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In this paper we investigate the longitudinal impedance due to coherent undulator ra-

diation in a rectangular waveguide. We find that the impedance exhibits narrow peaks at

resonant frequencies at which waveguide modes are in synchronism with particle motion in

the undulator. Analytical calculations are compared with numerical simulations carried out

with a computer code that solves parabolic equation for the electromagnetic field.

I. INTRODUCTION

Damping wigglers are used in several accelerator projects to decrease the emittance of

a high-energy beam in the ring. Due to intensive radiation in the wiggler, it can generate

an additional wakefield, similar to the coherent synchrotron radiation (CSR) wakefield in

bending magnets, that contributes to the total impedance budget of the ring. In analogy

with CSR, we call the wakefield generated due to the coherent wiggler radiation the CUR

wakefield (with U standing for the “undulator”). Previously, the CUR wakefield was studied

in Refs. [1–3] assuming radiation in free space. In this paper we calculate the impedance

taking into account the vacuum chamber in the wiggler with conducting metallic walls.

CUR impedance inside a rectangular waveguide was also treated by Y.-H. Chin [4]. He

developed a general method using field expansion into the waveguide eigenmodes. The focus

of his work was the case of a weak undulator with a small undulator parameter K � 1. In

this paper we will be interested in the opposite case of a large K � 1.

There are several simplifying assumptions that we use in our analysis. First, we assume

that the amplitude of the wiggling motion of particles is much smaller than the transverse

size of the vacuum chamber. Second, we consider a relativistic beam with the Lorentz factor

γ � 1. As analysis shows, in the limit K � 1, all the radiation properties in such a wiggler

depend only on the ratio K/γ which is equal to the maximal deflection angle θ0 of the orbit

relative to the axis of the wiggler. Introducing this parameter into the theory and replacing
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K/γ = θ0 we then can set γ =∞. Hence, our particles are moving with the speed of light.

We will also assume that we are interested in calculation of the longitudinal impedance

Z(ω) in a relatively low frequency range, ω � ω0, where ω0 is the frequency of the first

harmonic of the wiggler radiation propagating along the axis. For a plane undulator and

K � 1, this frequency is given by ω0 = 4ckw/θ
2
0, where kw = 2π/λw with λw the wiggler

period. Hence we limit our consideration to

k � k0, (1)

where k0 = cω0. Note that, accorindg to [2], in this limit the CUR longitudinal impedance

in free space is

Z(k) =
1

4
Z0Lwk

kw
k0

[
1− 2i

π

(
log

4k

k0
+ γE

)]
, (2)

where Lw is the wiggler length, Z0 = 377 Ohm, and γE = 0.577 is the Euler constant.

Eq. (2) is valid in the limit of large number of periods in the wiggler, Nw = Lwkw/2π � 1.

Due to our assumption (1), it turns out that in addition to the approximation v = c one

can use even a stronger approximation vz = c. Indeed, during the motion in the wiggler,

the difference ∆v = c− vz ∼ cθ20. It can be neglected if the phase accumulated due to this

difference over one period of the wiggler between the electromagnetic wave propagating with

the speed of light and the particle is much smaller than π, that is kλw∆v/c ∼ kλwθ
2
0 � π.

The last inequality is equivalent to (1) if one takes into account that k0 = 4kw/θ
2
0.

In this work we assume that the walls of the vacuum chamber have a perfect conductivity,

and neglect resistive wall losses.

II. THE METHOD

We will calculate the real part of the longitudinal impedance ReZ using a relation [5]

between ReZ and the spectral power of radiation P (ω) of a point charge q

ReZ(ω) =
π

q2
Pω . (3)

Although knowledge of only ReZ does not give a complete solution of the wakefield problem,

it is useful for comparison and benchmarking computer codes. Moreover, as we will see in

what follows, it indicates the existence of narrow high peaks in the impedance, which might

contribute to the beam instability.
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We will use the Fourier transformed fields and current, which means the time dependence

of all involved quantities ∝ e−iωt. These quantities are marked with the subscript ω; the

inverse Fourier transformation has a form

1

2π

∫ ∞
−∞

Eωe
−iωtdω, (4)

with similar expressions for the magnetic field and the current density.

The radiation field of a particle in a waveguide can be computed using the general for-

malism of Vainshtein [6]. It is represented as a sum of waveguide eigenmodes of which we

only leave the modes propagating in the forward directions E+
n (the energy radiated into

the modes in the opposite direction is negligible for a relativistic beam)

Erad
ω =

∑
n

anE
+
n , (5)

where n denotes a collection of parameters that identify a mode. For a given n the mode

can also propagate in the negative direction; the field of this mode is denoted by E−n . The

mode amplitudes an given by the following expressions

an = − 1

Nn

∫
jω ·E−n dV, (6)

where E−n is the electric field of the mode propagating in the negative directions and the

mode norm Nn is

Nn =
c

4π

∫ (
E+

n ×H−
n −E−n ×H+

n

)
· dS. (7)

The integration in the last integral goes over the cross-section of the waveguide (the value of

the integral does not depend on the position of this cross-section). Introducing the energy

flow Pn in mode n as an integrated over the cross-section and averaged over time the Poynting

vector,

Pn =
c

8π

∫
Re(E+

n ×H∗+
n ) · dS, (8)

it is easy to show that

Pω =
2

π

∑
n

Pn|an|2. (9)

Note also that for modes in rectangular waveguide Nn = 4Pn.
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III. BEAM ORBIT AND CURRENT DENSITY

We assume that the particle trajectory lies in the y = 0 plane and is defined by the

equations x = x0(t) and z = z0(t). Then the current density associated with the moving

point charge is

j(x, y, z, t) = v(t)qδ(x− x0(t))δ(y)δ(z − z0(t)), (10)

where v(t) = dx0(t)/dt is the velocity. The Fourier transformation of the current is

jω(x, y, z) =

∫ ∞
−∞

dteiωtj(x, y, z, t)

= q

∫ ∞
−∞

dteiωtv(t)δ(x− x0(t))δ(y)δ(z − z0(t)). (11)

Changing the integration variable from t to z0 (we assume that z0(t) is a monotonically

increasing function of t) we obtain

jω(x, y, z) =
q

vz(z)
eiωt(z)v(z)δ(x− x0(z))δ(y), (12)

where the time is expressed through the z coordinate by inverting the function z = z0(t) and

all the time-dependent variables are expressed as functions of z by substituting t→ t(z).

Let us take for the orbit in the undulator

x0(z) = xa(1− cos kwz), (13)

where xa is the amplitude of the oscillations. This choice of the functional dependence for

x0 is dictated by the fact that at the entrance to the wiggler, at z = 0, both the initial value

of x0 and the initial angle dx0/dz are equal to zero. The maximal angle of the orbit dx0/dz

is θ0,

θ0 = kwxa, (14)

which, as was pointed out in the Introduction, we assume to be small, θ0 � 1.

If the particle velocity is v then the t(z) dependence can be found from the equation

t =
1

v
s(z) =

1

v

∫ z

0

dz′
(

1 +
dx0(z

′)

dz′

)1/2

, (15)

4



where s(z) is the length of the orbit measured from the initial point z = 0. Using the

smallness of θ0 and keeping only terms of the second order in θ0 one obtains

t =
1

v

(
z +

θ20
4kw

(kwz −
1

2
sin 2kwz)

)
. (16)

As was discussed in the introduction, for our purposes, it is actually enough to use a simpler

relation

t =
z

c
(17)

corresponding to the motion with the speed of light in the z direction. Respectively, for jω

we then have

jω(x, y, z) =
q

c
eikzv(z)δ(x− x0(z))δ(y). (18)

To separate the Coulomb field of the beam from the radiation, we will use the following

approach. Consider an auxiliary point charge q moving along the axis z through the system

with the speed of light: the orbit of this charge can be obtained by setting xa = 0 in (13).

Since the orbit of this charge is a straight line, it does not radiate, and its electromagnetic

field consists of the moving Coulomb field only. Denote the difference between jω and the

current of the auxiliary charge by ∆jω, and note that it is only nonzero in the wiggler region,

being canceled at the preceding and following the wiggler straight parts of the particle orbit.

Inside the wiggler, 0 < z < Lw, ∆jω has two components ∆jω = (∆jω,x,∆jω,z) with

∆jω,x =
q

c
eikzvx(z)δ(x− x0(z))δ(y) = qx′0(z)eikzδ(x− x0(z))δ(y), (19)

and

∆jω,z = qeikz[δ(x− x0(z))− δ(x)]δ(y). (20)

IV. CALCULATION OF THE WAVE AMPLITUDES AND IMPEDANCE

We assume a rectangular waveguide of width a (in x direction) and height b (in y direction)

with the origin of the coordinate system located at the center of the rectangle. We begin

with calculation of the mode amplitudes of TM modes. In such a mode (of unit amplitude)

propagating in the negative direction, the z-component of the electric field is given by

E−z (x, y) = sin
[
kx

(
x+

a

2

)]
sin

[
ky

(
y +

b

2

)]
e−ikzz, (21)
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where kx = πn1/a, ky = πn2/b, and n1 > 0 and n2 > 0 are positive integer numbers. In

what follows, we will use κ =
√
k2x + k2y. The longitudinal component of the wavenumber

in (21) is kz =
√
k2 − κ2 > 0. The x component of the electric field in the mode is [7]

E−x (x, y) = −ikzkx
κ2

cos
[
kx

(
x+

a

2

)]
sin

[
ky

(
y +

b

2

)]
e−ikzz, (22)

and the averaged over time energy flow PTM is

PTM =
ωkz

32πκ2
ab, (23)

with NTM = 4PTM. Using notation aTM for an of TM modes, from Eq. (6) and the currents

(19) and (20) we obtain

aTM = − 1

NTM

∫ Lw

0

dz

∫
dxdy(∆jω,xE

−
x + ∆jω,zE

−
z )

= − q

NTM

∫ Lw

0

dzeikz

(
x′0(z)E−x (0, 0) + x0(z)

∂E−z
∂x

∣∣∣∣
x=0,y=0

)
. (24)

In the last integral we neglected x0 in the argument of E−x and used the Taylor expansion

for E−z . Using (13) for the orbit, it is not difficult to find

|aTM|2PTM =
8πq2θ20k

2
w

ωab

k2xκ2

kz

(
kz
κ2
− 1

k − kz

)2
sin2[πNu(k − kz)/kw]

[(k − kz)2 − k2w]2

× cos2
πn1

2
sin2 πn2

2
. (25)

In a TE mode of unit amplitude, the z-component of the magnetic field is given by

H−z (x, y) = cos
[
kx

(
x+

a

2

)]
cos

[
ky

(
y +

b

2

)]
e−ikzz, (26)

where kx = πn1/a, ky = πn2/b, and one of the integers n1 and n2 can now be equal to zero.

The x component of the electric field in the mode is [7]

E−x (x, y) = −ikky
κ2

cos
[
kx

(
x+

a

2

)]
sin

[
ky

(
y +

b

2

)]
e−ikzz, (27)

and the averaged over time energy flow PTE is

PTE =
ωkz

32πκ2
ab(1 + δn1,0)(1 + δn2,0), (28)

with NTE = 4PTE. In the last expression, δ denotes the Kronecker symbol. Using notation

aTE for an of TE modes, from Eq. (6) and the current (19) we obtain (note that ∆jω,z does
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not contribute to aTE because TE modes do not have Ez component of the electric field)

aTE = − 1

NTE

∫ Lw

0

dz

∫
dxdy∆jω,xE

−
x

= − 1

NTE

∫ Lw

0

dzeikzx′0(z)E−x (0, 0). (29)

Similar to Eq. (24) one finds

|aTE|2PTE =
8πq2θ20k

2
w

ωab

k2k2y
kzκ2(1 + δ0,n1)

sin2[πNu(k − kz)/kw]

[(k − kz)2 − k2w]2

× cos2
πn1

2
sin2 πn2

2
. (30)

Using Eqs. (3) and (9) we obtain our final result for ReZ

ReZ(k) = 4Z0θ
2
0F (k), (31)

where the dimensionless function F (k) is

F (k) =
k2w
abk

∑
n1,n2

1

kz

(
k2k2y

κ2(1 + δ0,n1)
+ k2x

(
kz
κ
− κ
k − kz

)2
)

× sin2[πNu(k − kz)/kw]

[(k − kz)2 − k2w]2
. (32)

The summation in (32) goes over even values of n1 (starting from n1 = 0) and the odd values

of n2.

Let us consider the case of large Nu. In this case the last factor in (32) becomes highly

peaked near the values of k which satisfy the equation

k − kz(n1, n2)− kw = 0, (33)

where we have explicitly indicated that kz depends on the integers n1 and n2 to emphasize

that there may be many peaks corresponding to different values of these integers. These nar-

row peaks are due to the synchronism between the particle motion and one of the modes of

the rectangular waveguide. When the condition of synchronism is satisfied, the particle res-

onantly radiate into the mode, which results in the increased value of the ReZ proportional

to N2
u . In the limit Nu →∞ the peaks in (32) become delta functions:

sin2[πNu(k − kz)/kw]

[(k − kz)2 − k2w]2
→ π2

4k3w
Nuδ (k − kz − kw) . (34)

We show in Appendix A that in the limit of large transverse cross-section of the pipe,

a, b→∞, and a large number of periods, Nu →∞, Eq. (31) can be further simplified with

the result in agreement with Eq. (2).
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V. NUMERICAL CALCULATION OF CUR IMPEDANCE

To numerically calculate CUR, we used a computer code originally written for calcu-

lation of the coherent synchrotron radiation in a toroidal vacuum chamber with variable

bending radius R(s) [8]. The code solves the parabolic equation in the frequency domain in

a curvilinear coordinate system with the origin on the beam trajectory [9–11]

∂E⊥
∂s

=
i

2k

(
∇2
⊥E⊥ +

2k2x

R(s)
E⊥ − 4π∇⊥ρ0

)
, (35)

where E⊥ is the transverse electric field, ρ0 is the charge density, and R(s) is the s-dependent

bending radius. The longitudinal electric field is expressed in the terms of the transverse

one,

Es =
i

k
(∇⊥ ·E⊥ − 4πρ) . (36)

Eq. (35) is solved subject to the boundary conditions on the perfectly conducting walls

[9, 12]

n×E⊥|s = 0, Es|s = 0, (37)

where n is the unit vector normal to the wall surface. In the code Eq. (35) is discretized

on a rectangular two-dimensional mesh in x-y plane. To suppress numerical noise, we use a

staggered grid scheme for the electric field [9] and ghost points outside of the boundaries.

Note that for a point charge the last term on the right hand side of Eq. (35) is singular. To

avoid this singularity in numerical solution we treat the beam as having a small transverse

size with rms values σx and σy in horizontal and vertical directions, respectively. In practical

calculations, the typical values of σx and σy are set to be 0.1 mm and 0.01 mm.

It is assumed that the beam enters a curvilinear trajectory from a long straight pipe.

The initial boundary condition for the equation (35) are given by the steady-state Coulomb

field of the relativistic beam established in that straight waveguide [13].

The current version of the code deals with a rectangular cross section of the vacuum pipe

with given transverse dimension a (along x) and b (along y). It is assumed that the shape

of the cross-section (in the curvilinear coordinate system) does not change along s, and also

that the beam position in x–y plane does not vary with s.

The inverse bending radius R(s) for the undulator orbit is equal to the second derivative

of x0(z), and for the orbit (13) is

1

R(s)
= θ0kw cos(kws). (38)
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Note that with this bending radius and our assumption that the shape of the pipe cross-

section in the curvilinear coordinate system does not change with s, the simulated vacuum

pipe wiggles together with beam orbit, as shown in Fig. 1. More precisely, while the horizon-

tal walls of the pipe remain flat and parallel, the vertical ones follow the shape of the orbit

in the undulator. This setup is somewhat different from the theoretical model developed in

section IV, and we do not expect perfect agreement between the theory and the simulations.

FIG. 1: The beam pipe in the undulator in numerical simulation. The wiggling pipe is followed by

a straight waveguide of infinite length.

The longitudinal impedance is obtained by integration of Es through the toroidal section.

There is also a contribution to the impedance from the long straight exit pipe—we use a

mode expansion method discussed in Refs. [9, 10] to calculate this contribution and to add

it to the impedance of the undulator segment.

VI. AN EXAMPLE AND COMPARISON OF THE THEORY AND SIMULA-

TIONS

As a first example, we calculated the CUR impedance of a wiggler with parameters similar

to those of a section of the KEKB wiggler in the low energy ring [14]. The parameters of the

wiggler are: wiggler period λw = 1.087 m, θ0 = 1.1× 10−2 (this angle θ0 corresponds to the

undulator parameter K = 76.57 and the relativistic factor for the beam γ = 6850), Nu = 10.

We assumed a square cross section for the beam pipe with the side equal to 94mm. The

real part of the impedance calculated using the theory of Section IV and the the numerical

code is shown in Fig. 2. In the figure one can clearly see sharp peaks in the region k < 2

mm−1, which become less pronounce with increasing k.
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FIG. 2: ReZ as a function of the wavenumber k. The thick blue line is the theory, and the red

dots are the simulation result. The thin straight line shows the free space impedance (2).

As is seen from Fig. 2, there is a noticeable disagreement between the theory and the

simulations. As was pointed out above, the simulation assume a “wiggling pipe” in contrast

to the straight waveguide in the theory. To verify that this is indeed the source of discrepancy,

we calculated the same wiggler as above, but rectangular cross-section of the beam pipe was

chosen to have a horizontal dimension of 100 mm and the vertical one of 20 mm. Increasing

the horizontal size place the “wiggling walls” further away from the beam and suppresses

their influence on the impedance. The result of the simulation is shown in Fig. 3 and

demonstrate a very good agreement with the theory.

VII. SUPERKEKB WIGGLER

In our second example we used the magnetic field of the wiggler for the low energy

SuperKEKB ring to compute particle’s orbit. This field is composed from sections of dipole

magnets with opposite polarity of the magnetic field interspersed with drift sections [15].

We assumed a square cross section of the pipe with the size of 90 mm. Fig. 4 shows the plot

of the derivative dx0/dz for the orbit inside the wiggler computed based on the magnetic

field of the wiggler. One can see that the wiggler consists of 15 identical segments. The

maximal angle dx0/dz is of the order of 10−2.
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FIG. 3: ReZ as a function of the wavenumber k for a rectangular cross-section of the beam pipe

with the aspect ratio 5. The thick blue line is the theory, and the red dots are the simulation

result.

0 20 40 60 80 100 120 140

-10

-5

0

5

10

z (m)

x'
(m

ra
d)

FIG. 4: The derivative dx0/dz for particle’s orbit in the wiggler.

As Fig. 4 shows, the orbit in the wiggler is different from a pure sinusoidal one assumed in

(13). To understand the role of spectral harmonics in the orbit, we show in Fig. 5 a fraction

of the spectrum of the function dx0/dz. The dominant peaks in this spectrum correspond

to the values k ≈ 5.34 and k ≈ 6 m−1.
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FIG. 5: Spectrum of the function shown in Fig. 4.

Using the computed orbit in the wiggler with the help of Eqs. (24) and (29) we computed

numerically the amplitudes of the radiated waves, radiated power (9) and the real part of the

impedance (3) which is shown in Fig. 6. One can see that again, the impedance demonstrates
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FIG. 6: ReZ as a function of the wavenumber k for the low energy SuperKEKB wiggler.

high and narrow peaks located at the synchronous frequencies (33). To identify the modes,

we used Eq. (33) with two values of kw corresponding to the highest peaks in Fig. 5. The
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theoretically computed position of the beam are indicated by vertical dashed lines in Fig. 5

of different colors: red - kw ≈ 6 m−1 and green - kw ≈ 5.34 m−1 (n1, n2 < 4).
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APPENDIX A: LIMIT IF Nu →∞

In the limit Nu →∞ we use (34) and find for the function F

F (k) =
k2w
abk

∑
n1,n2

(
k2ky

2

kzκ2(1 + δ0,n1)
+
k2xκ2

kz

(
kz
κ2
− 1

k − kz

)2
)

× π2

4k3w
Nuδ (k − kz − kw) . (A1)

Taking into account that in this limit the main contribution to the sum is due to many

modes with n1 � 1 and n2 � 1 we also replace summation by integration∑
n1,n2

→ 1

4

∫ ∞
0

dn1

∫ ∞
0

dn2 =
ab

4π2

∫ ∞
0

dkx

∫ ∞
0

dky (A2)

and drop the term δ0,n1 . Note that for k � kw the argument of the delta-function becomes

equal to zero for small values of kx ∼ ky ∼
√
kkw � k, so that

k − kz − kw = k −
√
k2 − κ2 − kw ≈

1

2k
κ2 − kw. (A3)

We can now replace k − kz by κ2/2k and kz by k in (A1) to obtain

F (k) =
Nuk

8kw

∫ ∞
0

dkx

∫ ∞
0

dkyδ
(
κ2 − 2kkw

)
=
πNuk

32kw
, (A4)

which gives for the real part of the impedance (see (31))

ReZ =
1

16
Z0Lwkθ

2
0 (A5)

in agreement with (2).
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