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ABSTRACT
We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distri-

bution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux limited
data set containing 636 quasars with radio and optical fluxes from White et al. We first note that
when dealing with multivariate data it is imperative to first determine the true correlations among
the variables, not those introduced by the observational selection effects, before obtaining the indi-
vidual distributions of the variables. We use the methods developed by Efron and Petrosian which
are designed to obtain unbiased correlations, distributions, and evolution with redshift from a data
set truncated due to observational biases. It is found that as expected the population of quasars ex-
hibits strong positive correlation between the radio and optical luminosities and that this correlation
deviates from a simple linear relation in a way indicating that more luminous quasars are more radio
loud. We also find that there is a strong luminosity evolution with redshift in both wavebands, with
significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained
by arbitrarily separating the sources into radio loud (R > 10) and radio quiet (R < 10) populations
introduces significant biases that skew the result considerably. We also construct the local radio and
optical luminosity functions and the density evolution. Finally, we consider the distribution of the
radio loudness parameter R obtained from careful treatment of the selection effects and luminosity
evolutions with that obtained from the raw data without such considerations. We find a significant
difference between the two distributions and no clear sign of bi-modality in the true distribution. Our
results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the
production of disk outflows/jets between very radio quiet and very radio loud quasars, but rather a
smooth transition. Also, this efficiency seems higher for the high-redshift and more luminous sources
in the considered sample.
Subject headings: quasars: general - methods: data analysis - methods: statistical - galaxies: active -

galaxies:jets - galaxies: luminosity function

1. INTRODUCTION

The optical emission of quasar sources is dominated
by the radiation of the plasma accreting onto supermas-
sive black holes, while the radio emission is dominated
by the plasma outflowing from the black hole/accretion
disk systems. Hence different but complementary infor-
mation can be gathered in both photon energy ranges re-
garding the cosmological evolution of active galactic nu-
clei (AGN) and its relation to structure formation in the
Universe. It is therefore important to analyze in detail
redshift distributions of quasar sources in both frequency
regimes, investigating carefully any possible differences
between these two.

The rapid evolution of quasars identified in radio cata-
logs as ‘quasi-stellar radio sources’ (or QSRs) in the red-
shift range z . 2 was established soon after their discov-
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ery (e.g. Schmidt 1967). Subsequent optical discoveries
of similar sources, most of which had no detectable radio
emission, lead to the emergence of the class of ‘radio quiet
quasars’ (or ‘quasi-stellar objects’; QSOs for short e.g.
Osterbrock (1989)). These optically-selected sources
also showed similar strong evolutionary trends, similar to
the radio-selected ones. These evolutions are interpreted
as density evolution, luminosity evolution or a combina-
tion of the two in numerous works (e.g. Schmidt 1967;
Petrosian 1973; Marshall et al. 1983; Dunlop & Peacock
1990; Maloney & Petrosian 1999; Willott et al. 2001)
and can be designated as the evolution of the luminosity
function (LF, for short).

By now the evolution of the LF has been described
not only for optical and radio luminosities but also for
X-ray, infrared, and bolometric luminosities (e.g. Ueda et
al. 2003; Richards et al. 2006; Matute et al. 2006; Hop-
kins et al. 2007; Croom et al. 2009). Most of these stud-
ies have treated the evolution with a bi-variate function
Ψi(Li, z), where Li is the luminosity (or luminosity spec-
tral density) in some photon energy range, e.g. Li = Lopt
or Lrad. The shape of the LF and its evolution are usu-
ally obtained from a flux limited sample fi > fm,i with
Li = 4π dL(z)2Ki(z)fi, where dL is the luminosity dis-
tance and Ki(z) stands for the K-correction. For a power
law emission spectrum of index εi defined as fi ∝ νεi , one
has Ki(z) = (1 + z)1+εi .

However, because no matter how a quasar is discov-

SLAC-PUB-14354



2 Singal et al.

ered, optical observations are required for determination
of redshift, then the flux limit of optical observations
(fm,opt) and the optical luminosity enter the picture, so
that one now must consider the joint (tri-variate) LF
and its evolution Ψ(Lopt, Li, z), with Li = Lrad or LX ,
for example.

In general, the first step required for investigation of a
multivariate distribution is the determination of whether
the variables of the distributions are correlated or are
statistically independent. For example, in the case of
a single luminosity function the correlation between L
and z is what we call luminosity evolution, and indepen-
dence of these variables would imply absence of luminos-
ity evolution. Mathematically, independence means that
the function is separable Ψi(Li, z) = ψi(Li) × ρ(z), in
which case one is left with the determination of a single
variable LF ψi(Li) and the density evolution ρ(z). As
shown by Petrosian (1992) the most exact nonparamet-
ric method for this task from a flux limited (or a more
generally truncated) sample is the Lynden-Bell (1971)
method. However, this simple and elegant method can-
not be used for cases when variables are correlated (e.g.
when there is luminosity evolution). Efron & Petrosian
(1992, 1999) (EP for short) developed new methods for
determination of the existence of correlation or indepen-
dence of the variables from a flux limited and more gener-
ally truncated data set, and prescribed how to remove the
correlation by defining new and independent variables
[say L′i ≡ Li/gi(z) and z, where the function gi(z) de-
scribes the luminosity evolution] and then how to deter-
mine the mono-variate functions ψi(L′i) and ρ(z). Thus,
one can determine both the luminosity and density evo-
lutions gi(z) and ρ(z), as well as the LF at any redshift.6

In the case of quasars with the optical and some other
band luminosity, we have at least a tri-variate function.
In this case one must determine not only the correla-
tions between the redshift and individual luminosities
(i.e. the two luminosity evolutions) but also the possible
correlation between the two luminosities, before individ-
ual distributions can be determined. Knowledge of these
correlations and distributions are essential for not only
constraining robustly the cosmological evolution of ac-
tive galaxies, but also for interpretation of related obser-
vations, such as the extragalactic background radiation
(e.g. Singal et al. 2010; Hopkins et al. 2010).

Another related aspect of this subject, which has at-
tracted considerable attention over the years, is the dis-
tinction between so-called ‘radio loud’ and ‘radio quiet’
quasars. No observations have been presented so far pro-
viding conclusive evidence that both types of objects be-
long to very different populations of sources, or, equiv-
alently, that the quasar family is characterized by a bi-
modal distribution in this respect; (cf Ivezic et al. 2002;
Cirasuolo et al. 2003), nor that the relative fraction of
radio loud/quiet quasars evolves with redshift (Gold-
schmidt et al. 1999; Jiang et al. 2007). The question
of whether there are two distinct populations was ad-
dressed soon after the discovery of quasars using small

6 It should be noted that here we assume that the shape of the
luminosity function is constant; e.g. power law indices describing
the LF are independent of z. In general, shape variations can
affect the test of independence. For a sufficiently large sample the
importance of these effects can be determined and accounted for.
This is beyond the scope of this paper.

samples with radio flux limits greater than one Jy. It
was shown then that the distribution of the ratio of ra-
dio to optical luminosity R ≡ Lrad/Lopt, the so called
“radio loudness parameter”, was not bi-modal but was
a fairly broad (2.8 < logR < 5.2) power law with in-
dex βR ∼ −2.3 (Schmidt 1972; Petrosian 1973). At
that time this ratio was defined for the radio luminos-
ity at νrad = 0.5 GHz and optical luminosity at 2500
Å (or the frequency νopt = 1.2 × 1015 Hz). Nowadays
it is defined with radio luminosity at 5 GHz so that for
a mean radio spectral index εrad ∼ −0.6 the old data
would be in the range 2.2 to 4.6 of the modern definition
of R.7 Moreover, the survey limits have been extended
to much lower fluxes (specially in the radio domain), and
this resulted in a much wider range of the ratio that ex-
tends to values well below one, namely −3 < logR < 5.
In addition, hints of the bi-modality of the distribution
suggested that logR = 1 could be chosen as the radio
loud/quiet demarcation value (Kellerman et al. 1989).

There have been many papers dealing with this ratio
and radio loud vs radio quiet issue, as well as luminosity
ratios at other wavelengths, e.g. IR/radio, Optical/X-
ray etc. However, none of these works have dealt with
the distribution (and/or evolution) of the ratio, which is
related to the tri-variate LF Ψ(Lopt, Lrad, z) by8

GR(R, z) =
∫ ∞

0

Ψ(Lopt, R Lopt, z)Lopt dLopt

=
∫ ∞

0

Ψ
(
Lrad
R

,Lrad, z

)
Lrad

dLrad
R2

(1)

These works did not take the observational selection ef-
fects properly into consideration, nor did they address
the correlations between the radio and optical luminosi-
ties. Neglecting these effects when attempting to deter-
mine the distribution of radio loudness is usually given
the justification that the ratio is essentially independent
of cosmological model and redshift (as long as the K-
corrections are the same). The distribution of observed
ratios obtained in this way (see Figure 14 below) is re-
ally broad and deviates from a simple power law and
may even have a hint of bi-modality, seemingly justify-
ing at face value the choice of logR = 1 as the separation
point between radio loud and quiest sources. However,
as shown in the Appendix even in the simplest cases the
observed distribution (and its moments) could be very
different from the intrinsic ones, and can even show ar-
tificial bi-modality. Thus, for determination of the true
distribution of R the data truncations must be deter-
mined and the correlations between all variables must be
properly evaluated.

Our aim in this paper is to take all these effects into
account in determination of the evolution of optical and
radio luminosities and their ratio and to find their distri-

7 The fiducial cosmological model used at that time, namely
the Einstein-De Sitter model, was also different than the currently
accelerating models. However, this will effect the values of the
individual luminosities but not the ratio R. We also note that
some other authors use B-band optical fluxes in defining the radio
loudness parameter, but the difference is not large, resulting in a
change in the ratio of radio to optical luminosities by a factor of
1.33, for the assumed optical spectral index εopt = −0.5.

8 Equation 1 arises because by definition
∫
GR(R, z) dR =∫ ∫

Ψ(Lopt, Lrad z) dLopt dLrad, and from the definition of R,

dLrad = Lopt dR and dLopt = −(Lrad/R
2) dR.
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butions, with particular emphasis on the radio loudness
question. In §2 we describe the data we use. In §3 we
provide an overview of the procedure used for determi-
nation of simultaneous luminosity functions, luminosity
evolution, and density evolution, and the notation used.
In §4 we describe how we obtain the luminosity evolu-
tion and other correlations, and present our results on
the evolution of the LFs. In §5 we describe the density
evolution and the luminosity density evolutions, while in
§6 we calculate the LF corrected for luminosity evolu-
tion, which we call the “local” LF. Finally, in §7 we eval-
uate the distribution of radio loudness, R. This work as-
sumes the standard ΛCDM cosmology throughout, with
H0 = 71 km s−1 Mpc−1, ΩΛ = 0.7 and Ωm = 0.3.

2. DATASET

In order to evaluate the luminosity evolution in both
radio and optical, and to separate and compare these
effects, we require a data set that has both radio and
optical fluxes to reasonable limits and across a range of
redshifts, that contains a significant number of both ra-
dio loud (RL) and radio quiet (RQ) objects. The over-
lap of the FIRST bright quasar radio survey with the
Automatic Plate Measuring Facility catalog of the Palo-
mar Observatory Sky Survey (POSS-I), as presented by
White et al. (2000), is such a data set. It contains 636
objects with optical R band optical magnitudes, 1.4 GHz
total and peak pixel fluxes, and spectroscopic redshifts.
The survey has a limiting R band magnitude of 17.8 or
fm,R = 0.22 mJy, a limiting peak pixel 1.4 GHz flux
of 1 mJy, and redshifts that range from 0.02 to 3.425.
Figures 1 and 2 show the radio and optical luminosities
versus redshifts of the quasars in the survey, assuming
the standard K-corrections for power laws with indices
εopt = −0.5 and and εrad = −0.6 for optical and radio re-
spectively. Figure 3 shows the radio loudness parameter
R versus redshift for the dataset.

This sample spans a very wide range of luminosities
(5 dex in optical and 7 dex in radio) with a significant
number of sources in the range 0.1 < R < 104 (with
244 radio loud and 392 radio quiet). Therefore, it is well
suited for our analysis here. We have examined some
other combined radio and optical survey data sets and
found them to be not as well suited for this analysis.
For example, the combined FIRST radio survey with the
2dF optical survey as reported in Cirasuolo et al. (2003)
features only 12 radio quiet objects (of 113 total), and the
combined FIRST with the Large Bright Quasar Survey
(LBQS) as reported in Hewett et al. (2001) has only 77
objects and different optical flux limits for the various
fields, making the method employed here cumbersome.

3. GENERAL REMARKS ON CORRELATIONS IN
LUMINOSITY FUNCTIONS

The luminosity function gives the number of objects
per unit comoving volume V per unit source luminos-
ity, so that the cumulative number density is dN/dV =∫
dLiΨi(Li, z). To examine luminosity evolution, with-

out loss of generality, we can write a LF in some wave-
band i as

Ψi(Li, z) = ρ(z)ψi(Li/gi(z), η
j
i )/gi(z), (2)

where gi(z) and ρ(z) describe the luminosity evolution
and comoving object density evolution with redshift re-

Fig. 1.— The 2500 Å rest frame absolute luminosity density for
the quasars in the White et al. (2000) dataset used in this analysis.
To obtain the 2500 Å luminosity we first convert R band magnitude
to a flux, and then to a luminosity based on the luminosity distance
obtained from the redshift and the standard cosmology. We then
assume a -0.5 optical spectral index to K-correct to the rest-frame
luminosity at the R band integrated center, and finally scale by
the -0.5 optical spectral index to 2500 Å. The crosses are the ‘radio
loud’ objects while the diamonds are the ‘radio quiet’.

Fig. 2.— The 1.4 GHz rest frame absolute luminosity density
for the quasars in the White et al. (2000) dataset used in this
analysis. To obtain the 1.4 GHz luminosity density we convert
from flux density to luminosity density based on the luminosity
distance obtained from the redshift and the standard cosmology,
then assume a -0.6 radio spectral index to K-correct to rest frame
1.4 GHz luminosity density. The crosses are the ‘radio loud’ objects
while the diamonds are the ‘radio quiet’.

spectively and ηji stands for parameters that describe the
shape (e.g. power law indices and break values) of the i
band LF (we use the normalization

∫∞
0
ψi(Li)dLi = 1).9

In what follows we assume a non-evolving shape for the
LF (i.e. ηj = const, independent of L and z), which
is a good approximation for determining the global evo-
lutions. Once these are determined this hypothesis can

9 There are in principle other possible parameters, e.g. the spec-
tral indices. We can ignore them for the purposes of the analysis
here on the assumption that they either do not evolve strongly with
redshift or are not strongly correlated with any of the luminosities
in question.
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Fig. 3.— The redshift distribution of the ratio R of rest frame
absolute luminosities at 5 GHz and 2500 Å for the quasars in
the White et al. (2000) dataset used in this analysis. The 5 GHz
luminosity is obtained assuming a radio spectral index of -0.6. The
crosses are the ‘radio loud’ objects while the diamonds are the
‘radio quiet’.

be tested and results amended. However, for more com-
plicated functional forms with variable ηji , e.g. for lu-
minosity dependent density evolution, the determination
of the variations will require a large sample with signif-
icant numbers of objects in reasonably narrow redshift
and radio loudness bins.

Given this assumption then once the luminosity evo-
lution gi(z) is calculated, the density evolution ρ(z) and
local luminosity function ψi(L′i) ≡ ψi(Li/gi(z))/gi(z) can
be determined.10 We consider this form of the luminos-
ity function for luminosities in different bands, allowing
for separate (optical and radio) luminosity evolution.

1. As is often done, one might naively assume that
the joint LF Ψ(Lopt, Lrad, z) is separable into two forms
like equation 2 with a common density evolution. How-
ever, as discussed in §1, because the optical and radio
luminosities of the quasars are, in general, highly corre-
lated, the simultaneous determination of the luminosity
functions of both requires care. The first step in this
procedure should be to determine the degree and form
of the correlation between the optical and radio lumi-
nosities. As described below, the EP method allows us
to determine whether any pair of variables are indepen-
dent or correlated. Once it is determined that they are
correlated one should seek a coordinate transformation
to define a new pair of variables which are independent.
This requires a parametric form for the transformation.
One can define a new luminosity which is a combina-
tion of the two; we can define a “correlation reduced
radio luminosity” Lcrr = Lrad/F (Lopt/Lfid), where the
function F describes the correlation between Lrad and
Lopt and Lfid is a fiducial luminosity taken here to be
1028 erg sec−1 Hz−1. This is a convenient choice for Lfid
as it is lower than the lowest 2500 Å luminosity con-
sidered in our sample, but results do not depend on the
particular choice of numerical value. For the correlation

10 The method developed by EP that we shall use below actually
gives the cumulative functions σ(< z) =

∫ z
0 ρ̇(z′) [dV (z′)/dz′] dz′

and φ(> L′) =
∫∞
L′ ψ(L′′) dL′′. The differential functions ρ and ψ

are obtained by differentiation.

function we will assume a simple power law

Lcrr =
Lrad

(Lopt/Lfid)α
(3)

where α is a bulk power law correlation index to be de-
termined by a fit to the data (expected to be close to
unity because of the strong correlation between the lu-
minosities). This is essentially a coordinate rotation in
the log-log luminosity space. As shown in §4 below, EP
also prescribe a method to determine a best fit value for
the index α which orthogonalizes the new luminosities.
Given the correlation function we can then transform the
data (and its truncation) into the new independent pair
of luminosities (Lopt and Lcrr), whose distribution can
be represented as

Ψ(Lopt, Lcrr, z) =
ρ(z) × ψopt(Lopt/gopt, ηopt,j)/gopt

×ψcrr(Lcrr/gcrr, ηcrr,j)/gcrr. (4)
2. The next step is determination of the two indepen-

dent luminosity-redshift correlation functions gopt and
gcrr which describe the luminosity evolutions. The pro-
cedure for determination of these functions is similar to
the ones for removing the correlations between the lumi-
nosities except now we make coordinate transformations
in the Lopt − z and Lcrr − z spaces. We assume simple
forms

gi(z) = (1 + z)ki (5)
so that L′i = Li/gi(z) refer to the local (z = 0) luminosi-
ties.11 The full procedure is detailed in §4.

3. The density evolution function ρ(z) is determined
by the method shown in EP (see §5 below). Once all
correlations are removed we end up with a local separable
LF as in equation 4.

4. The local LFs of uncorrelated luminosities L′opt and
L′crr can then be used to recover the local radio LF by a
straight forward integration over L′crr and the true local
optical LF as

ψrad(L′rad) =∫ ∞
0

ψopt(L′opt)ψcrr

(
L′rad

(L′opt/Lfid)α

)
dL′opt

(L′opt/Lfid)α
(6)

As stated above this procedure can be used for the de-
termination of the radio LF at any redshift, from which
one can deduce that the radio luminosities also undergo
luminosity evolution with

grad(z) = gcrr(z) × [gopt(z)]α (7)
(cf equation 3)

5. Similarly we can determine the local distribution of
the radio to optical luminosity ratio, R′ = L′rad/L

′
opt =

L′crr × L′opt
α−1 × Lfid−α, as

GR′ =
∫ ∞

0

ψopt(L′opt)ψcrr

(
R′ Lfid

(L′opt/Lfid)α−1

)
dL′opt

L′opt
α−1 Lfid

(8)
and its evolution

gR(z) = gcrr(z) × [gopt(z)]α−1 =
grad
gopt

(9)

11 This is an arbitrary choice. One can chose any other fiducial
redshift by defining gi(z) = [(1 + z)/(1 + zfid)]ki .
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4. CORRELATION FUNCTIONS

We now describe results obtained from the use of the
procedures described in §3 on the data described in §2.
Here we first give a brief summary of the algebra involved
in the EP method. We follow closely the steps described
in Maloney & Petrosian (1999). This method uses the
Spearman rank test to determine the best-fit values of
parameters describing the correlation functions using the
test statistic

τ =

∑
j (Rj − Ej)√∑

j Vj
(10)

to test the independence of two variables in a data set,
say (xj , yj) for j = 1, . . . , n. Here Rj is the y rank of
the data point j in a set associated with it. For a un-
truncated data (i.e. data truncated parallel to the axes)
the associated set of point j includes all of the xk < xj .
If the data is truncated, rather than including in equa-
tion 10 for each j all points of lower x value in evalu-
ating the y rank, one must form the associated set con-
sisting only of those points of lower x value that would
have been observed if they were at the x value of point
j given the truncation. As an example, if the trunca-
tions apply to the y values of the data and are such that
y+
j =∞ but y−j varies with each xj , then the associated

set Aj = { k : yk > yj , y
−
k < yj } (see EP for a full

discussion of this method).
If (xj , yj) were independent then the rank Rj should

be distributed uniformly between 0 and 1 with the ex-
pectation value and variance Ej = (1/2)(j + 1) and
Vj = (1/12)(j2 + 1), respectively. Independence is re-
jected at the nσ level if | τ | > n. To find the best
fit correlation the y data are then adjusted by defining
y′j = yj/F (xj) and the rank test is repeated, with differ-
ent values of parameters of the function F .

4.1. Radio-Optical Luminosity Correlation
The radio and optical luminosities are obtained from

radio and optical fluxes from a two flux limited sample
so that the data points in the two dimensional flux space
are truncated parallel to the axes which we consider to
be untruncated. Since the two luminosities have essen-
tially the same relationship with their respective fluxes,
except for a minor difference in the K-correction terms,
we can consider the luminosity data to also be untrun-
cated. In that case as mentioned above the determina-
tion of the associated set is trivial and one is dealing with
the standard Spearman rank test. Assuming the corre-
lation function between the luminosities F (x) = xα we
calculate the test statistic τ as a function of α. Figure
4 shows the absolute value of the τ vs α, from which we
get the best fit value of α = 1.4 with one σ range +0.1
and -0.2. As expected α is near unity but the fact that
it deviates from unity is important. It means that the
raido loudness increases with luminosity.

4.2. Luminosity-Redshift Correlations
We now describe our results on determination of the

luminosity evolution, i.e. the luminosity-redshift corre-
lation functions gi(z), which according to equation 5 re-
duces to determination of the values of the index ki. The

Fig. 4.— The absolute value of the τ statistic as given by equa-
tion 10 as a function of α for the relation Lrad ∝ (Lopt)α, where
Lopt and Lrad are the optical and radio luminosities, respectively,
for the quasars in the dataset. The 1 σ range for the best fit value
of α is where | τ | ≤ 1.

basic method for determining the best fit ki is the same
as above but in this case the procedure is more compli-
cated for several reasons. First, as evident from Figures
1 and 2 the Li − z data are heavily truncated due to
the flux limits. Second, we now are dealing with a three
dimensional distribution ( Lcrr, Lopt, z ) and two corre-
lation functions [gcrr(z) and gopt(z)].

Specifically, since we have two criteria for truncation,
the associated set for each object includes only those ob-
jects that are sufficiently luminous in both bands to ex-
ceed both flux minima for inclusion in the survey if they
were located at the redshift of the object in question.
Consequently, we have a two dimensional minimization
problem, because both the optical and correlation re-
duced radio evolution factors, gopt(z) = (1 + z)kopt and
gcrr(z) = (1 + z)kcrr , come into play, as the luminosity
cutoff limits for a given redshift are adjusted by powers
of kopt and krad too.

We form a test statistic τcomb =
√
τ2
opt + τ2

crr where
τopt and τcrr are those evaluated considering the objects’
optical and correlation reduced radio luminosities, re-
spectively. The favored values of kopt and kcrr are those
that simultaneously give the lowest τcomb and, again, we
take the 1σ limits as those in which τcomb < 1. For
visualization, Figure 5 shows a surface plot of τcomb

We have verified this method with a simulated Monte
Carlo data set in which objects are distributed in red-
shift and given randomized luminosities in accordance
with set optical and radio evolutions. The algorithm can
recover the evolutions correctly provided that they aren’t
wildly different, i.e. one very positive and the other very
negative.

Figure 6 shows the optical and correlation reduced
radio luminosity evolution indices, using the functional
forms gopt(z) = (1 + z)kopt and gcrr(z) = (1 + z)kcrr and
taking the contours for 1 and 2 σ about the minimum
τcomb. Results are shown for the entire dataset taken as
a whole, and also with the data split into the RL and
RQ subsets. The radio luminosity evolution itself can be
recovered by equation 7.
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Fig. 5.— Surface plot of the value of τcomb for the dataset as
a whole showing the location of the minimum region where the
favored values of kopt and kcrr lie.

Given the tight constraints achieved when the dataset
is considered as a whole, and the sharp bifurcation when
the set is split into the RL and RQ populations, it is
evident that splitting the population before determina-
tion of the luminosity evolutions introduces a bias into
the determinations. This is expected because differing
evolutions will have a strong effect on whether an object
will continue to be RL or RQ according to the standard
definition used here, and the data for each set will be
artificially truncated along R = 10 as a function of the
evolutions.

We see that positive evolution in both radio and opti-
cal wavebands is favored. The minimum value of τcomb
favors an optical evolution of kopt = 4.0 and a radio evo-
lution of krad = 6.6, but uncertainty at the 1σ level allows
the range of kopt from 3.25 to 4.25, and krad from 6.1 to
7.0. Therefore, we conclude that quasars have undergone
a significantly greater radio evolution relative to optical
evolution with redshift.

5. DENSITY EVOLUTION

Next we determine the density evolution ρ(z). One can
define the cumulative density function

σ(z) =
∫ z

0

ρ(z) dz (11)

and, following Petrosian (1992) based on Lynden-Bell
(1971), σ(z) can be calculated by

σ(z) =
∏
j

(1 +
1

m(j)
) (12)

where j runs over all objects with a redshift lower than
or equal to z, and m(j) is the number of objects with
a redshift lower than the redshift of object j which are
in object j’s associated set. In this case, the associated
set is again those objects with sufficient optical and ra-
dio luminosity that they would be seen if they were at
object j’s redshift. The use of only the associated set for
each object removes the biases introduced by the data
truncation. Then the density evolution ρ(z) is

Fig. 6.— The 1σ and 2σ contours for the simultaneous val-
ues of kopt and kcrr where the optical and correlation reduced

radio luminosity evolutions are gopt(z) =(1 + z)kopt and gcrr(z) =

(1 + z)kcrr . The radio luminosity evolution can be reconstructed
from grad = gcrr × gopt1.4. Results are shown for the data set eval-
uated as a whole (solid contours), and for the radio loud (dash-dot
contours) and radio quiet (dashed contours) populations evaluated
separately. It is evident that splitting the population before de-
termination of the luminosity evolutions introduces a bias into the
determinations, as discussed in §4.2.

ρ(z) =
dσ(z)
dz

(13)

However, to determine the density evolution, the pre-
viously determined (in §4) luminosity evolution must be
taken out. Thus, the objects’ optical and radio lumi-
nosities, as well as the optical and radio luminosity for
inclusion in the associated set for given redshifts, are
scaled by taking out factors of gopt(z) = (1 + z)kopt and
grad(z) = (1 + z)krad , with kopt and krad determined as
above.

Figures 7 and 8 show σ(z) and ρ(z) for the objects in
the data set. We evaluate and display the density evolu-
tion separately for the radio loud and radio quiet objects
and for the dataset as a whole to compare them. It is
seen that the two groups, divided in this way, exhibit
very similar density evolution. The number density of
quasars seems to peak at between redshifts 1 and 1.5,
a little earlier than generally thought for the most lu-
minous quasars (e.g. Shaver et al. 1996) but similar to
the peak found for less luminous quasars by Hopkins et
al. (2007), and in agreement with Maloney & Petrosian
(1999).

Knowing both the luminosity evolutions gi(z), and the
density evolution ρ(z), one can form the luminosity den-
sity functions £i(z), which are the total rate of produc-
tion of energy of quasars as a function of redshift. We
show this for the radio luminosity density £rad(z). As
evident the two populations of RL and RQ have very
similar shape of radio luminosity density functions (Fig-
ure 9)

6. LOCAL LUMINOSITY FUNCTIONS

6.1. General Considerations
In a parallel procedure we can use the ‘local’ (redshift

evolution taken out, or ’de-evolved’) luminosity L′i distri-
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Fig. 7.— The cumulative density function σ(z) vs. redshift for
the RL (crosses) RQ (diamonds) and all (dashed line) quasars in
the data set. The normalization of σ(z) is arbitrary, and the RL
data has been shifted vertically for clarity. A piecewise quadratic
fit to σ(z) is used to determine ρ(z) by equation 13.

Fig. 8.— The density evolution ρ(z) vs. redshift for the for
the RL (crosses) RQ (diamonds) and all (dashed line) quasars in
the data set, shown with customary log scales. The normalization
of ρ(z) is arbitrary and the curves have been shifted vertically for
clarity.

butions (and de-evolved luminosity thresholds) to deter-
mine the ‘local’ luminosity functions ψi(Li′), where again
the i represents the waveband, and the prime indicates
that the luminosity evolution has been taken out. We
first obtain the cumulative luminosity function

Φi(L′i) =
∫ ∞
L′

ψi(L′′i ) dL′′i (14)

and, following Petrosian (1992), Φi(L′i) can be calculated
by

Φi(L′i) =
∏
k

(1 +
1
n(k)

) (15)

where k runs over all objects with a luminosity greater
than or equal to Li, and n(k) is the number of objects
with a luminosity higher than the luminosity of object k
which are in object k’s associated set, determined in the

Fig. 9.— The radio luminosity density function £rad(z) vs. red-
shift for the for the RL (crosses) RQ (diamonds) and all (dashed
line) quasars in the data set. The normalization of £rad(z) is arbi-
trary, and the values have been shifted vertically for clarity. It is
seen that the two populations have very similar luminosity density
evolution with redshift.

same manner as above. The luminosity function ψi(L′i)
is

ψi(L′i) = −dΦi(L′i)
dL′i

(16)

In §4 we have determined the luminosity evolution for
two independent functions, the optical luminosity Lopt
and the correlation reduced radio luminosity Lcrr. We
can form the local optical ψopt(L′opt) and correlation re-
duced radio ψcrr(L′crr) luminosity functions straightfor-
wardly, by taking the evolutions out. As before, the ob-
jects’ luminosities, as well as the luminosity limits for
inclusion in the associated set for given redshifts, are
scaled by taking out factors of gcrr(z) = (1 + z)kcrr and
gopt(z) =(1 + z)kopt , with kcrr and koptdetermined in §4.
We use the notation L→ L′ ≡ L/g(z).

6.2. Local optical luminosity function
Figures 10 and 11 show the local cumulative Φopt(L′opt)

and differential ψopt(L′opt) local optical LFs of the quasars
in the White et al. (2000) dataset, while figure 12 shows
the local correlation reduced radio LF, ψcrr(L′crr).

The optical LF shows evidence of a break at 2 ×
1030 erg sec−1 Hz−1, which was present already in data
used in Petrosian (1973). Fitting a broken power law
yields values −1.3± 0.1 and −3.0± 0.1 below and above
the break, respectively. As the optical luminosity func-
tion has been studied extensively in various AGN sur-
veys, we can compare the slope of ψopt(L′opt) obtained
here to values reported in the literature. For example,
Boyle et al. (2000), using the 2dF optical data set (but
with no radio overlap criteria) use a customary broken
power law form for the luminosity function, with val-
ues ranging from -1.39 to -3.95 for different realizations,
showing reasonable agreement12

12 It should be noted that they parameterize evolution differ-
ently and work in absolute magnitudes rather than luminosities,
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Fig. 10.— The cumulative local optical luminosity function
Φopt(L′opt) for the quasars in the data set. A piecewise quadratic

fit to Φ(L′opt) is used to determine ψopt(L′opt) by equation 16.

Fig. 11.— The local optical luminosity function ψopt(L′opt) for

the quasars in the data set.

Fig. 12.— The local correlation reduced radio luminosity func-
tion ψcrr(L′crr) for the quasars in the data set.

however the slopes of their fits to the LF as they parameterize it

Fig. 13.— The local radio luminosity function ψrad(L
′
rad) for

the quasars in the data set.

6.3. Local radio luminosity function
With ψopt(L′opt) and ψcrr(L′crr), we can determine the

local radio luminosity function ψrad(L′rad) with equation
6. Figure 13 shows the local radio luminosity function
ψrad(L′rad) reconstructed in this way. It is seen that
the local radio luminosity function contains a possible
break around 1031 erg sec−1 Hz−1, with a power law slope
of −1.5 ± 0.1 below the break and −2.5 ± 0.1 above
it. The slope above the break seen here is similar to
earlier results of Schmidt (1972) and Petrosian (1973)
which probed only those luminosities. A more complete
comparison can be made with Mauch & Sadler (2007),
who form radio luminosity functions of local sources
in the Second Incremental Data Release of the 6 de-
gree Field Galaxy Survey (2dFGRS) radio catalog. For
the sources they identify as AGN, they find a break at
3.1×1031 erg sec−1 Hz−1, with slopes of −2.27±0.18 and
−1.49 ± 0.04 above and below the break (converting to
luminosity units).

7. DISTRIBUTION OF RADIO LOUDNESS RATIOS

As stated in the introduction, naively one may expect
that because the ratio R is independent of cosmological
model and nearly independent of redshift, the raw ob-
served distribution would provide a good representation
of the true distribution of this ratio. In Figure 14 we
show this raw distribution by the triangles, arrived at by
using the raw values of R from the data and forming a
distribution in the manner of equations 15 and 16 with
no data truncations. It appears that this naive approach
shows a hint of possible bi-modality with logR = 1 as the
dividing value.13 However, as shown in the Appendix the
raw distribution can be far from the true distribution and
selection biases can introduce a false bi-modality.

As discussed in §3, we can reconstruct the local dis-
tribution of GR′(R′), as in Equation 8, which provides
for a more proper accounting of the biases and trun-
cations. The results of this calculation are also shown
in Figure 14. The distribution calculated in this way
clearly is different than the raw distribution, and does

are applicable, as can be seen in their section 3.2.2.
13 We note that in general apparent bi-modalities often do not

stand up to rigorous statistical tests.
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Fig. 14.— The local distribution GR(R) in the 5 GHz radio to
2500 Å optical luminosity ratio R, plotted as R × GR(R), for the
quasars in the data set. The stars are from GR′(R′) as determined
by the method of Equation 8, taking account of the truncations
and correlations in the luminosity evolutions, while the triangles
result from forming a distribution with a naive use of the objects’
raw ratio. The normalization is arbitrary and the curves have been
shifted vertically for clarity. It is seen that the naive method gives
a hint of a bi-modal distribution, while the proper method does
not. Also shown is the proper radio loudness distribution GR(R, z)
at redshifts z=1 (dashed line) and z=3 (dash-dot line), evolved
according to the form of equation 9.

not show an apparent bi-modality. There is still a possi-
ble feature in the same region (logR = 1) where the raw
distribution shows a dip. This feature is of marginal sig-
nificance and results from the similarly shaped feature in
ψcrr(L′crr) centered around L′crr = 10−8 erg sec−1 Hz−1.
Even if significant, this change in slope cannot be taken
as evidence for two physically distinct populations, but
could be a useful point to make an arbitrary division
into radio loud and radio quiet objects. We also note
that R = 1 is apparently the most probable value for the
radio loudness.

We also know the redshift evolution of the ratio, given
equation 9, is gR(z) = (1+z)2.6. The effect on the distri-
bution of R is also shown in Figure 14. Another way to
look at this is that we have found that the radio luminos-
ity evolves at a different rate than the optical luminosity,
with the consequence that their ratio is a function of red-
shift. The radio loudness of the population increases by a
factor of 6 by redshift 1, and by a factor of 37 by redshift
3. Other works have noted that the fraction of radio loud
quasars may increase with redshift. Miller et al. (1990)
compare the radio loud fraction at different redshifts and
find significant positive evolution in the fraction of radio
loud objects. However, they attribute this to an effect
of there being two populations (RL and RQ) that evolve
differently. Donoso et al. (2009) compute radio and opti-
cal luminosity functions at different redshifts and reach
the same conclusion. We note that our results favor one
population, in the sense that the distribution of G(R),
recovered from considering the data truncations inherent
in the survey and correlations between the luminosities,
is continuous.

8. TESTS OF ASSUMPTIONS

One may raise the concern that the simple power law
parameterization used for the redshift luminosity evo-

lutions (equation 5) may not be the most ideal one. In
particular, it may not accurately represent the evolutions
at the highest redshifts considered here. To check this,
we repeat the analysis with a different parameterization
for the luminosity evolution which allows for a flattening
at higher redshifts,

gi(z) =
(1 + z)ki

1 + ( 1+z
4 )ki

, (17)

where i again represents the optical or correlation re-
duced radio luminosity. In this parameterization, the
functional form for the radio luminosity evolution grad(z)
and the evolution of the radio loudness parameter gR(z)
are lengthier experssions involving kopt kcrr and α, given
equations 7 and 9.

This alternate parameterization for the evolutions does
not appreciably effect the results. The best fit evolution
factors as a function of redshift under the alternate pa-
rameterization differ very little from those in the simple
parameterization to redshift 3.5 (the highest object in
the sample).

Another concern may be that luminosity dependent
density evolution (LDDE), which is not considered in
the functional forms for the LF used here, may more ac-
curately represent the evolution of the LF. As a check of
this effect, we divide the data into high and low lumi-
nosity halves (cutting on optical luminosity), and check
the similarity of the computed density evolutions for the
two sets versus that computed assuming the absence of
LDDE. Given that an artificial difference is already in-
troduced in the two halves because there are a lack of
low luminosity objects in the high redshift sample and a
lack of high luminosity redshifts in the low redshift sam-
ple (see Figures 1 and 2), we conclude that the density
evolutions determined in this way are sufficiently similar
to justify neglecting LDDE.

9. DISCUSSION

We have used a general and robust method to deter-
mine the radio and optical luminosity evolutions simulta-
neously for the quasars in the White et al. (2000) dataset,
which combines 1.4 GHz radio and R-band optical data
for 636 quasars ranging in redshifts from 0.02 to 3.425
and over seven orders of magnitude in radio loudness.
We find that the quasars exhibit more substantial radio
evolution than optical evolution with redshift (§4.2 and
Figure 6). We also show that when divided into radio
loud (RL) and radio quiet (RQ) sets accordingly to the
standard definition (divided by the value of the radio-
loudness parameter R = 10), the two sub-populations
exhibit similar density evolution. The local optical and
radio luminosity functions that we obtain are consistent
with previous determinations.

Differences are noted with previous determinations of
the radio luminosity evolution of quasars. Willott et al.
(2001) also use a power law parameterization of the radio
evolution with redshift for the radio bright sources they
consider. Our result for the radio luminosity evolution,
when evaluated for the data set as a whole is not consis-
tent to within uncertainty with their results (power laws
ranging from 3.1 to 3.6). Strazzullo et al. (2010) have re-
cently obtained results with a radio survey to low (13.5
µJy) flux limits, quoting krad = 2.7 ± 0.3 with the same
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parameterization used here for the sub-population that
they identify as AGN. This is also not in agreement with
the radio evolution determined in our analysis.

There has been much discussion as to whether RL and
RQ quasars, defined solely by means of the radio loud-
ness parameter as explained above, constitute a true con-
tinuum or two populations that can be said to be dis-
tinct in some way (e.g. Kellerman et al. (1989); Ivezic
et al. (2002); Cirasuolo et al. (2003)). Our analysis fa-
vors the former. First, we found that the division of the
quasar population into the two aforementioned classes in-
troduces strong biases into the simultaneous determina-
tion of the radio and optical luminosity evolutions (§4.2;
see also Figure 6). More importantly, as shown in §7,
forming a distribution in the raw values of the radio loud-
ness parameter R, without taking into account the biases
introduced by the truncations in the data and the cor-
related luminosity evolutions, results in a shape for the
distribution which is very different from the true dis-
tribution, and also produces an apparent dip in GR(R)
at R ∼ 10. By contrast, the true distribution shows at
most a modest feature. Even if the feature is real, it does
not suggest physically distinct populations, but rather a
continuous range of physical properties in a single popu-
lation.

Accessing the unbiased distribution of the radio loud-
ness parameter for quasar sources is crucial not only for
understanding the cosmological evolution of this class of
active galaxies, but also for understanding jet launching
processes in the vicinities of supermassive black holes. In
this context, we note that the observed optical fluxes of
quasars are dominated by the emission from an accretion
disk accreting at relatively high rates, around 1%−100%
of Eddington, and therefore radiating with ' 10% effi-
ciency. Hence, the optical luminosity is a very good mea-
sure of the total accretion power in quasar sources. On
the other hand, the observed radio fluxes of the discussed
class of objects are expected to originate in the outflow-
ing magnetized plasma. In particular, the radio emis-
sion of quasars is produced predominantly via the syn-
chrotron emission of relativistic well-collimated jets (in
the case of very radio loud sources), or via the cyclotron
and/or free-free emission of at most mildly-relativistic
disk winds (in the case of very radio quiet nuclei). In
both cases, the observed radio luminosities should be
considered as proxies for the kinetic luminosities of the
outflowing matter. Therefore, the radio loudness R char-
acterizes the efficiency of the production of jets/outflows
for a given accretion power.

The lack of any clear bi-modality in the distribution
of the radio loudness parameter for quasars, as advo-
cated here, implies then that there is no critical change
in the parameters of the central engine between the ra-
dio loud quasars (those producing extremely powerful
relativistic jets), and the radio quiet ones (those produc-
ing only mildly-relativistic and uncollimated disk winds).
This is a crucial piece of evidence for understanding still
debated mechanisms for jet launching in active galactic
nuclei. Note, for example, that our finding is hardly con-
sistent with the idea for RL quasars to posses counter-
rotating (with respect to the black hole spin) accretion
disks, as opposed to RQ quasars with co-rotating disks

only (Garofalo et al. 2010). Instead, the nuclei of jetted
and non-jetted quasar sources — and it has to be empha-
sized that here we do not discuss the whole population
of active galactic nuclei (including, e.g., Seyfert galax-
ies) but only strictly the quasar population — seem to
be intrinsically very similar, differing only smoothly and
continuously in some particular respects (see the related
recent discussion in Sikora et al. 2007, and references
therein).

Another important (and possibly related) result we
find is that the radio loudness increases with increasing
optical and radio luminosities, as well as with redshift.
This implies the existence of some connection between
the efficiency of formation of relativistic jets and accre-
tion power, which may in turn depend on the combina-
tion of the evolving accretion rate and black hole spin
(see in this context Tchekhovskoy et al. 2010). Note,
however, that even though we have used simple one-
parameter functions to describe the emerging correla-
tions, it is possible that some of them are more complex.
For example, the correlation index α between the radio
and optical luminosities may be close to unity only for
low luminosity objects, but much larger than that for
more luminous (and therefore radio loud) quasars. More
data and further analysis is needed to address this and
similar issues, which may provide further constraints on
theoretical models.

Another application of the presented analysis is related
to the understanding of the origin of the cosmic back-
ground radiation in the radio frequency regime. In Singal
et al. (2010) we estimated the fractional contribution of
quasars to the Cosmic Radio Background, assuming the
level reported by Fixsen et al. (2010). In general the flux
of the objects fitting the definition of radio loud is well
characterized by current interfermoetric radio surveys so
that their contribution to the total radio background in-
tensity can be estimated to be 15 to 25 percent of the
observed value. In the earlier work we also estimated
the total contribution to the background of the radio
quiet objects, and found it to be between 1 and 2 percent
for favored models of quasar luminosity evolution. This
estimate was based on integrating values of the quasar
bolometric luminosity function, as reported in the liter-
ature, over redshift, applying a mapping between optical
and radio luminosity, and assuming that the optical and
radio luminosities had identical redshift evolutions. We
also noted there that the contribution we estimated was
dependent on the later assumption and would be revised
in the case of differing radio and optical luminosity evolu-
tions. As we see here that the population of quasars has
greater radio evolution relative to optical, the contribu-
tion of radio quiet quasars to the radio background will
be somewhat larger than the value reported in our previ-
ous work. We will present a quantitative determination
in a forthcoming paper.
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APPENDIX

Distribution of Radio Loudness R : As emphasized in the introduction the proper approach to the main
problem of this paper is determination of the distribution of the radio to optical luminosity ratio R = Lrad/Lopt from
an observed sample of radio and optical fluxes and redshifts. Here we show the importance of properly consider-
ing the truncations due to selection effects in the data and the correlation in the optical and radio luminosity evolutions.

The true or intrinsic distribution of R values is related to the radio and optical luminosity functions Ψ(Lopt, Lrad, z)
as

GT (R, z) =
∫ ∞

0

Ψ(Lopt, R Lopt, z)Lopt dLopt =
∫ ∞

0

Ψ(
Lrad
R

,Lrad, z)Lrad
dLrad
R2

. (1)

(compare to the separable, local form in Equation 8)

The observed distribution on the other hand is different because the observational selection effects truncate the data.
For example for a sample with well defined flux limits frad ≥ fm,rad, fopt ≥ fm,opt, and Rflim ≡ fm,rad/fm,opt the
observed distributions is

Gobs(R, z) =
∫ ∞
Lmin,opt(z)

Ψ(Lopt, R Lopt, z)Lopt dLopt for R > Rflim (2)

Gobs(R, z) =
∫ ∞
Lmin,rad(z)

Ψ(
Lrad
R

,Lrad, z)Lrad
dLrad
R2

=
∫ ∞
Lmin,opt(z)Rflim/R̂

Ψ(Lopt, R Lopt, z)Lopt dLopt for R < Rflim, (3)

where
R̂ = (Kopt/Krad)R, Lmin,opt(z) = 4πd2

L(z)Koptfm,opt and Lmin,rad(z) = 4πd2
L(z)Kradfm,rad. (4)

and Ki is the K-correction factor for waveband i. All of these are obtained from the observed distributions of the
fluxes and redshifts. If we approximate the observed distribution of fluxes and redshifts by a continuous function
nobs(fopt, frad, z) then

Ψ(Lopt, Lrad, z) = nobs

(
Lopt

4πd2
L(z)Kopt

,
Lrad

4πd2
L(z)Krad

, z

)(
1

4πd2
L

)2 1
KoptKradV ′(z)

(5)

so that

GT (R, z) = (KoptKradV
′)−1

∫ ∞
0

nobs(fopt, R̂fopt, z) fopt dfopt (6)

Gobs(R, z) = (KoptKradV
′)−1

∫ ∞
flim

nobs(fopt, R̂fopt, z) fopt dfopt, (7)

where V ′ = dV (z)/dz, and flim = fm,opt for R̂ > Rflim and flim = fm,opt(Rflim/R̂) for R̂ < Rflim. Note that R̂
depends on redshift to the extent that the optical and radio K-corrections are different.

Clearly the observed distribution is different than the true distribution. In reality the situation is more complicated
because the lower limit of the integration does not extend to zero. The samples of available quasars are truncated
also by minimum luminosities, say Lm,opt and Lm,rad which introduces a second critical value for R, namely RLlim ≡
Lm,rad/Lm,opt. The above equations are valid for redsifts z > zmin,opt or zmin,rad defined as

Lm,x = 4πd2
L(zmin,x)Ki(zmin,x)fm,x. (8)

For z < zmin,opt and/or zmin,rad there is no truncation due to flux limits and Gobs = GT .

We now consider different cases with different relative optical and radio flux limits. For convenience we first define

Φ(R, z;x) =
∫ ∞
i

Ψ(Lopt, R Lopt, z)Lopt dLopt (9)

so that the true distribution can be written as

GT (R, z) = Φ(R, z;Lm,opt) for R > RLlim (10)

GT (R, z) = Φ(R, z;
RLlim Lm,opt

R
) for R < RLlim. (11)

The observed distribution depends on the relative values of RLlim and Rflim.
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Fig. 1.— The true distribution in R, GT(R, z), and the raw observed distributions Gobs(R, z), for the simple example highlighted in
the text, plotted as R × G(R) for clarity, with RLlim = 1 and ηopt = −1.5 and ηrad = −2.5. The normalization is arbitrary. The
solid line is the true distribution, while the dahsed lines show the observed distribution for Rflim = 5, i.e. a sample that is mostly radio
limited observationally, and the dotted lines show the observed distribution for Rflim = 1/5, is a sample that is mostly optically limited
observationally. In this example there is no luminosity evolution so GT(R, z) has no redshift dependence. Even in this very simplistic model
it is seen that the raw observed distribution of R does not match the true one. The truncations inherent in the data give the observer an
incorrect observed distribution.

Case 1. We first consider a sample where Rflim > RLlim which means that zmin,rad > zmin,opt. Such a sample
may be classified as mainly optically selected. (For purely optically selected sample Rflim = 0.) In this case observed
distribution will be the same as the true distribution for all redshifts z < zmin,rad. But for higher redsifts GT = Gobs

for
R > Rmax(z) ≡ Lmin,rad(z)/Lm,opt and R < Rmin(z) ≡ Lm,rad/Lmin,opt(z). (12)

In between those two limits the observed distribution is different than GT ;

Gobs(R, z) = Φ(R, z;Lm,opt) for Rflim > R > Rmin(z), (13)

Gobs(R, z) = Φ(R, z;
Rflim Lm,opt

R
) for Rmax(z) > R > Rflim. (14)

Case 2. In the opposite case of Rflim < RLlim or zmin,rad < zmin,opt the sample is mainly radio selected and we get
similar results but with zmin,rad replaced by zmin,opt.

A simple Example: Let us assume that the radio and optical luminosities are uncorrelated and do not evolve so
that we have Ψ(Lopt, Lrad, z) = ψopt(Lopt)ψrad(Lrad) ρ(z), where ρ(z) describes the density evolution. Furthermore if
we assume simple power law LFs ψopt(Lopt) = AoptL

−ηopt
opt and ψrad(Lrad) = AradL

−ηrad
rad , it is easy to show that

GT (R, z) ∝ (R/RLlim)1−ηrad for R > RLlim and GT (R, z) ∝ (R/RLlim)ηopt−1 for R < RLlim. (15)

Similarly it can be shown that by defining and β = ηopt + ηrad − 2 for case 1 we get

Gobs(R, z) ∝


(R/RLlim)1−ηrad for R > Rmax(z),
(R/RLlim)ηopt−1(RLlim/Rmax)β for Rflim < R < Rmax(z),
(R/RLlim)1−ηrad(Rmin/RLlim)β for Rmin(z) < R < Rflim,
(R/RLlim)ηopt−1 for R < Rmin(z).

In Figure 1 we plot a realization of GT(R) and Gobs(R) for this example. It is clear that even in this extremely
simple case the observed and true distributions of the radio loudness R are different, so that the moments of the
observed distributions (means and dispersions) could give misleading information, unless the truncations of the data
and correlations in the optical and radio luminosities are properly accounted for, as in this work.


