafast phenomena requires a special algorithm for solving the electromagnetic
equations. This algorithm must be free of frequency dispersion which means that all
propagating waves must have their natural phase velocity, completely independent of the
simulation parameters like a mesh size or a time step. We suggest an implicit algorithm
which does not have on stability issues and employs a more efficient use of finite element
mesh techniques. This method can produce self-consistent stable solutions for very short
bunches.

We have already used this same approach for wake field calculations. An implicit,
dispersion-free time-domain algorithm has been used in the computer code designed in
1976 for wake field dynamics studies at the Novosibirsk Electron-Positron Linear Collider
VLEPP [12]. At that time we managed to calculate wake fields of a 1.8 mm bunch. Later
this algorithm has been used to solve the wake potential problem of much shorter bunches
and has proved to be quite powerful in describing the wake fields at the TESLA Liner
Collider (σ = 0.7mm) [13] and TESLA Test Facility FEL (σ = 25μ) [14]. Recently we
got an opportunity to make a comparison with wake field measurements at LCLS for a
transport line (linac to undulator (LTU)) and undulator vacuum chamber. Results of a
computation of the wake field loss factor of a several micron long bunch (σ = 4μ) showed
very good agreement with the measurement results [15]. Here we present this comparison
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Figure 1: LCLS. Measured and simulated loss factor of the transport line (LTU) and
undulator vacuum chamber. Symbols correspond to the results of different measurements.
The continues dark yellow line shows the numerical result.

at Fig. 1, which includes results of several measurements. The continues dark yellow line
shows the numerical result. The implicit method has been also very efficiently used in
the numerical solution of the Vlasov and the Fokker-Plank equation for the longitudinal
beam dynamics in a damping ring [16], [17].

To employ the implicit scheme we transform equations 1 to the second order equations
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Formulas for the numerical approximation of an equation of second order are given in [18].
In this publication we also present an analysis and comparison of the explicit and implicit
schemes with application to CSR field calculations. Additional details can be found in
[19].

2.3 Traveling mesh and bunch particles

To decrease the amount of needed memory we use a traveling mesh. This is very important
for bunch compressor simulations at higher beam energies where the bunch length is a
micron but the distance between bends is tens of meters. The mesh moves with the speed
of light and we can definitely assume that the electromagnetic field in front of the bunch
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is zero. Because the time delay due to the bending magnet in the chicane is very small,
we do not need more space for the bunch. A traveling mesh does not change the accuracy
of the scheme or any conditions of stability.

To simulate the real shape of a non-monochromatic bunch moving, for example, in
a bending magnet we will use an ensemble of particles. We will track each particle and
average the current (particle velocities) over the mesh. The charge density distribution
will be integrated using the continuity equation for charge and current. Because we are
using a traveling mesh particles will stay in same mesh cell for many time steps. This will
help to smooth out errors of particle transitions from one cell to another.

To check this method, we made a comparison with results of the one-dimensional
analytical approach and we found good agreement in some simple cases. However we
have found much more interesting detailed structure of the CSR fields, which have not
been described by any previous study. We will present a clear picture of the field in the
form of electric force lines and verify the method from a physical point of view.

3 CSR field dynamics

3.1 Radiation in a bend

Initially we will try to understand how a bunch field remakes itself when a bunch is rotated
in a magnetic field. We have calculated the electromagnetic field of a tree dimensional
Gaussian bunch initially moves along the vacuum chamber very close to the speed of light.
At some point the bunch enters a vertical magnetic field of a bend. In these simulations
we use relative units. The ratio of the bunch length to a bending radius is σ/ρ = 3.1̇0−3,
the horizontal size is half the bunch length σx/σ = 0.5. We did not find any strong
dependence on vertical size as long as it is smaller than the bunch length. The horizontal
vacuum chamber size is a = 0.5ρ and vertical chamber size is h = 0.1ρ. However in order
to show the field line distribution we increase the vertical vacuum chamber size and the
vertical bunch size to make field planar, i.e. to make two-dimensional field line plots.

Fig. 2 shows snapshots of the electric field lines at different time moments. The white
boxes show bunch contours. Red arrows show the direction of a bunch velocity. Before
entering a bend the bunch has only a transverse field, which can be seen as a set of vertical
lines. A new field that is generated in a bend is a set of ovals, which increase in size with
a time. We can outline two time periods of the field formation. The first is when a bunch
is moving inside the region of it’s initial transverse field. The first two plots in Fig. 2 are
related to this first period. The second period starts when the bunch is delayed so much
that it is out of the region of the initial transverse field. The last plot in Fig. 2 shows
this situation. The transverse field continues to move straight with the speed of light, so
we may consider it to be the field of the edge radiation in a bend.

A more detailed picture of the field lines is shown in Fig. 3, where green arrows show
the directions of the electric field.
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Figure 2: Snapshots of electric field lines of a bunch,which is moving in a magnetic field.
White boxes show the bunch contour. Red arrows show the directions of the bunch
velocity.

One can be see that the upper field lines take the position of the lower lines and a part
of the lower field lines take the position of the upper lines. However at the far ends the
transverse field lines continue traveling in the same initial direction. It is easy to explain
such behavior if we present this field as a sum of two fields

�E = �Edp + �Ein
�B = �Bdp + �Bin (5)

First field �Edp, �Bdp is the field of a dipole, which consists of two oppositely charged bunches.
One bunch is the ”real” one with a positive charge. This bunch is rotated in the magnetic
field while the other bunch is a ”virtual” one, which has an opposite charge and travels
straight in the initial direction. Second field �Ein, �Bin is the field of another ”virtual”, but
positively charged bunch, which travels straight along the initial direction. Naturally the
virtual bunches together sum to zero. This decomposition is shown in Fig. 4.

There could be a close analogy between the field decomposition and the Feynman
diagram shown in Fig. 5. A real electron produces a virtual photon, which decays into
electron-positron pair, corresponding to a dipole. The positron can annihilate with the
ongoing scatted to emit a photon. This photon corresponds to synchrotron radiation.

We note that this decomposition can also help to improve the accuracy of the numerical
calculation of the force acting on the bunch particles because we remove the strong initial
bunch field.

A dense set of field lines in Fig. 3 also reveals a fine structure of the field in front of
a bunch. This γ-type region is common in a classical synchrotron radiation. There are
several publications on the electric field patterns of the synchrotron radiation [20], [21]
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Figure 3: Detailed structure of the field pattern. Red arrow shows the direction of the
bunch velocity. Green arrows show the field line direction.Upper field lines take the
position of the lower lines and a part of the lower field lines take the position of the upper
lines.
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Figure 4: Decomposition of the field of a bunch moving in a magnetic field (left plot)
into two fields: a field of a dipole (middle plot) and a field of a bunch moving straight in
initial direction (right plot). Red arrows show directions of a bunch velocity.

Figure 5: Decomposition as an analog of the Feynman diagram.
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Figure 6: Fine structure of the field pattern in front of a bunch. The left plot shows field
lines near a bunch. The right plot presents a picture from the reference [21] for γ = 6.
The plots are rotated and scaled in order to have the same direction for the velocities and
approximately the same bending radius.

and [22]. We chose reference [21], as it supplies a picture of the field lines of a particle with
a relativistic factor γ = 6. The characteristic wavelength of the synchrotron radiation or
an equivalent value of the bunch length for this relativistic factor is σ = R/γ3, which is
very close to our bunch length. Fig. 6 shows this finite structure together with a plot from
a Ref.[21]. The plots are rotated in order to have the velocities in the same direction for
a better comparison. Plots are also scaled in order to have approximately same bending
radius. We can state that the γ-region before a bunch is very close for both cases. As
was mentioned above we can distinguish two stages of the field formation. Now we can
separate the interaction with the field �Ein, �Bin and the field �Edp, �Bdp. The interaction

with the field �Ein, �Bin continues only for the time when a bunch is inside the region of
this transverse field. We can estimate the distance D+ (or equivalent time) when a bunch
leaves this region. This means that the bunch delay δ must be more than the bunch
length 2σ

δ = ρϕ − ρ sin ϕ ≈ ρ
ϕ3

3
≥ 2σ (6)

from this relation we have
D+ = ρϕ ≥ (6ρ2σ)1/3 (7)

The distance D+ is 37% less than a characteristic overtaking length L0 = 2(3σρ2)1/3

according to [3]. The transverse field is located only near the bunch, in the region, which
can be approximated by the bunch size σx or σy or the bunch length σ. A bunch leaves
the transverse field much earlier when his transverse displacement Δx exceeds the field
region

Δx =
1

2
ρϕ2 ≥ σ (8)
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Figure 7: The electric field distribution on the horizontal plane in the vertical center of
the vacuum chamber and a bunch position at different times. The red color corresponds
to a high positive value of the field and the blue color corresponds to a low negative value
of the field. The white oval shows the ”‘real”’ bunch contour. Coherent power and energy
gain are shown by a blue and a red curve.

so the distance D+ is
D+ = ρϕ ≥

√
2ρσ (9)

The distribution of the electric field �Ein on the horizontal plane in the vertical center
of the vacuum chamber and the bunch contour at different time steps are shown in Fig.
7. The red color corresponds to a high positive value of the field and the blue color
corresponds to a low negative value of the field. The white oval shows the ”‘real”’ bunch
contour. Oval covers approximately 90% of the bunch. The plot also shows the coherent
power loss P (gain in our case), which was calculated using the formula

P =
∫ (

�Jb · �E
)
dxdydz (10)

and the energy loss W (gain), which is just a time integral of the power loss

W =
∫

Pdt (11)

The power and energy gain of a bunch in the field �Ein was calculated for a bunch length
of 0.6 mm. The maximum power is achieved at the time when the bunch is in the red
region of the field. The interaction of the bunch with the field �Edp continues for much
longer time. Fig. 8 shows the absolute value of the electric field on the horizontal plane
in the vertical center of the vacuum chamber in consecutive time steps. The white oval
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Figure 8: Absolute value of the electric field �Edp on the horizontal plane in the vertical
center of the vacuum chamber in consecutive time steps. The red color corresponds to
maximum value. The blue color corresponds to the minimum value of the field. The
white oval shows the real bunch contour.

shows the real bunch contour. When a dipole is created an electric field appears between
a real bunch and a virtual bunch. This field increases in value and reaches a maximum
value when the bunches are completely separated and then it goes down as the bunches
more apart leaving fields only around the bunches. The bunch acquires an energy loss
while interacting with the field �Edp. To study the fields acting on the particles inside the
bunch we calculated the distribution of a collinear force F‖ and a transverse force F⊥

F‖ = �Jb · �E F⊥ =
(
�Jb × �E

)
x

(12)

Now we include both field the �Ein and �Edp in the electric field �E. We have found some
very exciting fine structure of the force acting on the particle in the bunch. Fig. 9
show a distribution of forces on the horizontal plane in the vertical center of the vacuum
chamber at three time moments. Left three vertical plots in Fig. 9 show a bunch charge
distribution. The starting plot is at the bottom. Red arrows show the direction of the
bunch velocity. The middle three vertical plots show a transverse force. Again, the red
arrow show the direction of the force. The transverse force is the well known space-charge
force, which probably is compensated by a magnetic force in the ultra-relativistic case.
The right three vertical plots show the collinear force, which is responsible for an energy
gain or an energy loss. The red color corresponds to acceleration and energy gain ad the
blue color corresponds to deceleration and energy loss. The red arrows are collinear or
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Figure 9: Bunch charge distribution, transverse forces and collinear forces on the hori-
zontal plane in the vertical center of the vacuum chamber at three time moments. The
starting plot is at the bottom. The left three vertical plots show a bunch charge distribu-
tion. The red arrows show the direction of the bunch velocity. The middle three vertical
plots show a transverse force. Again, the red arrows show the direction of the force. The
right three vertical plots show the collinear force, which is responsible for an energy gain
or energy loss.

anti collinear with a bunch velocity. We did not include these forces in the beam dynamics
simulation in order to make the physical picture clear.

We see here that the forces on the bunch are very complicated. The particles, which
are in the center of the bunch, in front of the bunch and at the end are accelerating,
whereas the particles at the boundaries are decelerating. This means that a bunch gets
an additional energy spread in the transverse direction. The total effect is deceleration
and the bunch loses energy. The integrated energy loss along the transverse direction
as a function of the longitudinal coordinate is shown in Fig. 10 together with a bunch
longitudinal distribution. One can see that the head of a bunch and tail are accelerated,
when the rest of the bunch is decelerated. The shape of the energy loss distribution is
compared with the analytical 1-D model [3] including shielding (green dashed line). We
obtain a better agreement with the shape of the energy loss distribution for a larger bend-
ing radius and smaller bunch length. This comparison is shown at the right plot of Fig.
10. The transverse energy spread is smaller for a larger bending radius. This complicated
structure of the collinear field is very important. A bunch will get an additional trans-
verse energy spread, which can not be compensated. We may consider this effect as an
analog of the energy spread due to quantum fluctuation of synchrotron radiation. This
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Figure 10: Integrated energy loss along the transverse direction as a function of the
longitudinal coordinate for two values of bending radius. The left plot corresponds to the
upper plot at the right in Fig. 8. The right plot shows the result for a bending radius 40
times larger and a bunch length that is two times smaller. The green dashed line is from
the analytical 1-D model.

energy spread in the magnetic field immediately generates emittance growth. This effect
can limit the efficiency of the magnetic bunch compressors and as a result the efficiency
of FELs.

3.2 Coherent edge radiation

As we mention above an ultra-relativistic bunch and CSR fields are moving together and
interact for a long time. However one can see a field, which propagates straight ahead
from the initial beam X-position . This field can be seen very well when the bunch gets
a large horizontal displacement. Fig. 11 shows the distribution of the magnetic field
on the horizontal plane in the vertical middle of the vacuum chamber. The large peak
corresponds to the bunch field. The right picture is a magnified image of the left picture.
Note the scales in the X and Z directions are different A red arrow shows the initial bunch
X-position and the direction of the bunch velocity. A blue arrow shows the direction of
the bunch velocity at this time.

Fig. 12 shows images of the coherent radiation in the form of transverse magnetic
field distributions on the vertical planes of the vacuum chamber. Left and right set of
vertical plots correspond to different longitudinal positions. Each plot in a set shows a
distribution at a different time. At first we see an image of edge radiation, then the image
of synchrotron radiation and finally a bunch field image.

The calculated images of the coherent edge radiation look very similar to the images,
which we have seen on the YAG screen after the dump magnets, which bend down the
beam at LCLS.
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Figure 11: Coherent edge radiation. Distribution of the magnetic field on the horizontal
plane in the vertical middle of the vacuum chamber. The large peak corresponds to the
bunch field. The right picture is a magnified image of the left picture. Note the scales
in the X and Z directions are different A red arrow shows the initial bunch X-position
and the direction of the bunch velocity. A blue arrow shows the direction of the bunch
velocity at this time.

4 Conclusions

We have developed a new method for the numerical solution of Maxwell’s equations. We
can analyze the fine structure of the coherent synchrotron fields, excited by a short bunch
in a bending magnet. We present a clear picture of the field in the form of electric force
lines. We found good agreement with an analytical one dimensional model in simple
cases. However, we have found much more interesting and detailed structure of the
CSR fields, which have not been described by any previous study. A very important
result is discovering the structure of the complicated collinear force. A bunch will get
an additional energy spread in the transverse direction from the collinear force. This
immediately leads to an emittance growth and decoherence that could limit FEL lasing
for very short bunches. This effect needs more study.
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Figure 12: Images of radiation in the form transverse magnetic field distributions. The
left and right set of vertical plots correspond to different longitudinal positions. Each plot
in a set shows a distribution at a different time. First comes an image of edge radiation,
then the image of synchrotron radiation and finally a bunch field image.
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