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1 Introduction

As the LHC begins operation, the number one topic of the day is QCD. To a
first approximation, everything that happens at the LHC is determined by QCD.
Events from new physics at the LHC will appear, if we are lucky, at fractions of a
part per billion of the proton-proton total cross section. They will appear at rates
ten thousand times smaller than Drell-Yan processes, and a hundred times smaller
than top quark pair production. This requires that we understand those Standard
Model processes at a level that includes their dressing with QCD radiation.

Since the 1980’s, there has been considerable work on methods for QCD com-
putation. The primary goal of this work has been to make seemingly impossible
calculations doable. In the early 1980’s, it was beyond the state of the art to com-
pute to lowest order the rates at hadron colliders for W+ production with three jets.
Recently, this process has been computed at the 1-loop level, a computation that,
if done by textbook methods, would have required thousands of Feynman diagrams,
each one an integral over millions of terms [1,2].

A byproduct of this improved understanding of QCD computation is that calcu-
lations of reasonable difficulty by textbook methods become trivial when approached
with the new methods. In the LHC era, every graduate student ought to be able to
calculate the QCD amplitudes for multijet processes. In this lecture, I will give you
some tools to do that.

I will first review a set of ideas developed in the 1980’s. Sections 2, 3, and 4 will
develop, in turn, the ideas of spinor products, color ordering, and MHV amplitudes.
In Section 5, I will illustrate how these methods make the somewhat strenuous cal-
culation of the most basic quark and gluon cross sections a triviality. In Section 6,
I will review a relatively new wrinkle in this technology, the Britto-Cachazo-Feng-
Witten recursion formula. In Section 7, I will apply that formula to compute the
Drell-Yan cross sections with one and two jets. I hope that this last example will give
a persuasive illustration of the power of these methods.

There are many references for those who would like to learn more. The first three
topics are reviewed very beautifully in a 1991 Physics Reports article by Mangano and
Parke [3] and in the 1995 TASI lectures by Dixon [4]. The newer set of calculational
tools are described in recent review articles by Bern, Dixon, and Kosower [5] and
Berger and Forde [6]. These last articles are especially concerned with technology
that extends the ideas presented here to the computation of loop amplitudes.

Loop calculations, though, are beyond the scope of these lectures. My only goal
here is to do easy calculations. I hope that these lectures will help you extend the
domain of QCD calculations to which you will apply this term.
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In parallel with learning these methods, it will be useful for you to explore some
of the available computer programs that automatically generate matrix elements
for multi-particle processes and also carry out Monte Carlo integration over phase
space, a topic that is not discussed in these lectures. A particularly accessible and
powerful code is MADGRAPH/MADEVENT [7,8]. An important advanced code is
SHERPA [9,10] with the matrix element generator COMIX [11]. It is always good,
though, to know what is inside the black box and to have tools for extending what is
available there. For that, I hope these lectures will provide useful background.

2 Spinor products

Perturbative QCD is primarily concerned with the interactions of gluons and
quarks at momentum scales for which the masses of these particles can be ignored. It
is well-known, and discussed in the textbooks, that massless particles can be labeled
by their helicity. For massless states, the helicity is a well-defined, Lorentz-invariant
quantity. The basic goal of these lectures will be to compute tree amplitudes for
massless quark and gluon states of definite helicity.

In the 1980’s, Berends and Wu spearheaded an effort to compute amplitudes for
massless particles by exploiting the property that their lightlike momentum vectors
can be decomposed into spinors [12]. Using this idea, scattering amplitudes can be
written in terms of Lorentz-invariant contractions of spinors, spinor products.

2.1 Massless fermions

Consider a massless fermion of mommentum p. The spinors for this fermion satisfy
the Dirac equation

6p U(p) = 0 (1)

There are two solutions to this equation, the spinors for right- and left-handed
fermions. In a basis where the Dirac matrices take the form

γµ =
(

0 σµ

σµ 0

)
, γ5 =

(−1 0
0 1

)
(2)

where σµ = (1, ~σ), σµ = (1,−~σ), these spinors take the form

UR(p) =
(

0
uR(p)

)
, UL(p) =

(
uL(p)

0

)
, (3)

where the entries are 2-component spinors satisfying

p · σ uR = 0 , p · σ uL = 0 . (4)
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Each equation has one unique solution. The spinor uR(p) can be related to the spinor
uL(p) by

uR(p) = iσ2u∗
L(p) , (5)

since this transformation turns a solution of one of the equations (4) into a solution
to the other. This equation also gives a phase convention for uR(p) that I will use
throughout these lectures.

To describe antiparticles, we also need solutions V (p) that describe their creation
and destruction. However, for massless particles, V (p) satisfies the same equation as
U(p). We can then use the same solutions for these quantities, with uR and uL related
as above. The spinor VR(p) is used for the creation of a left-handed antifermion; the
spinor VL(p) is used for the creation of a right-handed antifermion.

In the discussion to follow, it will be simplest to treat all particles as final states
of the amplitudes we are considering. The outgoing left- and right-handed fermions
will be represented by the spinors UL and UR and outgoing left- and right-handed
antifermions will be represented by the spinors UR and UL. I will recover initial-state
particles by crossing, that is, by starting from the amplitude with the antiparticle in
the final state and evaluating that amplitude for a 4-momentum with negative time
component.

I will represent these spinors compactly as

UL(p) = 〈p , UR(p) = [p , UL(p) = p] , UR(p) = p〉 , (6)

The Lorentz-invariant spinor products can then be standardized as

UL(p)UR(q) = 〈pq〉 , UR(p)UL(q) = [pq] . (7)

The quantities on the right-hands sides are called simply angle brackets and square
brackets. The spinors are related to their lightlike 4-vectors by the identities

p〉[p = UR(p)UR(p) =6p(
1− γ5

2
) , p]〈p = UL(p)UL(p) =6p(

1 + γ5

2
) (8)

From these formulae, we can derive some basic properties of the brackets. First,

〈pq〉 = [qp]∗ . (9)

Next, multiplying two matrices from (8) and taking the trace,

〈pq〉[qp] = tr[6q 6p(
1 + γ5

2
)] = 2p · q (10)

so that
|〈pq〉|2 = |[qp]|2 = 2p · q . (11)
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Finally, using (5),

〈pq〉 = u†
L(p)uR(q) = u∗

La(p)(iσ2)abu
∗
Lb(q) . (12)

Then, by the antisymmetry of σ2,

〈pq〉 = −〈qp〉 [pq] = −[qp] . (13)

We now see that the brackets are square roots of the corresponding Lorentz vector
products, and that they are antisymmetric in their two arguments.

Some further identities are useful in discussing vector currents built from spinors.
First,

UL(p)γµUL(q) = u†
L(p)σµuL(q) , UR(p)γµUR(q) = u†

R(p)σµuR(q) . (14)

The relationship between uL(p) and uR(p) in (5) implies that we can rearrange

u†
L(p)σµuL(q) = u†

L(p)σµ(−(iσ2)2)uL(q)

= u†
L(p)(−iσ2)σµT (iσ2)uL(q)

= uT
R(p)σµT u∗

R(q)

= u†
R(q)σµuR(p) , (15)

From this, it follows that
〈pγµq] = [qγµp〉 . (16)

The Fierz identity, the identity of sigma matrices

(σµ)ab(σµ)cd = 2(iσ2)ac(iσ
2)bd , (17)

allows the simplification of contractions of spinor expressions. In a matter similar to
(15), the relation (17) can be used to show

〈pγµq]〈kγµ`] = 2〈pk〉[`q] , 〈pγµq][kγµ`〉 = 2〈p`〉[kq] . (18)

Finally, spinor products obey the Schouten identity

〈ij〉〈k`〉+ 〈ik〉〈`j〉+ 〈i`〉〈jk〉 = 0

[ij][k`] + [ik][`j] + [i`][jk] = 0 . (19)

To prove this identity, note that the expressions on the left are totally antisymmetric
in j, k, `. But, antisymmetrizing three 2-component objects gives zero.

The identities presented in this section will allow us to reduce complex spinor
expressions to functions of angle brackets and square brackets, which are the square
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Figure 1: Feynman diagram for e−Le+
R → µ−

Lµ+
R.

roots of the Lorentz products of lightlike vectors. In the following, I will denote these
Lorentz products using the notation

sij = 2pi · pj = (pi + pj)
2 . (20)

To evaluate simple expressions written in terms of spinor products, we can often
think of the whole expression as the square root of an expression in terms of the sij.
However, for more complex expressions, it is usually easiest to directly evaluate the
spinor products from their component momenta. I give formulae for evaluating spinor
products in Appendix A.

2.2 e+e− → µ+µ−

At this point, we are already able to perform some interesting computations.
Consider, for example, the tree-level amplitude for e−Le+

R → µ−
Lµ+

R in QED. This
is given by the diagram shown in Fig. 1. Label the momenta as in the diagram,
considering all momenta as outgoing. Then the amplitude is

iM = (−ie)2 −i

q2
UL(3)γµUL(4) UL(2)γµUL(1)

=
ie2

q2
〈3γµ4]〈2γµ1]

=
2ie2

q2
〈32〉[14] , (21)

where I have used (18) in the last step. Now, 〈32〉 and [14] are both square roots of

s23 = (k2 + k3)
2 = (k1 + k4)

2 (22)

which is just the Mandelstam invariant u. In the e+e− center of mass frame, u =
−2E2(1 + cos θ), and q2 = s = 4E2. Then

|iM|2 = e4(1 + cos θ)2 . (23)
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This is a familiar result, and we have obtained it with surprising ease.

Actually, we can simplify the result further. In the denominator of (21), q2 =
2k1 · k2 = 〈12〉[21]. Multiply the numerator and denominator of (21) by 〈32〉, to give

iM = 2ie2 〈32〉[14]〈32〉
〈12〉[21]〈32〉

. (24)

Then, in the denominator

[21]〈32〉 = [12]〈23〉 = [1 62 3〉 = [1(− 61− 63− 64)3〉 (25)

Using the Dirac equation, 611] = 0, 633〉 = 0. This leaves (−[14]〈43〉). The last square
brackets cancel and we find

iM = 2ie2 〈23〉2

〈12〉〈34〉
. (26)

The entire expression can be written in terms of angle brackets with no square brack-
ets. Similarly, if we had multiplied instead by

[14]

[14]
(27)

a similar set of manipulations would have given

iM = 2ie2 [14]2

[12][34]
, (28)

with square brackets only.

2.3 Massless photons

This simplification of amplitudes with fermions extends to amplitudes with mass-
less vector bosons. I will show that the polarization vectors for final-state massless
vector bosons of definite helicity can be represented as [13–15]

ε∗µR (k) =
1√
2

〈rγµk]

〈rk〉
, ε∗µL (k) = − 1√

2

[rγµk〉
[rk]

. (29)

Here k is the momentum of the vector boson and r is some other fixed lightlike 4-
vector, called the reference vector. The only requirement on r is that it cannot be
collinear with k.
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Here is the argument: First, note that (29) satisfies the basic properties

[ε∗R(k)]∗ = ε∗L(k) kµε
∗µ
R,L(k) = 0 . (30)

The second condition follows from 6k k] = 0. Also,

ε∗R(k) · [ε∗L(k)]∗ = ε∗R(k) · ε∗R(k) = 0 , (31)

because, by (18), this expression is proportional to 〈rr〉 = 0. Finally,

|ε∗R(k)|2 =
1

2

〈rγµk]〈kγµr]

〈rk〉[kr]
=

2

2

〈rk〉[rk]

〈rk〉[kr]
= −1 . (32)

Then
|ε∗R(k)|2 = |ε∗L(k)|2 = −1 , ε∗R(k) · [ε∗L(k)]∗ = 0 . (33)

as required for polarization vectors.

Next, evaluate the formulae for the ε∗R,L for a particular choice of the reference
vector r. For k = (k, 0, 0, k), let r = (r, 0, 0,−r). The associated spinors are

uL(k) =
√

2k
(

0
1

)
uR(k) =

√
2k
(

1
0

)
, uL(r) =

√
2r
(−1

0

)
. (34)

Then

〈rγµk] = u†
L(r)σµuL(k) =

√
4kr (0, 1,−i, 0)µ

〈rk〉 = u†
L(r)uL(k) = −

√
4kr (35)

For this choice of r, ε∗R(k) is manifestly the right-handed polarization vector,

ε∗µR (k) = − 1√
2
(0, 1, i, 0)∗ (36)

Finally, analyze how (29) changes when we change the reference vector r to a
different lightlike vector s.

ε∗µR (k; r)− ε∗µR (k; s) =
1√
2

(
〈rγµk]

〈rk〉
− 〈sγµk]

〈sk〉

)

=
1√
2

1

〈rk〉〈sk〉
(−〈rγµk]〈ks〉+ 〈sγµk]〈kr〉)

=
1√
2

1

〈rk〉〈sk〉
(−〈rγµ 6ks〉+ 〈sγµ 6kr〉)

=
1√
2

1

〈rk〉〈sk〉
〈s(6kγµ + γµ 6k)r〉

=
1√
2

1

〈rk〉〈sk〉
· 2kµ〈sr〉 . (37)
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Figure 2: Ward identity obeyed by a gauge-invariant sum of diagrams with all external
particles on shell.

Figure 3: Feynman diagram for e−Le+
R → γγ.

The last line follows from the anticommutator of Dirac matrices. The final result of
this calculation is that

ε∗µR (k; r)− ε∗µR (k; s) = f(r, s)kµ . (38)

where f(r, s) is a function of the two reference vectors. This expression, when dotted
into an on-shell photon or gluon amplitude, will give zero by the Ward identity, as
shown in Fig. 2. Thus—as long as we are computing a gauge-invariant set of Feynman
diagrams—we can use any convenient reference vector s and obtain the same answer
as we would with the particular reference vector r used in (36).

This completes the justification of the representation (29) of massless photon or
gluon polarization vectors. From here on, because I will in any case consider all
momenta as outgoing, I will drop the explicit ∗’s on the polarization vectors.

2.4 e+e− → γγ

We can illustrate the application of these polarization vectors by computing the
amplitudes for e−Le+

R → γγ. Label the momenta as in Fig. 3, taking all momenta as
outgoing. Then the value of the amplitude for this process is

iM = (−ie)2〈2
{

γ · ε(4)i(2 + 4)

s24

γ · ε(3) + γ · ε(3)
i(2 + 3)

s23

γ · ε(4)

}
1] . (39)
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We will choose explicit polarization vectors ε(3), ε(4) to evaluate this amplitude for
each choice of photon helicities. This formula also introduces some additional stream-
lining of the notation: I write (2 + 4), instead of (6k2+ 6k4) or even ( 62+ 64), and I use
(20) to express the denominators.

There are four possible choices for the photon polarizations. However the cases
γRγL and γLγR are related by interchange of the momenta 3 and 4. The cases γRγR

and γLγL are related by parity, which interchanges states with R and L polarization.
Further, it is easy to see that the amplitudes for γRγR and γLγL are actually zero.
For the case of γRγR, choose r = 2 for both polarization vectors,

εµ(3) =
1√
2

〈2γµ3]

〈23〉
, εµ(4) =

1√
2

〈2γµ4]

〈24〉
. (40)

When these choices are used in (39), we find, with the use of the Fierz identity (18)

〈2γ · ε(4) ∼ 2〈22〉[4 = 0 , (41)

which vanishes because 〈22〉 = 0. A similar cancellation occurs with ε(3). So the
entire matrix element vanishes. The amplitude for the case γLγL must then also
vanish by parity; alternatively, we can find the same cancellation for that case by
using r = 1 in both polarization vectors.

To compute the amplitude for the case γRγL, choose

εµ(3) =
1√
2

〈2γµ3]

〈23〉
, εµ(4) = − 1√

2

[1γµ4〉
[14]

. (42)

Then the second diagram in Fig. 3 vanishes by the logic of the previous paragraph.
Using the Fierz identity, the first diagram gives

iM =
−ie2

s24

2 · 2
(−2)〈23〉[14]

〈24〉[1(2 + 4)2〉[31]

=
2ie2

s13〈23〉[14]
〈24〉[14]〈42〉[31]

=
2ie2

〈13〉[31]〈23〉[14]
〈24〉[14]〈42〉[31]

= 2ie2 (〈24〉)2

〈23〉〈31〉
(43)

In terms of the Mandelstam variables, s23 = u, s13 = s24 = t, so

|iM|2 = 4e4 t

u
= 4e4 1− cos θ

1 + cos θ
, (44)
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Figure 4: Feynman diagrams for qLqR → gg.

which is the well-known correct answer. In this case, the calculation gave directly
the simplified form of the expression that involves only angle brackets and no square
brackets.

The methods of this section can be generalized to massive external particles. For
the treatment of W and Z bosons, see Section 7. An efficient formalism for the
treatment of massive fermions is presented in [16].

3 Color-ordered amplitudes

We could now apply this spinor product technology directly to QCD. However, it
will be useful first to spend a bit of effort analyzing the color structure of QCD am-
plitudes. It is convenient to divide QCD amplitudes into irreducible, gauge-invariant
components of definite color structure. We will see that it is most straightforward to
compute these objects separately and then recombine them to obtain the full QCD
results.

3.1 qq → gg

Begin with the process qLqR → gg. This is similar to the process e+e− → γγ
analyzed in the previous section, except that now there are three diagrams, as shown
in Fig. 4, including one with a 3-gluon vertex. With the numbering of external states
as in the figure and all momenta outgoing, the value of the amplitude is

iM = (ig)2〈1
{

γ · ε(2)
i(1 + 2)

s12

tatbγ · ε(3) + γ · ε(3)
i(1 + 3)

s13

tbtaγ · ε(2)

}
4]

+(ig)(−gfabctc)
−i

s14

〈1γλ4] ·
(
ε(2) · ε(3)(2− 3)λ

+ελ(3)(2 · 3 + 2) · ε(2) + ελ(2)(−2 · 2− 3) · ε(3)
)

. (45)
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In this formula, ta and tb are the color SU(3) representation matrices coupling to
the gluons 2 and 3, respectively. The third diagram in Fig. 4 has a color structure
that can be brought into the forms seen in the first two diagrams by writing

−gfabctc = (ig) · ifabctc = (ig)(tatb − tbta) . (46)

We will find it convenient to rescale the color matrices: T a =
√

2ta, so that the T a

are normalized to
tr[T aT b] = δab . (47)

We can then write the amplitude in (45) in the form

iM = iM(1234) · T aT b + iM(1324) · T bT a , (48)

with

iM(1234) = (
ig√
2
)2
[
〈1γ · ε(2)

i(1 + 2)

s12

γ · ε(3)4]

+
−i

s23

〈1γλ4][ε(2) · ε(3)(2− 3)λ

+ελ(3)(2 · 3 + 2) · ε(2) + ελ(2)(−2 · 2− 3) · ε(3)] . (49)

In the second term of (48), M(1324) is given by the same expression with (2, ε(2))
exchanged with (3, ε(3)).

The elements iM are called color-ordered amplitudes. The complete helicity am-
plitudes such as (48) are gauge-invariant for any choice of helicities of the external
particles and for any Yang-Mills gauge group. The two color factors T aT b and T bT a

are independent in any non-Abelian gauge group. Thus, the color-ordered amplitudes
must be separately gauge-invariant. This important observation means that we can
apply all of the simplifications discussed in the previous section to individual color-
ordered amplitudes. It will be much simpler to work with these objects rather than
with the full QCD amplitudes.

A consequence of this idea is that the individual color-ordered amplitudes should
obey the Ward identity. It is not difficult to verify this for (49). Replace ε(2) by the
four-vector 2, and use the properties that the external momenta are lightlike, that
〈1 and 4] satisfy the Dirac equation, and that 3 · ε(3) = 0. Then all terms in the
resulting expression cancel.

Other QCD amplitudes can also be reduced to color-ordered structures. Another
case that will be important for us is the 4-gluon amplitude shown in Fig. 5. This
amplitude can be written in the form

iM = iM(1234) · tr[T aT bT cT d] + iM(1243) · tr[T aT bT dT c]

+iM(1324) · tr[T aT cT bT d] + iM(1342) · tr[T aT cT dT b]

+iM(1423) · tr[T aT dT bT c] + iM(1432) · tr[T aT dT cT b] . (50)

14



Figure 5: Feynman diagrams for gg → gg.

Figure 6: The four gluon vertex of QCD.

I have used the cyclic invariance of the trace to move T a to the front in each trace.
Then there are 3! = 6 possible traces, all of which should be included. For a sufficiently
large SU(N) gauge group, all of these traces are independent; thus, each coefficient
is a gauge-invariant structure. As in the case of qqgg, these coefficients are given by
a single function evaluated with different permutations of the external momenta.

To write the four diagrams in Fig. 5 as a sum of color structures, we need to
convert color factors in the 3- and 4-gluon vertices into products of T a matrices. For
the 3-gluon vertex, this is done through (46), or, by the use of (47), through

−gfabc =
ig√
2
tr[T aT bT c − T aT cT b] . (51)

For the 4-gluon vertex, we need to apply this decomposition twice. The textbook
form of the 4-gluon vertex is shown in Fig. 6. Each term can be manipulated as
follows

−ig2fabef cde = i
g2

2
tr([T a, T b][T c, T d])

= i
g2

2
tr(T aT bT cT d − T aT bT dT c − T bT aT cT d + T bT aT dT c) (52)

The full 4-gluon vertex can then be rearranged into

i
g2

2
tr(T aT bT cT d)[2gµλgνσ − gµνgλσ − gµσgνλ] (53)

15



Figure 7: Color-ordered Feynman rules for QCD.

plus 5 more terms corresponding to the other 5 color structures in (50).

These vertices in the form of traces over T a’s can be contracted using the identity
for SU(N) generators

T a
ijT

a
k` = δi`δkj −

1

N
δijδk` . (54)

The coefficients in this equation are determined by the normalization (47), with δaa =
N2 − 1, the number of generators of SU(N), and by the requirement that trT a = 0.
Using this identity, a product of traces can be transformed into a single trace plus
smaller factors, for example,

tr[T aA]tr[T aB] = trAB − 1

N
tr[A]tr[B] . (55)

Using these methods, the value of a Feynman diagram is naturally organized as a
sum of color-ordered terms. The individual color-ordered amplitudes are computed
with color-ordered Feynman rules, shown in Fig. 7.

Using these rules applied to the two diagrams in Fig. 8, it is easy to rederive the
color-ordered amplitude (49).

As an example, I will compute the color-ordered amplitude M(1234) that is used
to build up the four-gluon amplitude. Of the four Feynman diagrams in Fig. 5, only
the three diagrams shown in Fig. 9 contribute to this color-ordered component. Here
and in the rest of the lectures, the color-ordered amplitudes in the figures will be
ordered clockwise. Using the Feynman rules in Fig. 7, we find

iM(1234) = (
ig√
2
)2
[−i

s14

[ε(4) · ε(1)(4− 1)λ + ελ(1)(2 1 + 4) · ε(4) + ελ(4)(−2 4− 1) · ε(1)]

16



Figure 8: Feynman diagrams contributing to the first color-ordered amplitude in qq → gg.

Figure 9: Feynman diagrams contributing to the first color-ordered amplitude in gg → gg.

·[ε(2) · ε(3)(2− 3)λ + ελ(3)(2 3 + 2) · ε(2) + ελ(2)(−2 2− 3) · ε(3)]

+
−i

s12

[ε(1) · ε(2)(1− 2)λ + ελ(2)(2 2 + 1) · ε(1) + ελ(1)(−2 1− 2) · ε(2)]

·[ε(3) · ε(4)(3− 4)λ + ελ(4)(2 4 + 3) · ε(3) + ελ(3)(−2 3− 4) · ε(2)]

+(−i)[2ε(1) · ε(3) ε(2) · ε(4)− ε(1) · ε(2) ε(3) · ε(4)− ε(1) · ε(4) ε(2) · ε(3)]
]

. (56)

With some effort, you can show that this expression obeys the Ward identity. That
demonstrates explicitly that this color component is independently gauge-invariant,
as required.

4 MHV amplitudes

Now that we have reduced the qqgg and gggg QCD amplitudes to managable
components, it is time to evalute these expressions. We will see that the values we
find fall into surprisingly simple forms.
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4.1 qqgg amplitude

Begin with the qqgg amplitude (49). As in the example with e+e−γγ in Section 2,
we need to consider all possible cases of gluon helicity. From here on, I will notate
helicity states by +, − instead of R, L.

Consider first the case g+g+. Choose the polarization vectors with reference vector
r = 1,

εµ(2) =
1√
2

〈1γµ2]

〈12〉
εµ(3) =

1√
2

〈1γµ3]

〈13〉
. (57)

As with (41), the first line of (49) is proportional to 〈11〉 = 0. Also, in the second
line of (49), each term contains one of the elements ε(2) · ε(3), 〈1γ · ε(2)4], and
〈1γ ·ε(3)4], all of which are proportional to 〈11〉. So, the entire expression vanishes. A
similar argument shows that the color-ordered amplitude with two negative helicities
vanishes.

The two cases with one positive and one negative gluon helicity are distinct color-
ordered amplitudes, not related by Bose symmetry. So, both must be computed. I
will begin with the case g+(2)g−(3). Choose for the polarization vectors

εµ(2) =
1√
2

〈1γµ2]

〈12〉
εµ(3) = − 1√

2

[4γµ3〉
[43]

. (58)

Then all terms in M vanish except for the term in the second line with ε(2) · ε(3).
This factor is

ε(2) · ε(3) = −1

2

2〈13〉[42]

〈12〉[43]
. (59)

Then

iM =
ig2

2

〈1 (2− 3) 4]

〈23〉[32]
(−〈13〉[42]

〈12〉[43]
)

= −ig2 〈13〉2[42]

〈23〉[32]〈12〉
(60)

Again, we can find a simpler form by multiplying top and bottom by 〈13〉. Using
〈13〉[32] = −〈14〉[42], we find

iM = ig2 〈13〉3〈43〉
〈12〉〈23〉〈34〉〈41〉

. (61)

For the case g−(2)g+(3), choose for the polarization vectors

εµ(2) = − 1√
2

[3γµ2〉
[32]

εµ(3) =
1√
2

〈2γµ3]

〈23〉
. (62)
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For this choice of reference vectors,

ε(2) · ε(3) = 0 , 2 · ε(3) = 3 · ε(2) = 0 . (63)

Then only the first line of (49) is nonzero. The value of this line is

iM =
−ig2

2
(−1

2
)

22

〈23〉[32]

〈12〉[3(1 + 2)2〉[34]

〈12〉[21]

= ig2 〈12〉[31][34]

〈23〉[32][21]
. (64)

Now multiply top and bottom by 〈12〉〈42〉. After some rearrangements, all of the
square brackets cancel, and we find

iM = ig2 〈12〉3〈42〉
〈12〉〈23〉〈34〉〈41〉

. (65)

These results are very interesting. The qqgg amplitude vanishes when all of the
gluon helicities are identical. This followed in a very straightforward way from the
choice of reference vectors in (57). It is not hard to see that this method extends
to prove the vanishing of the amplitude for qq plus any number of positive helicity
gluons. Thus, for any number of gluons, the first nonvanishing tree amplitudes are
those with one negative helicity gluon and all other gluon helicities positive. These
amplitudes are called the maximally helicity violating or MHV amplitudes. In the
above examples, these amplitudes are built only from angle brackets, with no square
brackets, and have the form

iM(q−(1)g+(2) · · · g−(i) · · · g+(n− 1)q+(n)) = ign−2 〈1i〉3〈ni〉
〈12〉〈23〉 · · · 〈(n− 1)n〉〈n1〉

,

(66)
where i denotes the gluon with negative helicity. This formula is in fact correct for
all i, n. The complex conjugates of these amplitudes give the amplitudes for the case
of one positive helicity gluon and all other gluon helicities negative,

iM(q−(1)g−(2) · · · g+(i) · · · g−(n−1)q+(n)) = (−1)n−1ign−2 [1i][ni]3

[12][23] · · · [(n− 1)n][n1]
.

(67)
I will give a proof of these formulae in Section 6.

4.2 Four-gluon amplitude

A very similar analysis can be applied to the four-gluon amplitude. Consider first
the case with all positive helicities. Choose the gluon polarization vectors so that the
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same reference vector r is used in every case,

εµ(j) =
1√
2

〈rγµj]

〈rj〉
. (68)

Then, for all i, j,
ε(i) · ε(j) ∼ 〈rr〉[ji] = 0 . (69)

By inspection of (56), every term contains at least one factor of ε(i) · ε(j). Thus, the
entire expression vanishes.

This argument is easily extended to the case with one negative helicity gluon. The
amplitude (56) is cyclically symmetric, so we can chose the gluon 1 to have negative
helicity without loss of generality. Then let

εµ(1) = − 1√
2

[2γµ1〉
[21]

, εµ(j) =
1√
2

〈1γµj]

〈1j〉
, (70)

for j = 2, 3, 4. Again, ε(i) · ε(j) = 0 for all i, j, and so the complete amplitude
vanishes.

It is not difficult to see that these arguments carry over directly to the n-gluon
color-ordered amplitudes for any value of n. The tree amplitudes with all positive
helicities, or with one negative helicity and all of the rest positive, vanish. The
maximally helicity violating amplitudes are those with two negative and the rest
positive helicities.

It is worth noting that the vanishing of the amplitudes with zero or one negative
helicity, both for the qq+n gluon case and for the pure gluon amplitudes, is related to
supersymmetry. QCD is not a supersymmetric theory, but it is an orbifold reduction
of supersymmetric QCD. In supersymmetric QCD, these scattering amplitudes are
related by supersymmetry to amplitudes with four external fermions, which must
contain two negative helicities by helicity conservation along the two fermions lines.
A precise discussion of these points can be found in [3]. Note that these arguments
apply only to tree amplitudes. The forbidden amplitudes become nonzero at one loop
in a nonsupersymmetric theory.

For the 4-gluon amplitude, all that remains is to compute the color-ordered ampli-
tude in the case with two negative helicities. By the cyclic invariance of M, there are
only two cases, that in which the two negative helicities are adjacent and that in which
they are opposite. As an example of the first case, we can analyze iM(1−2−3+4+).
Choose the polarization vectors to be

εµ(1) = − 1√
2

[4γµ1〉
[41]

εµ(2) = − 1√
2

[4γµ2〉
[42]

εµ(3) =
1√
2

〈1γµ3]

〈13〉
εµ(4) =

1√
2

〈1γµ4]

〈14〉
(71)
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With this choice, all scalar products of ε’s are zero except for

ε(2) · ε(3) = −1

2

2[43]〈12〉
[42]〈13〉

= −〈12〉[43]

〈13〉[42]
(72)

Looking back at (56), we see that the first and third lines are zero. In the second line,
the only nonzero term is the one that involves ε(2) · ε(3) and no other dot product of
ε’s. Thus,

iM = (
ig2

2
)
−i

s34

(−4)ε(2) · ε(3) 2 · ε(1) 3 · ε(4)

= −ig2 〈12〉2[34]

〈34〉[41]〈41〉
(73)

Multiplying top and bottom by 〈12〉 and rearranging terms in the denominator to
cancel out the square bracket factors, we find

iM(1−2−3+4+) = ig2 〈12〉4

〈12〉〈23〉〈34〉〈41〉
. (74)

Similarly, to evaluate iM(1−2+3−4+), choose the polarization vectors to be

εµ(1) = − 1√
2

[4γµ1〉
[41]

εµ(2) =
1√
2

〈1γµ2]

〈12〉

εµ(3) = − 1√
2

[4γµ3〉
[43]

εµ(4) =
1√
2

〈1γµ4]

〈14〉
(75)

With this choice, all scalar products of ε’s are zero except for

ε(2) · ε(3) = −〈13〉[42]

〈12〉[43]
(76)

Again, only the term that involves ε(2)·ε(3) and no other dot product of ε’s is nonzero.
The value of that term is again given by the first line of (73), which, in this case,
evaluates to

iM = −ig2 〈13〉2[42]2

〈34〉[41]〈41〉[43]
. (77)

Multiplying top and bottom by 〈13〉2 and rearranging terms in the denominator to
cancel out the square brackets, we find

iM(1−2+3−4+) = ig2 〈13〉4

〈12〉〈23〉〈34〉〈41〉
. (78)
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Figure 10: Feynman diagrams for quark-quark scattering: (a) ud → ud, (b) uu → uu.

The form of (74) and (78) strongly suggests that the general form of an n-gluon
MHV amplitude is

iM(g+(1) · · · g−(i) · · · g−(j) · · · g+(n)) = ign−2 〈ij〉4

〈12〉〈23〉 · · · 〈(n− 1)n〉〈n1〉
. (79)

The corresponding formula, exchanging positive and negative helicities, is

iM(g−(1) · · · g+(i) · · · g+(j) · · · g−(n)) = (−1)nign−2 [ij]4

[12][23] · · · [(n− 1)n][n1]
. (80)

I will give a proof of these formulae for all i, j, n in Section 6. The formula (79) was
discovered in 1986 by Parke and Taylor [17]. This was the original breakthrough that
gave the impetus for all of the work discussed in the latter sections of this review.

5 Parton-parton scattering

Before going deeper into the theory of the MHV formulae presented in the previ-
ous section, I will present a simple application of these formulae. The basic ingredient
for collider physics is the set of tree-level cross sections for parton-parton scattering.
These are straightforward to derive from the QCD Feynman rules, and yet the cal-
culations can be tedious for students. In a one-year course in quantum field theory,
this subject generally arises just at that point in the year when the professor’s family
needs a weeklong ski vacation. Thus, in the textbooks, the derivation of these formu-
lae is typically left as an exercise for the students without detailed explanation. In
this section, I will show that the MHV formulae make these derivations trivial.

5.1 Four-fermion processes

Begin with quark-quark scattering. For scattering of quarks of different flavor,
there is only one Feynman diagram, shown in Fig. 10(a). The value of this diagram
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can be found from (26). In this formula, all momenta are outgoing, so we simply need
to cross the correct particles into the initial state. Which particles should be crossed
depends on which helicity amplitude we are considering, for example, uLdL → uLdL

or uLdR → uLdR. We also need to include the QCD color matrices. With the
numbering of lines as in the figure, with the arrows indicating the direction of left-
handed fermions, the matrix elements are

iM(uLdL → uLdL) = ig2 〈34〉2

〈13〉〈24〉
T a

31T
a
42

iM(uLdR → uLdR) = −ig2 〈23〉2

〈13〉〈24〉
T a

31T
a
42

(81)

The scattering of identical quarks, for example, uLuL → uLuL, is given by two
Feynman diagrams, shown in Fig. 10(b). For this case

iM(uLuL → uLuL) = ig2
[ 〈34〉2

〈13〉〈24〉
T a

31T
a
42 −

〈43〉2

〈14〉〈23〉
T a

41T
a
32

]
. (82)

The extra minus sign in the second term comes from interchange of identical fermions.
To compute cross sections, we square these expressions, sum over final helicities and
colors, and average over initial helicities and colors. The interference term in the
square of (82) requires

〈13〉〈24〉(〈14〉〈23〉)∗ = 〈13〉[32]〈24〉[41] = −〈13〉[31]〈14〉[41] = −tu . (83)

By parity, the cross sections are unchanged when all helicities are reversed. The
cross sections for antiquarks can be computed by applying crossing symmetry, so the
formulae above are all that we need to cover all of the possible cases.

For the color sums and averages, here and in the later calculations in this section,
we will need the formula T aT a = 8

3
1 and the traces

tr[T aT aT bT b] =
64

3
, tr[T aT bT aT b] = −8

3
. (84)

These are easily proved using (54). The second trace appears in the interference term
in the square of (82). For a general SU(N) gauge group, these results are

tr[T aT aT bT b] =
(N2 − 1)2

N
, tr[T aT bT aT b] = −(N2 − 1)

N
, (85)

so that the second color sum is suppressed by 1/N2. This is an example of the
general result that interference terms between different color structure are suppressed
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Figure 11: Notation for the process uLuR → gLgR.

by 1/N2. That result follows from the broad picture of 1/N counting presented by ’t
Hooft in [18].

Assembling the pieces, we find

dσ

d cos θ
(ud → ud) =

2

9

πα2
s

s

[
s2 + u2

t2

]
dσ

d cos θ
(uu → uu) =

2

9

πα2
s

s

[
s2 + u2

t2
+

s2 + t2

u2
− 2

3

s2

tu

]
, (86)

where θ is the scattering angle in the parton-parton center of mass frame. The second
of these formulae is to be integrated over cosθ > 0 only. Crossing these formulae into
other channels,

dσ

d cos θ
(ud → ud) =

2

9

πα2
s

s

[
s2 + u2

t2

]
dσ

d cos θ
(uu → uu) =

2

9

πα2
s

s

[
s2 + u2

t2
+

t2 + u2

s2
− 2

3

u2

st

]
. (87)

5.2 qqgg processes

Next, consider qq → gg. The q and q necessarily have opposite helicity. The
gluons also have opposite helicity. The two cases of gluon helicity are related by
gluon interchange or t ↔ u. So it suffices to consider the case shown in Fig. 11,
uL(4)uR(1) → gL(2)gR(3). For this case, the color-ordered amplitudes are MHV
amplitudes, and so our results from Section 4 give

iM = ig2
[ 〈13〉3〈43〉
〈12〉〈23〉〈34〉〈41〉

T aT b +
〈13〉3〈43〉

〈13〉〈32〉〈24〉〈41〉
T bT a

]
. (88)
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The square of this amplitude, traced over color, is

tr[M|2 = g4
(

64

3
[
tu

s2
+

t3

us2
]− 2

8

3

t2

s2

)
=

64

3
g4[

t

u
− 9

4

t2

s2
] . (89)

From the first line to the second, I have used u2+t2 = (u+t)2−2ut = s2−2ut. Adding
the case with the two gluons interchanged, and including the factors for averaging
over initial colors and helicities, we find as the final result,

dσ

d cos θ
(uu → gg) =

16

27

πα2
s

s

[
t

u
+

u

t
− 9

4

t2 + u2

s2

]
. (90)

This formula should be integrated over cos θ > 0 only. Crossing this formula into
other channels gives

dσ

d cos θ
(ug → ug) =

2

9

πα2
s

s

[
− s

u
− u

s
+

9

4

s2 + u2

t2

]
dσ

d cos θ
(gg → uu) =

1

12

πα2
s

s

[
t

u
+

u

t
− 9

4

t2 + u2

s2

]
. (91)

5.3 Four-gluon processes

Finally, we need to compute the gg → gg scattering amplitude. This can be done
directly from the formalism we have already developed, but it is useful to add one
additional trick.

Extend the gauge group from SU(N) to U(N) by adding an extra generator
T 0 = 1/

√
N . Since the 3- and 4-gluon vertices are proportional to the structure

constants fabc and the extra U(1) generator commutes with the SU(N) generators,
the additional boson gives no contribution to the cross sections. However, adding this
term simplifies the color algebra. The contraction identity (54) now takes the simpler
form

T a
ijT

a
k` = δi`δkj . (92)

We can use this identity to compute the square of the 4-gluon amplitude (50). The
squares of the individual color traces are equal to

tr[T aT bT cT d] tr[T dT cT bT a] = N4 = 81 . (93)

The cross terms are proportional to

tr[T aT bT cT d] tr[T dT cT aT b] = tr[T aT bT cT d] tr[T dT aT bT c] = N2 = 9 . (94)
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Figure 12: The U(1) Ward identity for color-ordered amplitudes.

Then, letting I, J = 1, . . . , 6 index the six possible cyclic orderings of the gluons, we
find

tr[|M|2] = 81
∑
I

|M(I)|2 + 9
∑
I 6=J

M(I)M(J)∗

= 72
∑
I

|M(I)|2 + 9|
∑
I

M(I)|2 . (95)

I explained above that, when we add the extra generator to extend SU(N) to
U(N), the value of tr|M|2 cannot change. The vanishing of the coupling to the T 0

gauge bosons is expressed in the color-ordered amplitudes as the Ward identity shown
in Fig. 12: The sum over all possible orderings of a U(1) boson in a color-ordered
n-gluon amplitudes must vanish. An example of this identity, for 4-gluon amplitudes,
is

iM(0−1−2+3+) + iM(1−0−2+3+) + iM(1−2+0−3+) = 0 (96)

We can easily check this from the explicit expressions for MHV amplitudes. Evalu-
ating the left-hand side of (96) gives

ig2〈01〉4
[

1

〈01〉〈12〉〈23〉〈30〉
+

1

〈10〉〈02〉〈23〉〈31〉
+

1

〈12〉〈20〉〈03〉〈31〉

]

= ig2〈01〉4 [〈02〉〈13〉+ 〈03〉〈21〉+ 〈01〉〈32〉]
〈01〉〈12〉〈23〉〈30〉〈02〉〈13〉

(97)

The expression in brackets in the second line vanishes by the Schouten identity (19).

The U(1) Ward identity implies that∑
I

M(I) = 0 . (98)

Then (95) becomes
tr[|M|2] = 72

∑
I

|M(I)|2 . (99)
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Now we must evaluate this expression for all possible choices of the external parti-
cle helicities. Of the 16 possibilities, only 6 involve 2 positive and 2 negative helicities.
All other choices give zero. For the color-ordering 1234, the nonzero amplitudes are

|M(1−2−3+4+)|2 = g4

∣∣∣∣ 〈12〉4

〈12〉〈23〉〈34〉〈41〉

∣∣∣∣2 = g4 s2

t2

|M(1−2+3−4+)|2 = g4

∣∣∣∣ 〈13〉4

〈12〉〈23〉〈34〉〈41〉

∣∣∣∣2 = g4 u4

s2t2

|M(1−2+3+4−)|2 = g4

∣∣∣∣ 〈14〉4

〈12〉〈23〉〈34〉〈41〉

∣∣∣∣2 = g4 t2

s2
, (100)

and the parity conjugates of these amplitudes. The sum over color orderings sums
over these results crossed into all possible channels. Thus∑

h

∑
I

tr|M(I)|2 = 4g4 · [s
2 + u2

t2
+

t2 + u2

s2
+

s2 + t2

u2
+

u4

t2s2
+

t4

u2s2
+

s4

t2u2
]

= 16g4[3− su

t2
− ut

s2
− st

u2
] . (101)

Including the factors for initial-state color and helicity averaging, we find

dσ

d cos θ
(gg → gg) =

9

4

πα2
s

s
[3− su

t2
− ut

s2
− st

u2
] . (102)

This formula should be integrated over cos θ > 0 only. This completes the calculation
of all of the tree-level 2 → 2 parton-parton scattering cross sections.

6 Britto-Cachazo-Feng-Witten recursion

Now I will develop some methods that will allow us to prove the MHV formulae,
and also to use these results to compute the more compex non-MHV amplitudes. The
general approach will follow the idea of Cachazo, Svrcek, and Witten [19,20] that we
should consider the tree-level color-ordered amplitudes as analytic functions of the
angle brackets and square brackets. We can then analytically continue scattering
amplitudes to complex momenta while keeping the property that all external legs
are on mass shell. At the end of the calculation, to extract physical results, we will
specialize to the values such that 〈ij〉 = ([ji])∗.

6.1 Three-point scattering amplitudes

This freedom to discuss QCD scattering amplitudes for arbitrary complex mo-
menta allows us to write on-shell three-point scattering amplitudes. For three-point
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Figure 13: Diagrams contributing to the three-point qgq and ggg amplitudes.

amplitudes, shown in Fig. 13, momentum conservation implies that 1 + 2 + 3 = 0.
Then

0 = 12 = (2 + 3)2 = 2 2 · 3 , (103)

and similarly the other two Lorentz products vanish, so it would seem that there are
no invariants for these amplitudes to depend on. However, in terms of square brackets
and angle brackets,

2 2 · 3 = s23 = 〈23〉[32] . (104)

Thus, with complex momenta, we can satisfy (103) by having [32] = 0 while keeping
〈23〉 nonzero.

With this idea in mind, I will compute the color-ordered amplitude for gluon
emission from qq, iM(q−(1)g−(2)q+(3)). The amplitude comes from one Feynman
diagram, shown in Fig. 13. The value of this diagram is

ig√
2
〈1γµ3] (− 1√

2

[rγµ2〉
[r2]

) , (105)

with r an arbitrary lightlike reference vector. Applying the Fierz identity, and then
multiplying top and bottom by 〈12〉, this rearranges to

−ig
〈12〉[r3]〈21〉

[r2]〈21〉
= −ig

〈12〉2

〈31〉
. (106)

The reference vector r cancels out, and the final result is just the MHV amplitude
with n = 3,

iM(q−(1)g−(2)q+(3)) = ig
〈12〉3〈32〉
〈12〉〈23〉〈31〉

. (107)

A similar calculation gives the form of the three-gluon vertex.

iM(g−(1)g−(2)g+(3))

=
ig√
2
[ε(1) · ε(2)(1− 2) · ε(3)

+ε(2) · ε(3)(2− 3) · ε(1) + ε(3) · ε(1)(3− 1) · ε(2)] . (108)
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Choose for the polarization vectors

εµ(1) = − 1√
2

[rγµ1〉
[r1]

, εµ(2) = − 1√
2

[rγµ2〉
[r2]

, εµ(3) =
1√
2

〈sγµ3]

〈s3〉
, (109)

so that ε(1) · ε(2) = 0. Then (108) evaluates to

ig√
2

1√
2

(0 + [r3]〈s2〉[r (2− 3) 1〉+ [r3]〈s1〉[r (3− 1) 2〉)
[r1][r2]〈s3〉

= ig
[r3]

[r1][r2]〈s3〉
([r3]〈31〉〈2s〉 − [r3]〈32〉〈1s〉)

= ig
〈12〉[r3]2

[r1][r2]
(110)

If we multiply top and bottom by 〈12〉2 and rearrange the denominator, the factors
of 〈r3〉 cancel, and we find

iM(g−(1)g−(2)g+(3)) = ig
〈12〉4

〈12〉〈23〉〈31〉
. (111)

For reference, the corresponding formulae for two positive and one negative helicity
are

iM(q−(1)g+(2)q+(3)) = ig
[12][32]3

[12][23][31]
, iM(g+(1)g+(2)g−(3)) = −ig

[12]4

[12][23][31]
.

(112)
I note again that all other n-gluon and qq+n gluon amplitudes with only one negative
or positive helicity are zero. Only these cases are nonzero, with the MHV values.

6.2 BCFW recursion formula

It would be wonderful if we could use these three-point functions as building blocks
for the construction of general tree amplitudes. The usual understanding is that we
need off-shell three-point functions to build up general amplitudes. However, this
common-sense idea is evaded by a beautiful strategy of Britto, Cachazo, Feng, and
Witten [21].

Consider a color-ordered amplitude iM(1 · · ·n), as shown in Fig. 14. Choose two
legs i, j, and choose a value of z, a complex variable. Now define new momenta î and
ĵ by shifting the square bracket of i and the angle bracket of j,

î〉 = i〉 î] = i] + zj]

ĵ〉 = j〉 − zi〉 ĵ] = j] , (113)
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Figure 14: Notation for the discussion of the Britto-Cachazo-Feng recursion formula.

The momenta î and ĵ are given by

î = i〉[i + z i〉[j ĵ = j〉[j − z i〉[j . (114)

Notice that î + ĵ = i + j, so momentum conservation is respected. For general z, î
and ĵ have unphysical complex values. However, since î2 is proportional to 〈ii〉 = 0,
and similarly, ĵ2 = 0, the new momenta remain on shell.

As a rule of thumb, one should shift the square bracket of an external state with
negative helicity and the angle bracket of an external state with positive helicity, that
is, (i, j) = (−, +). This minimizes the number of factors of z in the numerator. I will
give a more careful analysis of this point below.

Call the amplitude evaluated at the modified momenta iM(z). Now consider the
integral ∮ dz

2πi

1

z
iM(z) (115)

taken around a large circle in the complex z plane. If iM(z) → 0 as z →∞, then this
integral vanishes. In that case, we can set to zero the value obtained by contracting
the contour and summing over the poles that it encloses. There is an obvious pole at
z = 0. The residue of this pole is exactly

iM(z = 0) , (116)

the amplitude that we wish to evaluate.

The other poles come from the denominator of the color-ordered amplitude. We
are discussing tree amplitudes, and so these poles will come from the propagator
involved in a factorization of the amplitude, as shown in Fig. 15. The denominator
of this propagator is

Q̂2 = sa···b(z) = (
b∑

m=a

km)2 , (117)
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Figure 15: A factorization of the amplitude in Fig. 14 that gives a pole in the amplitude
iM(z).

the invariant sum of momenta on the right, including any terms from the shifts (114).
If both i and j are on the same side in the factorization, sa···b is idependent of z and
there is no pole. If i is on the left side in the factorization and j is on the right,

sa···b(z) = (
b∑

m=a

km − zi〉[j )2

= sa···b(0)− z〈i(
b∑
a

km)j] + z2〈ii〉[jj] . (118)

The last term is zero. The denominator then has a simple pole at

z∗ =
sa···b

〈i(∑b
a km)j]

. (119)

The residue of this pole is

1

z∗
iM((b + 1) . . . î . . . (a− 1)Q̂)

i

−〈i(∑b
a km)j]

iM(Q̂a . . . ĵ . . . b)

= −iM((b + 1) . . . î . . . (a− 1)Q̂)
i

sa···b
iM(Q̂a . . . ĵ . . . b) (120)

The amplitudes in each term are evaluated with the value z = z∗, given by (119),
appropriate to the cut that is chosen.

The result of this analysis is that, if we have chosen the shifted momenta i and j
so that iM(z) vanishes at infinity, then

iM(1 . . . n) =
∑
a,b

iM((b + 1) . . . î . . . (a− 1)(−Q̂))
i

sa···b
iM(Q̂a . . . ĵ . . . b) . (121)

where Q = −∑b
a km. This is the BCFW recursion formula. An arbitrary color-

ordered helicity amplitude can then be evaluated by breaking it down into amplitudes
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with a smaller number of legs. The amplitudes on the right-hand side of (121) are
evaluated with on-shell but complex-valued momenta.

The recursion must be run until we can immediately evaluate the amplitudes on
the right-hand side. Since all nonzero amplitudes with five external legs or fewer are
either MHV or the conjugates of MHV amplitudes, only a few steps of the recursion
are needed in practice.

For QCD with all massless particles, the complete solution of the recursion is
known. However, the result is not simple, so, in keeping with the philosophy of these
lectures, I will refer you to the reference [22–24]

There is one subtlety that should be clarified to evaluate the right-hand side of the
BCFW recursion formula. The amplitudes involve angle brackets and square brackets
of the complex momentum Q̂. In the examples given later in our discussion, I will
evaluate these brackets by assembling them into complete factors of the momentum
Q̂. To do this, we will need to relate the brackets (−Q̂)〉 and (−Q̂)] in the amplitude
on the left to Q̂〉 and Q̂]. It is consistent always to take

(−Q̂)〉 = iQ̂〉 (−Q̂)] = iQ̂] . (122)

One special circumstance should be noted. If the line on which the amplitude factor-
izes is a fermion propagator, the value of this propagator is

i
Q]〈Q
Q2

i
Q〉[Q
Q2

. (123)

Then one of the brackets in the left-hand amplitude is a Q], not a (−Q)]. To com-
pensate for this, we need to add a factor (−i) for a cut through a fermion propagator.

Finally, we need to discuss under what circumstances the amplitude iM(z) will
vanish at infinity. I claim that, for the shift given by (113) in which i is shifted in
the square bracket and j is shifted in the angle bracket, the helicity choices (i, j) =
(−, +), (−,−), (+, +) give the BCFW recursion formula, while in the case (i, j) =
(+,−) there are extra terms from the integral at infinity. A transparent argument
for this claim has been given by Arkani-Hamed and Kaplan [25].

In the limit z → ∞, the dominant momentum flowing through the diagram is
that induced by the shift. Define

q = i〉[j or qµ = 〈iγµj] (124)

Then the large momentum is zq. Note that q2 = 0. It is useful to picture the diagrams
as containing one line whose propagators carry momenta zq + k close to this large
momenta. This line attaches to propagators that carry momenta of order 1. This
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structure is illustrated in Fig. 16. Each propagator has a denominator of order

(zq + k)2 = 2zq · k + k2 = O(z) . (125)

Each vertex is at most linear in momentum, and so is at most of order z. Then
each combination of vertex and propagator is of order z0. The chain of vertices and
propagators has one extra vertex, so this is of order z.

Now consider the polarization vectors. We can choose i or j as the reference
vector, whichever gives a nonsingular result. Then

ε+(̂i) =
z〈jγµj] + 〈jγµi]

〈ji〉
+ · · · ε−(̂i) = −1

z

[iγµi〉
[ij]

ε+(ĵ) = −1

z

〈jγµj]

〈ji〉
ε−(ĵ) = −z〈iγµi]− 〈iγµj]

[ij]
+ · · · . (126)

For the choice (i, j) = (−, +), from the z-dependence of the polarization vectors and
the internal vertices and propagators, we see that the amplitude cannot be larger
than O(1/z). For the choice (i, j) = (−,−), there is apparently a term of order z1.
However, it is not possible to build this term, since

ε−(̂i) · ε−(ĵ) = 0 q · ε−(̂i) = q · εi(ĵ) = 0 . (127)

The first nonzero term is one in which both ε−(̂i) and ε−(ĵ) are dotted with O(1)
vectors instead of zqµ, and this term is down by two powers of z, giving in all an
amplitude of of O(1/z). An analogous argument holds for the (+, +) case. The
amplitude in the (+,−) case is irremediably O(z3).

A parallel argument can be carried out for the case in which the shifted lines are
fermions. In the fermion case, the vertex involves no momenta and is of order z0, but
the propagator is also O(z0). The leading term in the propagator is proportional to
6q, which annihilates both i〉 and j]. Then, again, only the (+,−) case can be nonzero
as z → ∞. There is one exception to this rule: If we shift on momenta i and j at
opposite ends of the same fermion line, the diagrams with only a single vertex and
no internal propagators on this line can give a term of O(z0).

The paper [25], taking a somewhat more sophisticated approach, generalizes this
conclusion to other theories, including gravity.

6.3 Proof of the MHV formula

As a first application of the BCFW recursion formula, I will give a proof of the
MHV formula (79) for n-gluon amplitudes, using an argument originally given by
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Figure 16: Analysis of the z →∞ behavior of a multigluon tree diagram.

Figure 17: BCFW cuts contributing to the evaluation of the n-gluon MHV amplitude.

Risager [26]. The other MHV formulae in Section 4 can be proved by the same
method.

The proof will proceed by induction. We have already verified this formula for the
n = 3, 4 MHV gluon amplitudes. So, I will assume that the MHV formula is correct
for the case n = N − 1 and use that hypothesis to evaluate the n = N gluon MHV
amplitude.

The N -gluon amplitudes are cyclically invariant. So, without loss of generality,
choose the gluon 1 to be one of the two gluons with negative helicity. Define the
z-dependent amplitude in the BCFW procedure by the shift

1̂] = 1] + z 2] 2̂〉 = 2〉 − z 1〉 . (128)

The BCFW recursion formula then evaluates the N -point MHV amplitude in terms
of factorized diagrams with 1̂ on one side of the factorization and 2̂ on the other,
as shown in Fig. 17. In each diagram, we must assign a helicity to the intermediate
gluon. There are two choices: + outgoing from one side and − outgoing from the
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Figure 18: The three-point amplitude from the first diagram in Fig. 17.

other side, or vice versa. In most cases, both choices give zero, since one side or the
other will be an n-gluon amplitude with n > 3 and one or zero − helicity, which
vanishes by the arguments given in Section 4. The two diagrams that are potentially
nonzero are those in which one side or the other is an amplitude with n = 3. These
are the first and last diagrams in the series shown in Fig. 17.

The first diagram on the right-hand side in the figure involves the 3-point vertex
shown in Fig. 18. The denominator of the exposed propagator is

Q̂2 = 〈1N〉[N(1 + z2)] (129)

However, the 3-point vertex has the form

−ig
[NQ̂]

4

[Q̂1̂][1̂N ][NQ̂]
= +ig[N(1 + z2)] . (130)

Then vertex cancels the pole in z from the propagator, so the diagram actually has
no pole.

The only nonzero contribution to the sum then comes from the last diagram. Its
value is

igN−3 〈1j〉4(−1)

〈1Q̂〉〈Q̂4〉〈45〉 · · · 〈N1〉
i

〈23〉[32]
(−ig)

[23]4

[Q̂2][23][3Q̂]
(131)

with
Q̂ = −2〉[2− 3〉[3 + z1〉[2 . (132)

From (132), we derive

〈1Q̂〉[Q̂3] = −〈12〉[23]

〈4Q̂〉[Q̂2] = −〈43〉[32] . (133)

The factors of [23] all cancel, and we end up with the result

igN−2 〈1j〉4

〈12〉〈23〉〈34〉〈45〉 · · · 〈N1〉
(134)
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which is exactly the Parke-Taylor amplitude for the case of n = N legs. By induction,
this formula applies for all n.

The MHV formula for n-gluon amplitudes with 2 + helicities, and the MHV
formulae for amplitudes with 2 fermions and (n−2) gluons can be proved by following
the same strategy.

7 pp → W+ + partons

As an illustration of this technology, I will now derive the complete set of formulae
needed to compute the cross section for vector boson production with up to 2 partons
at a hadron collider. The methods I have discussed make the computation of the
cross section for a vector boson plus one parton truly trivial. Only some particular 2
parton amplitudes will require a little work.

For definiteness, I will write formulae for W+ production from u and d quarks.
The contributions from other light flavors, and the corresponding formulae for W−

and Z0 production, can be derived from these by small modifications of the prefactors.

7.1 ud → W+

The coupling of the W+ to quarks and leptons is

δL =
gw√

2
W−

µ (dγµPLu + `γµPLν) + h.c. , (135)

where PL = (1 − γ5)/2 is the left-handed projector, and gw is the weak interaction
coupling, satisfying

αw =
g2

w

4π
=

1

29.6
. (136)

The W− field appears because this is the field that creates the W+. This interaction
leads to an amplitude given by the Feynman diagram shown in Fig. 19

iM(ud → ν`+) = i
g2

w/2

s12 −m2
W + imW ΓW

u(1)σµu(2) u(3)σµu(4)

= ig2
w

1

s12 −m2
W + imW ΓW

〈31〉[24] . (137)

We can treat this formula in one of two ways. One way is to integrate over the full
phase space of the final-state leptons. This will give a broad mass distribution for the
leptons, on top of which the W+ will appear as a resonance.
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Figure 19: Feynman diagrams for ud → ν`+.

Alternatively, since the W+ is a narrow resonance, it is typically a good approx-
imation to compute amplitudes for a real W+ boson on its mass shell. In this case,
you might think it is easiest to sum over the W+ polarization vectors. However, we
will obtain simpler formulae if we retain the final-state lepton spinors. As a bonus,
retaining the spinors will preserve the information on the W+ polarization. This is
valuable, first, because the W+ polarization gives useful information on the dynamics
of the W+ production and, second, because the experimental acceptance for a W+

depends strongly on its polarization.

The matrix element for the W+ coupling to leptons is proportional to the current
u(ν)σµv(`+). This matrix element must be squared and integrated over the direction
of the leptons in the W+ rest frame. That integral is

Iµν =
∫ dΩ

4π
〈1γµ2]〈2γν1] . (138)

To evaluate this integral, note that, if qµ is the W+ momentum, q = 1 + 2, then
qµI

µν = qνI
µν = 0. Further,

Iµ
µ =

∫ dΩ

4π
2〈12〉[12] = −2q2 = −2m2

W . (139)

From these requirements,

Iµν = −2

3
m2

W (gµν − qµqν

m2
W

) . (140)

The quantity in parentheses in this equation is the usual sum over on-shell W+

polarization vectors. Thus we can represent this sum as

∑
i

εµ
i (q)ε∗νi (q) =

3

2m2
W

∫ dΩ

4π
〈1γµ2]〈2γν1] . (141)

This gives a simple procedure for computing cross sections with a final on-shell
W+ [15]: (1) Write the Feynman diagrams with an internal W+ propagator and the
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final state ν(1)`+(2). (2) Remove the factor (gw/
√

2)/(s12 − m2
W + imW ΓW ) and

put the W+ momentum (1+2) on shell. (3) Evaluate the amplitude with spinor
products. (4) Square and integrate over phase space including the on-shell W+, and
add an integral over the lepton direction in the W+ rest frame:∫

dΠn+W ≡
∫

dΠn+1
3

2m2
W

∫ dΩ

4π
. (142)

The cross section for W+ production is typically already a multi-dimensional Monte
Carlo integral, so the computational price of adding two additional, well-behaved
integrals is small.

To illustrate this formalism, I will work out the cross section for ud → W+. I use
the matrix element (137) in the form

iM(W+du) =
gw√

2
〈1γµ2]〈3γµ4] =

√
2gw〈31〉[24] . (143)

The phase space integral
∫

dΠ0+W contains 1-body phase space∫
dΠ1 = 2πδ(s−m2

W ) . (144)

Then, averaging over initial colors and spins, we find

σ(ud → W+) =
1

3 · 4
· 8παw

2s
· 2πδ(s−m2

W ) · 3

2m2
W

∫ dΩ

4π
s2
24 . (145)

The integral over dΩ implements the familiar (1− cos θ)2 angular distribution of the
decay lepton with respect to the u quark direction, signalling a W+ with left-handed
polarization. Evaluating the integral, we find

σ(ud → W+) =
π2αw

3
δ(s−m2

w) , (146)

the familiar expression for the Drell-Yan cross section.

7.2 MHV amplitudes

To use this formalism for computing W+ production cross sections, we need to
be able to compute the amplitudes. We might hope that many of these amplitudes
belong to an MHV series and are therefore trivial to evaluate. In fact, it is so.

To explain this, I will first compute some amplitudes for the related process
e+e− → qq + ng. We have seen the first of these, for zero gluons, already in (26) and
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Figure 20: Notation for the amplitudes for e+
Re−L → qL + ng + qR.

(28). This amplitude seems to belong to both an MHV and an anti-MHV series. For
convenience, I will renumber the external legs to correspond better to the formalism
that we used in Section 4. On the electron side, I will take the outgoing left-handed
line (the incoming e+

R) to be line 1; on the quark side, I will take the outgoing left-
handed line (the outgoing qL) to be line 3. I will notate a general amplitude for
e+

Re−L → qL +ng + qR in the same way, as shown in Fig. 20. Then the n = 0 case gives

iM = −2ie2 〈13〉2

〈12〉〈34〉
= −2ie2 [24]2

[12][34]
. (147)

The electric charges gives an additional factor (−Qf ); I omit this here and in the
following.

It is not difficult to work out the next case, n = 5 or 1 gluon, using the methods
described in this review. In the case of a + helicity gluon, it is easiest to take the
reference vector for the gluon (line 4) to be 3; for a − helicity gluon, take the reference
vector to be 4. Then one finds

iM(e−(1)e+(2)q−(3)g+(4)q+(5)) = −2ie2gs
〈13〉2

〈12〉〈34〉〈45〉

iM(e−(1)e+(2)q−(3)g−(4)q+(5)) = 2ie2gs
[24]2

[12][34][45]
, (148)

times the factor (−Qf ) and the color matrix T a. The sum of the squares of these
expressions gives ∑

|M|2 = 4e4g2
s

s2
13 + s2

24

s12s34s45

. (149)

This reaction is usually described using the kinematic variables

xq =
2k3 · q

q2
, xg =

2k4 · q
q2

, xq =
2k5 · q

q2
, (150)
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where q = 3 + 4 + 5 = −(1 + 2). Each xi is the ratio of that particle’s momentum in
the center of mass frame to its maximum value q0/2. Also,

s34 = q2(1− xq) , s45 = q2(1− xq) , s35 = q2(1− xg) . (151)

The standard expression for the cross section for gluon production in e+e− is

dσ

dxqdxq

=
4πα2

3s
· 3Q2

f ·
2αs

3π
·

x2
q + x2

q

(1− xq)(1− xq)
. (152)

The last factor is almost exactly of the form of (149) after substituting (150), (151).
By reintroducing Qf , summing over final colors, averaging over helicities, and aver-
aging over the relative orientation of the final state plane with respect to the beam
axis, it is not difficult to complete the derivation of (152) from (149).

It is tempting to guess that the formulae (148) generalize to the color-ordered
amplitudes for all + helicity and all − helicity gluons according to

iM(e−(1)e+(2)q−(3)g+(4) · · · g+(n− 1)q+(n))

= −2ie2gn−4
s

〈13〉2

〈12〉〈34〉〈45〉 · · · 〈(n− 1)n〉
iM(e−(1)e+(2)q−(3)g−(4) · · · g−(n− 1)q+(n))

= (−1)n+12ie2gn−4
s

[2n]2

[12][34][45] · · · [(n− 1)n]
. (153)

This is in fact correct. These new MHV formulae can be proved using the method
of Section 6.3.

Finally, we need to make the connection between the QED amplitudes given here
and the amplitudes that we need for W+ production. The only change needed is to
substitute the photon propagator with a W+ propagator by multiplying by the factor

g2
w

2e2

s12

s12 −m2
W + imW ΓW

, (154)

and then to take the W+ on-shell according to the prescription given below (141). I
will write the on-shell amplitudes in the form

iM(W+(12); 3 · · ·n) =
√

2gwgn−4
s T a1 · · ·T an · iM(12; 34 · · · (n + 4))

+other color structures .(155)

Then for the cases discussed above,

M(12; 3 · · ·n) =

{
[12]〈13〉2/〈12〉〈34〉〈45〉 · · · 〈(n− 1)n〉 MHV

(−1)n〈12〉[2n]2/[12][34][45] · · · [(n− 1)n] anti-MHV
. (156)
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7.3 W+ + 1 parton

The amplitude for ud → W+ +g+ contains only one color factor. The correspond-
ing color-ordered amplitude, following from (148) or (156), is

M =
[12]〈13〉2

〈34〉〈45〉
. (157)

Using this result, it is straightforward to compute the lowest-order cross section for
production of W+ + 1 parton. There are three processes that must be considered:

ud → W+g , ug → W+d , gd → W+u . (158)

For all three processes, the amplitude is an appropriate crossing of that given in (157).

For ud → W+g, after averaging over initial colors and helicities and summing over
final colors and helicities, we find

σ(ud → W+g) =
32

9

π2αwαs

s

∫
dΠ1+W{

|M(12; d(3)g+(4)u(5)|2 + |M(12; d(3)g−(4)u(5)|2
}

. (159)

I have used the color sum
tr[T aT a] = 8 . (160)

If θ∗ is the polar angle in the W+g center of mass system,∫
dΠ1+W =

3

16πm2
W

∫ d cos θ∗
2

∫ dΩ

4π
(1− m2

W

s
) (161)

with s = s5, and

|M(12; d(3)g+(4)u+(5)|2 + |M(12; d−(3)g−(4)u+(5)|2 =
s2
13 + s2

25

s34s45

. (162)

Then

σ(ud → W+g) =
2παwαs

3s

∫ d cos θ∗
2

∫ dΩ

4π
(1− m2

W

s
)
(

s2
1d + s2

2u

sdgsgu

)
. (163)

Similarly,

σ(ug → W+d) = σ(gd → W+u) =
παwαs

4s

∫ d cos θ∗
2

∫ dΩ

4π
(1− m2

W

s
)
(

s2
1d + s2

2u

sdgsgu

)
.

(164)
where the sij invariants are evaluated with appropriately crossed momenta. In the
two cases, respectively, sgu = s and sdg = s.
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7.4 Cross section formulae for W+ + 2 partons

For the case of W + 2 partons, many reactions must be included, and each of
these has a nontrivial color structure. The reactions are all of the form (2 partons)
→ (2 partons) +W+, and so they are in 1-to-1 correspondence with the 2-to-2 parton
processes that we considered in Section 5. Further, since the W+ is a color singlet,
the color structure and color sums are also just those that we met in Section 5, and
we can borrow the color algebra from that discussion. This will allow us to write the
cross sections in terms of the matrix elements M normalized as in (155).

We can begin with 4-fermion reactions. For the simplest case of a non-identical
spectator quark, the cross section is given in terms of the amplitude M(12; 34; 56)
containing three fermion lines: the leptons (12), the left-handed quark emitting the
W+ (34), and a second left-handed quark (56). This cross section is

σ(us → W+ds) =
1

9

αwα2
s

s
· 128π3

∫
dΠ2+W

{
|M(12; 34; 56)|2 + |M(12; 34; 65)|2

}
,

(165)
The sum of matrix elements takes care of the polarization sum for the spectator
quark. For spectators identical to the final quark,

σ(ud → W+dd) =
1

9

αwα2
s

s
· 128π3

∫
dΠ2+W{

|M(12; 34; 56)|2 − 1

3
Re[M(12; 34; 56)∗M(12; 54; 36)]

+|M(12; 34; 65)|2]
}

. (166)

I have adjusted the normalization so that the integral can be taken over all of phase
space. The cross section σ(uu → W+du) involves a similar sum over matrix elements.
Cross sections involving antiquarks have the same form, except that the amplitudes
M(12; 34; 56) should be crossed appropriately.

The cross section for the reaction ud → W+ +2g is given, analogously to (90), by

σ(ud → W+gg) =
8

27

αwα2
s

s
· 128π3

∫
dΠ2+W

∑
ij{

|M(12; 34i5j6)|2 − 1

8
Re[M(12; 34i5j6)∗M(12; 35j4i6)]

}
, (167)

where i, j = +,− are the helicity states of the final gluons. The cross section is
again normalized to be integrated over all of phase space. The cross sections with
initial-state gluons are given by

σ(ug → W+ug) =
1

9

αwα2
s

s
· 128π3

∫
dΠ2+W

∑
ij

42



{
|M(12; 34i5j6)|2 + |M(12; 35j4i6)|2 − 1

4
Re[M(12; 34i5j6)∗M(12; 35j4i6)]

}
σ(gg → W+du) =

1

24

αwα2
s

s
· 128π3

∫
dΠ2+W

∑
ij{

|M(12; 34i5j6)|2 + |M(12; 35j4i6)|2 − 1

4
Re[M(12; 34i5j6)∗M(12; 35j4i6)]

}
, (168)

where the matrix elements M(12; 3456) are crossed appropriately.

There is no analogue of the gg → gg process, since at tree level the W+ does not
couple directly to gluon lines. So now we have all of the cross section formulae, and
it only remains to compute the amplitudes.

7.5 Amplitudes for W+ + 2 partons

The cross section formulae in the previous section involve two sets of amplitudes,
those for Wqggq and those for Wqqqq. These must be evaluated for all cases of the
final-state helicity. However, each quark line must have a left-handed fermion at one
end and a right-handed fermion on the other end, so the cases that must be considered
are only those of different gluon helicities. Of these, two are MHV or anti-MHV, so
only two amplitudes with gluons, plus the four-fermion case, need to be computed.
All of those computations are easily done by the BCFW method.

The two amplitudes that are trivially known are:

M(12; d−(3)g+(4)g+(5)u+(6)) =
[12]〈13〉2

〈34〉〈45〉〈56〉

M(12; d−(3)g−(4)g−(5)u+(6)) =
〈12〉[26]2

[34][45][56]
. (169)

I will now take up the case of the amplitude iM(12; d−(3)g+(4)g−(5)u+(6)). To
evaluate this amplitude, carry out a BCFW shift on the legs 5 (with square brackets)
and 4 (with angle brackets, according to

5̂] = 5] + z 4] , 4̂〉 = 4〉 − z 5〉 . (170)

Then the BCFW recursion formula gives the identity shown in Fig. 21. The vertical
dashed lines show the two BCFW cuts.

I will evaluate the first of these cuts explicitly. The amplitude to the left is an
MHV amplitude for Wugd. The amplitude to the right is a nonzero MHV 3-point
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Figure 21: Evaluation of the amplitude iM(12; d−(3)g+(4)g−(5)u+(6)) by BCFW recursion.

vertex. Together, these give

[12]〈13〉2

〈34̂〉〈4̂(−Q̂)〉
· (−i) · i

s56

· i 〈Q̂5̂〉
3
〈65̂〉

〈Q̂5̂〉〈5̂6〉〈6Q̂〉
. (171)

The factor (−i) is associated with the fermion cut; see below (123). Using 5̂〉 = 5〉
and −Q〉 = iQ〉, this simplifies to

− [12]〈13〉2〈5Q̂〉
2

〈34̂〉s56〈4̂Q̂〉〈6Q̂〉
. (172)

The momentum Q̂ takes the value

Q̂ = Q̂〉[Q̂ = −5〉[5− 6〉[6− z 5〉[4 . (173)

This should be evaluated at the value z = z∗ for which Q̂2 = 0. That is,

z∗ = − s56

〈5(5 + 6)4]
= − [65]

[64]
. (174)

To evaluate the angle brackets of Q̂, multiply (172) by [Q̂4]
2
/[Q̂4]

2
and use (173) to

evaluate Q̂〉[Q̂. This gives the identities

〈5Q̂〉[Q̂4] = −〈56〉[64]

〈6Q̂〉[Q̂4] = −〈65〉[54]

〈4Q̂〉[Q̂4] = −(s45 + s46 + s56) = −s456 (175)

Also, using (174),
〈34̂〉 = 〈3(4 + 5)6]/[46] . (176)
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With all of these simplifications, the expression for the cut becomes

[12]〈13〉2[46]3

[45][56]s456〈3(4 + 5)6]
. (177)

After evaluating the second cut in the same way, we arrive at the following ex-
pression for the amplitude:

M(12; d−(3)g+(4)g−(5)u+(6)) =
{

[12]〈13〉2[46]3

[45][56]s456〈3(4 + 5)6]
+

〈12〉[26]2〈35〉3

〈34〉〈45〉s345〈3(4 + 5)6]

}
.

(178)
The final result is properly symmetric under complex conjugation and interchange of
3 ↔ 6, 4 ↔ 5. Notice that the separate terms of the amplitude are singular not only
at physical singularities where denominators vanishes, such as s45 = 0, but also on
the plane where 〈3(4 + 5)6] = 0. Fortunately, this latter singularity can be shown to
cancel between the two terms of the expression.

The two remaining amplitudes can be evaluated by the same technique. For the
remaining Wuggd amplitude, shifting on 4 and 5 gives

M(12; d−(3)g−(4)g+(5)u+(6)) =
{ 〈12〉[46][2(5 + 6)4〉2

〈45〉〈56〉s456[3(4 + 5)6〉
+

[12][35]〈1(3 + 4)5]2

[34][45]s345[3(4 + 5)6〉

}
.

(179)
For the 4-fermion amplitude, shifting on 3 and 6 gives

M(12; d−(3)u+(4); s−(5)s+(6)) = −
{ 〈12〉[24]2〈35〉2

〈56〉s356[4(5 + 6)3〉
− [12]〈13〉2[46]2

[56]s123[4(5 + 6)3〉

}
.

(180)
In this case, one should resist the temptation to shift on the lines 5 and 6. That
gives a simpler expression, which, however, is not actually correct, because the limit
z → ∞ in the BCFW construction does not vanish. Alternatively, the 4-fermion
amplitude can be computed very simply directly from the Feynman diagrams using
only the technology of Section 2. The result is

M(12; d−(3)u+(4); s−(5)s+(6)) = −
{〈35〉[6(3 + 5)1〉[24]

s56s356

+
〈31〉[2(1 + 3)5〉[64]

s56s123

}
.

(181)
which can be shown to be equal to (180).

In principle, one could go further to amplitudes with W+ and any number of
quarks and gluons. In practice, it is possible to avoid even writing these expres-
sion explicitly. It is quite straightforward to implement the BCFW recursion in a
recursive computer algorithm [27]. Then these and higher expressions for amplitudes
would be generated automatically starting from the MHV and anti-MHV amplitudes.
Alternatively, these higher point amplitudes are computed in [23,24].
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8 Conclusions

In these lectures, I have given an introduction to a set of tools for computing multi-
parton tree level amplitudes in QCD. Already at the level of this review, we have seen
that calculations that would be tremendously difficult by textbook methods become
accessible, or even easy, using the simplifications of spinor products, color ordering,
and BCFW recursion. For loop diagrams, even more powerful methods are available,
as you might glean from the references. I hope that this review will put you on the
road to a better understanding of QCD that will be useful to you in the era of LHC
physics.

A Direct computation of spinor products

In numerical computations with spinor products, it is best to evaluate the spinor
products directly from 4-vectors, without first computing vector products. The ad-
vantage is not only in speed of execution. In the case where two lightlike vectors
are almost collinear, separated by a small angle θ, the vector product vanishes as θ2

while the spinor product vanishes only as θ1. In such a case, working directly with
the spinor product avoids round-off error [15].

To evaluate the spinor products of lightlike vectors A and B, first let

ηA =
{

1 A0 > 0
−i A0 < 0

(182)

Let
A+ = A0 + A1 B+ = B0 + B1 . (183)

〈AB〉 = ηAηB
(A3 − iA2)B+ − (B3 − iB2)A+√

η2
Aη2

BA+B+
(184)

and [AB] = −(〈AB〉)∗.

In this definition, the axis 1̂ has a preferred role. In compensation, the spinor
product has a singularity in its phase when one of the vectors A, B approaches the
−1̂ direction. This phase choice cancels out of the squares of matrix elements, so any
other axis may be used. If the preferred axis is a natural axis of the problem such
as the beam direction, one will frequently encounter 0/0 in numerical evaluations. If
the beam axis is the 3̂ direction, it is useful to choose the 1̂ direction as the preferred
axis. Then, working in double precision, excessively small denominators appear only
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for about 1 point in 106; in a Monte Carlo integration, one can trap for and ignore
these points.
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