1 Probing the linear polarization of gluons in unpolarized hadrons at EIC

Daniël Boer ${ }^{1}$, Stanley J. Brodsky ${ }^{2}$, Piet J. Mulders ${ }^{3}$, Cristian Pisano ${ }^{4}$
${ }^{1}$ Theory Group, KVI, University of Groningen, The Netherlands
${ }^{2}$ SLAC National Accelerator Laboratory, Stanford University, USA
${ }^{3}$ Department of Physics and Astronomy, Vrije Universiteit Amsterdam, The Netherlands
${ }^{4}$ Dipartimento di Fisica, Università di Cagliari, and INFN, Sezione di Cagliari, Italy

Abstract

Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this TMD distribution of linearly polarized gluons is through $\cos 2 \phi$ asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future EIC or LHeC experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

Linearly polarized gluons in an unpolarized hadron, carrying a light-cone momentum fraction x and transverse momentum \boldsymbol{p}_{T} w.r.t. to the parent's momentum, are described by the TMD $h_{1}^{\perp g}\left(x, \boldsymbol{p}_{T}^{2}\right)[1,2,3]$. Unlike the quark TMD $h_{1}^{\perp q}$ of transversely polarized quarks inside an unpolarized hadron (also frequently referred to as Boer-Mulders function) [4], $h_{1}^{\perp g}$ is chiral-even and T-even. This means it does not require initial or final state interactions (ISI/FSI) to be nonzero. Nevertheless, as any TMD, $h_{1}^{\perp g}$ can receive contributions from ISI or FSI and therefore can be process dependent, in other words, non-universal, and its extraction can be hampered in nonfactorizing cases.

Thus far no experimental studies of $h_{1}^{\perp g}$ have been performed. As recently pointed out, it is possible to obtain an extraction of $h_{1}^{\perp g}$ in a simple and theoretically safe manner, since unlike $h_{1}^{\perp q}$ it does not need to appear in pairs [3]. Here we will discuss observables that involve only a single $h_{1}^{\perp g}$ in semi-inclusive DIS to two heavy quarks or to two jets, which allow for TMD factorization and hence a safe extraction. The corresponding hadroproduction processes run into the problem of factorization breaking [5, 3].

We first consider heavy quark (HQ) production, $e(\ell)+h(P) \rightarrow e\left(\ell^{\prime}\right)+Q\left(K_{1}\right)+\bar{Q}\left(K_{2}\right)+X$, where the four-momenta of the particles are given within brackets, and the heavy quarkantiquark pair in the final state is almost back-to-back in the plane perpendicular to the direction of the exchanged photon and hadron. The calculation proceeds along the lines explained in Refs. [2, 6]. We obtain for the cross section integrated over the angular distribution of the back-scattered electron $e\left(\ell^{\prime}\right)$:

$$
\begin{equation*}
\frac{d \sigma}{d y_{1} d y_{2} d y d x_{B} d^{2} \boldsymbol{q}_{T} d^{2} \boldsymbol{K}_{\perp}}=\frac{\alpha^{2} \alpha_{s}}{\pi s M_{\perp}^{2}} \frac{\left(1+y x_{B}\right)}{y^{5} x_{B}}\left(A+\frac{\boldsymbol{q}_{T}^{2}}{M^{2}} B \cos 2 \phi\right) \delta\left(1-z_{1}-z_{2}\right) \tag{1}
\end{equation*}
$$

This expression involves the standard DIS variables: $Q^{2}=-q^{2}$, where q is the momentum of the virtual photon, $x_{B}=Q^{2} / 2 P \cdot q, y=P \cdot q / P \cdot \ell$ and $s=(\ell+P)^{2}=2 \ell \cdot P=$ $2 P \cdot q / y=Q^{2} / x_{B} y$. Furthermore, we have for the HQ transverse momenta $K_{i \perp}^{2}=-\boldsymbol{K}_{i \perp}^{2}$ and introduced the rapidities y_{i} for the HQ momenta (along photon-target direction). We

Figure 1: Upper bounds of the asymmetry ratio R in equation (3) as a function of $\left|\boldsymbol{K}_{\perp}\right|$ at different values of Q^{2}, with $y=0.01$ and $z=0.5$.
denote the proton mass with M and the heavy (anti)quark mass with M_{Q}. For the partonic subprocess we have $p+q=K_{1}+K_{2}$, implying $z_{1}+z_{2}=1$, where $z_{i}=P \cdot K_{i} / P \cdot q$. We introduced the sum and difference of the HQ transverse momenta, $K_{\perp}=\left(K_{1 \perp}-K_{2 \perp}\right) / 2$ and $q_{T}=K_{1 \perp}+K_{2 \perp}$, considering $\left|q_{T}\right| \ll\left|K_{\perp}\right|$. In that situation, we can use the approximate HQ transverse momenta $K_{1 \perp} \approx K_{\perp}$ and $K_{2 \perp} \approx-K_{\perp}$ denoting $M_{i \perp}^{2} \approx M_{\perp}^{2}=M_{Q}^{2}+\boldsymbol{K}_{\perp}^{2}$. The azimuthal angles of \boldsymbol{q}_{T} and \boldsymbol{K}_{\perp} are denoted by ϕ_{T} and ϕ_{\perp} respectively, and $\phi \equiv \phi_{T}-\phi_{\perp}$. The functions A and B depend on $y, z\left(\equiv z_{2}\right), Q^{2} / M_{\perp}^{2}, M_{Q}^{2} / M_{\perp}^{2}$, and \boldsymbol{q}_{T}^{2}. The angular independent part A involves only the unpolarized TMD gluon distribution f_{1}^{g}, while the magnitude B of the $\cos 2 \phi$ asymmetry is determined by $h_{1}^{\perp g}$. Since $h_{1}^{\perp g}$ is completely unknown, we estimate the maximum asymmetry that is allowed by the bound [3]

$$
\begin{equation*}
\left|h_{1}^{\perp g(2)}(x)\right| \leq \frac{\left\langle p_{T}^{2}\right\rangle}{2 M^{2}} f_{1}^{g}(x), \tag{2}
\end{equation*}
$$

where the superscript (2) denotes the $n=2$ transverse moment (defined as $f^{(n)}(x) \equiv$ $\left.\int d^{2} \boldsymbol{p}_{T}\left(\boldsymbol{p}_{T}^{2} / 2 M^{2}\right)^{n} f\left(x, \boldsymbol{p}_{T}^{2}\right)\right)$. The maximal (absolute) value of the asymmetry ratio

$$
\begin{equation*}
R=\left|\frac{\int d^{2} \boldsymbol{q}_{T} \boldsymbol{q}_{T}^{2} \cos 2\left(\phi_{T}-\phi_{\perp}\right) d \sigma}{\int d^{2} \boldsymbol{q}_{T} \boldsymbol{q}_{T}^{2} d \sigma}\right|=\frac{\int d \boldsymbol{q}_{T}^{2} \boldsymbol{q}_{T}^{4}|B|}{2 M^{2} \int d \boldsymbol{q}_{T}^{2} \boldsymbol{q}_{T}^{2} A} \tag{3}
\end{equation*}
$$

is depicted in figure 1 as a function of $\left|\boldsymbol{K}_{\perp}\right|(>1 \mathrm{GeV})$ at different values of Q^{2} for charm (left panel) and bottom (right panel) production, where we have selected $y=0.01, z=0.5$, and taken $M_{c}^{2}=2 \mathrm{GeV}^{2}, M_{b}^{2}=25 \mathrm{GeV}^{2}$. Such large asymmetries, together with the relative simplicity of the suggested measurement (polarized beams are not required), would probably allow an extraction of $h_{1}^{\perp g}$ at EIC (or LHeC).

If one keeps the lepton plane angle ϕ_{ℓ}, there are other azimuthal dependences, such as a $\cos 2\left(\phi_{\ell}-\phi_{T}\right)$. The bound on its asymmetry ratio R^{\prime} is shown in figure 2 in the same kinematic region as in figure 1. One can see that R^{\prime} can be larger than R, but only at smaller $\left|\boldsymbol{K}_{\perp}\right| . R^{\prime}$ falls off more rapidly at larger values of $\left|\boldsymbol{K}_{\perp}\right|$ than R. We note that it is essential that the individual transverse momenta $K_{i \perp}$ are reconstructed with an accuracy

Figure 2: Same as in figure 1, but for the upper bounds of the $\cos 2\left(\phi_{\ell}-\phi_{T}\right)$ asymmetry.
δK_{\perp} better than the magnitude of the sum of the transverse momenta $K_{1 \perp}+K_{2 \perp}=q_{T}$. This means one has to satisfy $\delta K_{\perp} \ll\left|q_{T}\right| \ll\left|K_{\perp}\right|$, which will require a minimum $\left|K_{\perp}\right|$.

The cross section for the process $e h \rightarrow e^{\prime}$ jet jet X can be calculated in a similar way and is analogous to equation (1). In particular, the explicit expression for B can be obtained from the one for HQ production taking $M_{Q}=0$, while A now depends also on x_{B} and receives a contribution from the subprocess $\gamma^{*} q \rightarrow g q$ as well, not just from $\gamma^{*} g \rightarrow q \bar{q}$. Therefore, the maximal asymmetries (not shown) are smaller than for HQ pair production.

Acknowledgments

C.P. is supported by Regione Autonoma della Sardegna (RAS) through a research grant under the PO Sardegna FSE 2007-2013, L.R. 7/2007, "Promozione della ricerca scientifica e dell'innovazione tecnologica in Sardegna". This research is part of the FP7 EU-programme Hadron Physics (No. 227431). SLAC-PUB-14359.

References

[1] P.J. Mulders and J. Rodrigues, Phys. Rev. D 63, 094021 (2001) [arXiv:hepph/0009343].
[2] D. Boer, P.J. Mulders and C. Pisano, Phys. Rev. D 80, 094017 (2009) [arXiv:0909.4652 [hep-ph]].
[3] D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, arXiv:1011.4225 [hep-ph].
[4] D. Boer and P.J. Mulders, Phys. Rev. D 57, 5780 (1998) [arXiv:hep-ph/9711485].
[5] T.C. Rogers and P.J. Mulders, Phys. Rev. D 81, 094006 (2010) [arXiv:1001.2977 [hepph]].
[6] D. Boer, P.J. Mulders and C. Pisano, Phys. Lett. B 660, 360 (2008) [arXiv:0712.0777 [hep-ph]].

