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Abstract

Electron storage rings are widely used for high luminosity col-
liders, damping rings in high-energy linear colliders, and syn-
chrotron light sources. They have become essential facilities to
study high-energy physics and material and medical sciences. To
further increase the luminosity of colliders or the brightness of
synchrotron light sources, the beam emittance is being continu-
ally pushed downward, recently to the nanometer region. In the
next decade, another order of reduction is expected. This require-
ment of ultra-low emittance presents many design challenges in
beam dynamics, including better analysis of maps and improve-
ment of dynamic apertures. To meet these challenges, we have
refined transfer maps of common elements in storage rings and
developed a new method to compute the resonance driving terms
as they are built up along a beamline. The method is successfully
applied to a design of PEP-X as a future light source with 100-pm
emittance. As a result, we discovered many unexpected cance-
lations of the fourth-order resonance terms driven by sextupoles
within an achromat.
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1 Introduction

Computational tools have played an important role in the design of modern
accelerators. During the 60’s, K. Brown developed a first- and second-order
matrix theory to design charged particle spectrometers. The matrix theory
provided a powerful physics engine inside a code called TRANSPORT[1] for
single-pass transport systems and later in MAD[2] for circular accelerators.
An excellent feature of these matrix codes is that the linear matrices are
the exact solutions of the linearized equations. For this reason, they are
still widely used to design linear charged particle optics. However, for study
of nonlinear dynamics, the second-order truncation might not be accurate
enough and it also violates symplecticity, which is an intrinsic symmetry of
Hamiltonian systems. In a storage ring, this violation itself might lead to
artificial growth or damping when a particle is tracked in many thousands of
turns.

In early the 80’s, A. Dragt introduced and developed the Lie algebraic
method[3] to the physics of charged particle optics. The Lie method laid a
solid foundation for many modern codes. MARYLIE[4], the first design code
based on the Lie algebra, has improved the accuracy by several orders but its
transfer maps still violate sympecticity. To resolve this difficulty, E. Forest
utilized the technique of high-order canonical integrators[5] and developed a
tracking code called DESPOT[6]. Later these integrators were implemented
in many other codes such as LEGO[7] in the C++ language. In addition to
the preservation of symplecticity, these codes, equipped with the differential
algebra[8], can be used efficiently and accurately to extract a Taylor map
in an arbitrary order. However, in practice, since these integrators are con-
structed by a combination of drifts and kicks, these tracking codes cannot
provide the exact linear transfer matrices as those in the design codes such
as MAD. For this reason, these tracking codes were never seriously used to
design the linear optics of charged particles.

Can we improve these tracking codes so that they can be also used as
design codes? How can we develop a code that retains all advantages of the
existing codes? These are the questions that will be answered in the first part
of this paper. In section 2, we will introduce a general Hamiltonian of mag-
nets in circular accelerators. Then we will solve its Hamiltonian equations
for several common elements in section 3. For a nonlinear system, we will
introduce the Lie algebraic method and then lead to a symplectic integrator
to approximate the system in section 4.
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In the second part of the paper, we will develop a new method to calculate
the resonance driving terms of an arbitrary order along a beamline in section
5. Then we will apply it to study the resonance terms driven by sextupole
magnets in a lattice that consists of many achromats. Many coincidental can-
celations will be uncovered and their impacts on the dynamic aperture will be
investigated in section 7. Finally we will discuss other possible applications.

2 Hamiltonian

In a modern storage ring, there are three types of basic magnets. They play a
unique role and are absolutely essential. First, dipoles bend charged particles
and define the geometry. Second, quadupoles provide focus to the particles
so that they continually oscillate around a design orbit. Finally, sextupoles
compensate chromatic effects in the quadrupole focusing system. For these
types of magnetic elements, we can easily introduce a simple Hamiltonian to
describe the dynamics of a charged particle in the storage ring.
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Figure 1: The planar curved coordinate system.

Consider a sector bending magnet with magnetic field B0 in a curved
coordinate system with radius ρ as illustrated in Fig 1. It is well known
that if one uses the design path length s as an independent variable, its
Hamiltonian can be written as[9]

H = −(1 +
x

ρ
)
√
(1 + δ)2 − p2x − p2y +

x

ρ
+

x2

2ρ2
− As(x, y)

B0ρ
, (2.1)
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where δ = (P − P0)/P0 is the relative momentum deviation from P0 =
eB0ρ the momentum of an ideal particle with charge e, px and py are canonical
momenta corresponding to the coordinates x and y respectively, and As(x, y)
is the longitudinal component of vector potential. In this paper, we choose
the canonical coordinates z = (x, px, y, py, δ, ℓ). Here ℓ = cτ , c is speed of
light, and τ the time of flight. For simplicity, we have assumed that the
charged particle has very high energy and is fully ultra-relativistic.

We also assumed that the bending radius has perfectly matched ρ in the
curved coordinate system and deviations of magnetic errors are included in
As(x, y) which can be described with the multipole expansion

As = −Re[
∑
n=1

1

n
(bn + ian)(x+ iy)n], (2.2)

where bn and an are the normal and skew components of multipoles re-
spectively. In our convention, b3 is for a normal sextupole. The magnetic
field can be computed from the vector potential using B⃗ = ∇×A⃗. The result
is

By + iBx =
∑
n=1

(bn + ian)(x+ iy)n−1. (2.3)

When a machine is large (x << ρ) and the angles are small px <<
1, py << 1, we can further simplify the Hamiltonian in Eq. 2.1 by expanding
the square root and keeping only the quadratic terms in px and py. The
Hamiltonian becomes[6]

H =
p2x + p2y
2(1 + δ)

− xδ

ρ
+

x2

2ρ2
− As(x, y)

B0ρ
. (2.4)

We have dropped the term −(1 + ρ) by redefining ℓ as the path length
relative to the ideal one. In Eq. 2.4, −xδ/ρ describes the bending dispersion
and x2/(2ρ2) the weak focusing due to the curvature. Given a Hamiltonian
such as Eq. 2.4, the motion of a charged particle can be described precisely
by the solution of the Hamiltonian equation

dqi
ds

=
∂H

∂pi
,
dpi
ds

= −∂H

∂qi
. (2.5)

Here we note that q1,2,3 = x, y, δ as the coordinates and p1,2,3 = px, py, ℓ their
corresponding canonical momenta.
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3 Solvable Hamiltonian systems

By selecting a different combination of parameters, ρ, an, and bn in Eq. 2.4, we
will apply the Hamiltonian for a drift space, dipole, quadrupole, or sextupole
magnet.

3.1 Drift space

In a realistic storage ring, drift spaces are necessary due to the gaps and
empty space between the accelerator components. To obtain the Hamiltonian
of a drift space, we simply set As = 0 and take the limit of ρ to infinity in
Eq. 2.4

Hdrift =
p2x + p2y
2(1 + δ)

. (3.1)

Since Hdrift does not depend on x, y, ℓ, their conjugates px, py, δ are the
constants of motion. Solving the Hamiltonian equations for the other three
variables, we have

x(∆s) = x+
∆spx
(1 + δ)

,

y(∆s) = y +
∆spy
(1 + δ)

,

ℓ(∆s) = ℓ+
∆s(p2x + p2y)

2(1 + δ)2
, (3.2)

where ∆s is the distance from the entry of the drift. For simplicity, we take
x, px, y, py, δ, ℓ as their values at the entry of the drift space.

3.2 Sector bend

As we mentioned earlier, the dipole magnets are the most important element
in a storage ring because they bend the charge particles and therefore define
the layout of the ring. The simplest dipole is a sector bend which is defined
as a dipole magnet of uniform field with both edges perpendicular to the
bending circle. In the curved coordinate shown in Fig. 1, we have

Hsbend =
p2x + p2y
2(1 + δ)

− x

ρ
δ +

x2

2ρ2
, (3.3)
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which is obtained by setting As = 0 in Eq. 2.4. It is clear that δ and py are
two constants of motion. For the rest, by solving its Hamiltonian equations,
we have

x(∆s) = x cos(k∆s) +
px

k(1 + δ)
sin(k∆s) + ρδ[1− cos(k∆s)],

px(∆s) = px cos(k∆s)− xk(1 + δ) sin(k∆s) + k(1 + δ)ρδ sin(k∆s),

y(∆s) = y +
∆spy
(1 + δ)

,

ℓ(∆s) = ℓ+∆sδ + (
x

ρ
− δ)

sin(k∆s)

k
+ pxρ[1− cos(k∆s)]

+
1

2(1 + δ)2
{∆sp2y +

s

2
[p2x + (1 + δ)(

x

ρ
− δ)2]

−pxρ(1 + δ)(
x

ρ
− δ) sin2(k∆s)

+[p2x − (1 + δ)(
x

ρ
− δ)2]

sin(2k∆s)

4k
}, (3.4)

where k = 1/(ρ
√
1 + δ). In a sector bend, the motion in the vertical plane

is the same as in drift space. But in the horizontal plane, it has a harmonic
oscillation due the weak focusing and dispersion driven by a radius δρ with
a variation of energy δ.

3.3 Quadrupole

As we have shown previously, the particle in a dipole drifts in the vertical
plane. In general, a charged particle orbiting in a uniform magnetic dipole
field is not confined if there is a small perturbation in its vertical veloc-
ity. Quadrupole magnets are necessary to provide focusing and stabilize the
motion. More often, quadrupoles are used to reduce the beam size at an
interaction point in colliders or to minimize the equilibrium emittance in
electron storage rings. The quadrupole Hamiltonian can be derived by set-
ting an = bn = 0 except b2 and take the limit of ρ to infinity in Eq. 2.4 to
give

Hquad =
p2x + p2y
2(1 + δ)

+
K1

2
(x2 − y2), (3.5)

where K1 = b2/(B0ρ) and (B0ρ) is the magnetic rigidity determined by the
design energy E0 = cP0 of the storage ring. Again, δ is a constant of the
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motion. For a focusing quadrupole, K1 > 0, the rest can be obtained by
solving the Hamiltonian equations

x(∆s) = x cos(k∆s) +
px

k(1 + δ)
sin(k∆s),

px(∆s) = px cos(k∆s)− k(1 + δ)x sin(k∆s),

y(∆s) = y cosh(k∆s) +
py

k(1 + δ)
sinh(k∆s),

py(∆s) = py cosh(k∆s) + k(1 + δ)y sinh(k∆s),

ℓ(∆s) = ℓ+
1

2(1 + δ)2
{∆s

2
[p2x + (1 + δ)2k2x2]

+
1

4k
[p2x − (1 + δ)2k2x2] sin(2k∆s)

+
1

2
(1 + δ)xpx[cos(2k∆s)− 1]

+
∆s

2
[p2y − (1 + δ)2k2y2]

+
1

4k
[p2y + (1 + δ)2k2y2] sinh(2k∆s)

+
1

2
(1 + δ)ypy[cosh(2k∆s)− 1]}, (3.6)

where k =
√
|K1|/(1 + δ). For the solution of a defocusing quadrupole,

K1 < 0, one simply needs to swap x and y, including in the subscripts in
Eq. 3.6.

As one can see, the transfer maps discussed in this section have non trivial
nonlinear components. However, the symplecticity is preserved because they
are the exact solutions of the Hamiltonian equation. In fact, this can be
directly verified using their Jacobians.

It is worth noting that the linear parts of these transfer maps are the
same as those in a design code such as MAD, with a proper swap of the
fifth and sixth canonical coordinates. Furthermore, there are more solvable
systems such as a combined function magnet of a dipole and a quadrupole.
Due to space limitations, they will not be reported in this paper.
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4 Lie algebraic method

The Lie algebraic method for charged particle optics was introduced and
developed by A. Dragt[3]. It emphasizes exponential Lie operators that are
similar to those in quantum field theory.

4.1 Exponential Lie operator

When a Hamiltonian such as the one in Eq. 2.4 does not have any explicit
dependence on the independent variable s, we can show[10]

f(q1(∆s), p1(∆s), ...) = e−∆s:H:f(q1, p1, ...), (4.1)

where f is a function of the coordinates qi and their canonical conjugates pi
and the Lie operator e−∆s:H: is defined as the Taylor expansion

e−∆s:H:f = f + [−∆sH, f ] +
1

2!
[−∆sH, [−∆sH, f ]] + ..., (4.2)

where [h, f ] is defined by the Poisson bracket

[h, f ] =
∑
i

(
∂h

∂qi

∂f

∂pi
− ∂h

∂pi

∂f

∂qi
). (4.3)

As one can easily see from Eq. 4.1 if one chooses f as an individual coordinate
qi or its conjugate pi, the Lie operation e−∆s:H: also represents the transfer
map of z = (x, px, y, py, δ, ℓ) from the entry to the exit of an element. In
fact, the transfer maps found in the previous section can also be derived
by directly applying their corresponding Lie operators and computing the
Poisson brackets. However, as one will find out quickly, it can be a tedious
process to derive the transfer map this way. Nevertheless, the Lie operator
is a very useful presentation of the transfer map, as one will see in the next
section.

4.2 Sextupole

As one can see in Eq 3.6, the transfer map of a quadrupole is a function
of the energy deviation δ. As a result, the sextupole magnets placed in
dispersive regions are necessary to compensate the chromatic effects from
quadrupoles. For a sextupole magnet, the Hamiltonian can be derived by
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setting an = bn = 0 except b3 and take the limit of ρ to infinity in Eq. 2.4.
The result is

Hsext =
p2x + p2y
2(1 + δ)

+
K2

3!
(x3 − 3xy2), (4.4)

where K2 = 2b3/(B0ρ). Due to the nonlinear potential

Hs(x, y) =
K2

3!
(x3 − 3xy2), (4.5)

the Hamiltonian equations of the sextupole cannot be solved exactly. But,
as discussed earlier, we can still write its transfer map formally as

Msext = e−∆s:Hsext:, (4.6)

where ∆s is the length of the sextupole. This Lie presentation allows us to
make an approximation

e−∆s:Hsext: = e−
∆s
2
:Hdrift:e−∆s:Hs:e−

∆s
2
:Hdrift: +O(∆s3), (4.7)

which can be proven by applying the Cambell-Baker-Hausdorf (CBH) theo-
rem

e:A:e:B: = e:C:, (4.8)

where

C = A+B +
1

2
[A,B] + .... (4.9)

As shown by Eq. 4.7, the map of a sextupole can be approximated by inserting
a lumped kick

px(0
+) = px −∆s

∂Hs

∂x
,

py(0
+) = py −∆s

∂Hs

∂y
, (4.10)

in the middle of the drift. It is obvious that this approximation preserves
the symplecticity. Moreover, its residual error is in third order of ∆s so it
is often called a second-order symplectic integrator. To further reduce the
error, one can first divide the magnet into many identical segments and then
use the integrator for each segment.

It is worth noting that the method of symplectic integrator can be applied
to many systems. For example, to treat a combined function magnet of a
quadrupole and a sextupole, one simply usesHquad instead ofHdirft in Eq. 4.7.
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5 Analysis of maps

As we have shown in the previous sections, a transfer map of an element in an
accelerator can be obtained simply by solving its Hamiltonian equations. Or
if the Hamiltonian system is not solvable, we can use a symplectic integrator
to approximate the system. For a beamline constructed with a sequence
of elements, its transfer map is the nested map concatenated sequentially
from the maps of the elements. In principle, one can apply a sequence of
substitutions to obtain the explicit map. In fact, it can be shown that this
procedure also preserves symplecticity. In practice, no one uses it because
there are too many elements in a modern storage ring. Once again, some
approximations are necessary.

5.1 Truncated Taylor map

An idea pioneered by M. Berz[8] is to use a truncated power series (TPS)

f(q1, p1, ...) =
k1+...+k6≤o∑
k1,...,k6=0

Df
k1,...,k6

qk11 pk21 qk32 pk42 qk53 pk63 , (5.1)

to approximate the transfer map. For simplicity, we assume that the order
of truncation o is fixed. There are several advantages of this approach. First,
the TPS are essentially polynomials of a few variables so one can define simple
and natural rules, called differential algebra[8], to manipulate them. Second,
if ones use the TPS to represent qi and pi, a truncated Taylor map of a
beamline can be extracted simply by starting with an identity map and then
tracking it through as if it is a ray of the phase space. In a modern computer
language such as C++, this property, called polymorphism, allows us to write
a much simpler code to handle both ray tracing and map extracting. A good
implementation of the polymorphism also provides a consistency between
the ray tracing and the analysis of the maps. Third, a Taylor map is also a
natural choice from a perturbation point of view since qi and pi are small and
often oscillate around zero in storage rings. In particular, its linear part is
identical to the transfer matrix in the design codes TRANSPORT and MAD
and in the theory of Courant-Snyder[11]. Finally and most importantly,
the differential algebra is a much more accurate method for computing high
derivatives than using numerical differences.

As usual, a Taylor map has its short comings. First, the series may not be
convergent as qi or pi become large. Second, some physics might be left out

10



due to the truncation. Finally, the truncation itself violates the symplecticy.
This might lead to artificial growth or damping if it is used in ray tracing[12].

5.2 Lie factorization

A method to restore the symplecticity of a Taylor map M is to use the
Dragt-Finn procedure[13]

M = M1e:f3(z):e:f4(z):..., (5.2)

to represent it as a product of exponential Lie operators with a homogeneous
polynomial fn(z) of increasing order n. Here we note M1 as its linear part.
For a Taylor map truncated at order o, the procedure of the factorization
only ensures the validity of the equal sign up to the order o. The other terms
beyond the order of the truncation on the right hand side of Eq. 5.2 are
necessary to recover the symplecticity.

5.3 Single Lie factor

Applying the CBH theorem in Eqs. 4.8 and 4.9 to the Dragt-Finn factoriza-
tion in Eq. 5.2 , we can combine the product of the exponential Lie operators
into a single Lie factor

M = M1e:f3(z)+f4(z)+...:. (5.3)

Here we have used the fact that the Poisson bracket of f3 and f4 gives a
fifth-order polynomial. As a result, f3 and f4 in the Dragt-Finn factorization
are numerically identical to those in the single Lie factor.

When M is the one-turn map of a storage ring, the single Lie factor is
often used to compute the driving terms of nonlinear resonances. Here we
want to focus on an arbitrary segment of the storage ring and try to find an
extension of such an analysis to see how the driving terms are built up along
the entire ring.

5.4 Normalized coordinates

Consider M as a transfer map for position 1 to 2 in a storage ring. It is well
known that its linear part can be written as

M1 = A−1
1 R12A2, (5.4)
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where R12 is a linear map of rotation, A−1
1 is a linear transformation to the

normalized coordinate at the position 1, and A2 is a transformation back to
the original phase space at the position 2. In general, A(s) can be constructed
easily using the eigen vectors of the one-turn matrix at position s and R12

by three phase advances in the eigen planes.
For an ideal lattice without any linear coupling, we have a block diagonal

form of A. Its nonzero block of a 2× 2 matrix has the form of

A2×2 =

 √
β 0

− α√
β

1√
β

 , (5.5)

where β and α are the Courant-Synder parameters.
Substituting Eq. 5.4 into Eq. 5.3, we obtain

M = A−1
1 R12e

:f3(A2z)+f4(A2z)+...:A2. (5.6)

Here we have used a general property[10] of a similar transformation for an
exponential Lie operator

Be:f(z):B−1 = e:f(Bz):, (5.7)

where B is an arbitrary exponential Lie operator.

5.5 Resonance bases

To compute the driving terms of resonances, it is more convenient to make
another complex but symplectic transformation[14] to diagonalize R12

R12 = KΛ12K−1, (5.8)

where K is the block diagonal and its nonzero block of a 2 × 2 matrix has
the form of

K2×2 =
1√
2

(
1 −i
−i 1

)
. (5.9)

Substituting Eq. 5.8 into Eq. 5.6 and using the similarity transformation
in Eq. 5.7, we have

M = A−1
1 KΛ12e

:f3(A2K−1z)+f4(A2K−1z)+...:K−1A2. (5.10)
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The coefficients of the Lie operator in the exponential defines all driving
terms of resonances between points 1 and 2. For example, the term with
indexes of (3, 0, 0, 0, 0, 0) or (0, 3, 0, 0, 0, 0) leads to the 3νx resonance.

As one can see from Eq. 5.10, it is rather simple to calculate the third
and fourth order driving terms along the entire ring. Here is a practical
procedure:

• search the closed orbit at the beginning;

• initialize an identity map with respect to the closed orbit;

• propagate the transfer map to the next element;

• perform the Dragt-Finn factorization to find f3 and f4;

• apply transformation A† and then K−1 to f3 and f4;

• write out the result and loop back to the third item until the end.

This procedure, along with the transfer maps of the solvable Hamiltonian
system discussed in the previous sections, has been recently implemented in
LEGO[7]. In the next section, we will apply this to analyze the nonlinearity
in storage rings.

6 Application

PEP-X[15] is a possible future synchrotron light source residing in the exist-
ing PEP tunnel at SLAC. After several years of study, a baseline design[16]
was recently completed. The design promises photon beams that achieve a
brightness of 1022 (ph/s/mm2/mrad2/0.1% BW) at 10 keV in a conventional
planar undulator. In this paper, we will use a simplified lattice, entirely made
with theoretical minimum emittance (TME) cells in the arcs, to study the
dynamics of a charged particle.

The TME cell phase advances are chosen to be, µx = 1350 and µy = 450,
so that all third-order geometrical aberrations generated by sextupoles are
canceled within an achromat[17], which consists of eight cells that make a
identity transformation in both the horizontal and vertical planes. Higher
phase advance in the horizontal plane is necessary to make lower emittance.

†propagated as a linear map as well
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The choice of phase advances also helps to reduce the chromatic betatron
beating. The optics of one TME cell is shown in Fig. 2. The polarity of
quadrupoles is selected to efficiently reduce the emittance without too much
focusing. Bending magnets are made as long as reasonably possible in order
to maximize the momentum compaction factor for a longer bunch length and
to minimize the emittance. As one can see in Fig. 2, there are two families
of sextupoles placed symmetrically for chromaticity correction.

Figure 2: Optics functions in one TME cell.

Each arc consists of four achromats and ends with a dispersion suppres-
sor. The ring has six identical arcs interconnected with six straight sections
equipped with simple FODO cells without any dispersions. The main pa-
rameters of the storage ring are tabulated in Table 1.

In this study, we set the strengths of sextupoles in the two families to zero
out the linear chromaticity in the ring and then carried out the procedure
outlined in the end of the previous section. For the third-order resonances,
the contribution of sextupoles to all driving terms along the PEP-X storage
ring are plotted in Fig. 3. As one can see from the figure, they are all
canceled out within each achromat (made with eight cells), as predicted by
the theorem[17]. This servers as a good benchmark of the code versus the
analytical perturbation theory.

For the fourth-order resonances, we find similar cancelations as shown
in Fig. 4 except for one resonance: 2νx + 2νy = 258. These accidental
cancelations can not be explained by the first-order perturbation theory[17].
However, they are confirmed by applying the CBH theorem and computing
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Table 1: Main parameters of a design of PEP-X as an ultra-low emittance
storage ring.

Parameter Description Value
E0 [GeV] beam energy 4.5
C [m] circumference 2199.32
ϵx [pm-rad] horizontal emittance 94.6
τt [ms] damping time 202
νx,νy,νs tunes 89.66, 39.57, 0.003
ξx, ξy natural chromaticity −149.62, −64.12
αc momentum compaction 7.58× 10−5

σz [mm] bunch length 3.00
σe/E energy spread 3.6× 10−4

U0 [MeV] energy loss per turn 0.33
VRF [MV] RF voltage 1.16

the Poisson brackets of Hs (Eq. 4.5) for all pairs of sextupoles inside the
achromat. Due to space limitations, the analytic calculation based on the
Lie algebraic method will be reported elsewhere.

In order to cancel the only remaining driving term of the resonance
2νx+2νy in the entire ring, we adjusted the phase advances in three straight
sections so that the term was eliminated in a pair of arcs. Finally, we de-
veloped a lattice without any geometrical resonance excitations up to fourth
order. However, it is worth to noting that there are still three terms of geo-
metric aberrations in f4. They do not drive any resonances but generate the
changes of betatron tunes.

To investigate if the elimination of the resonance terms has any positive
effect on the dynamic aperture, we scanned the betatron tunes within one
unit in the horizontal and vertical planes. At every point in the tune plane,
we tracked the on-momentum particles up to a thousand turns and determine
the dynamic apertures in x, y, and diagonal directions. The scanning result
of the minimum aperture in the three directions is shown in Fig. 5. Some
residual effects of the resonance 2νx + 2νy = 258 are clearly seen in the
figure. This might be a deficiency of the long range cancelation between the
two arcs in which the driving term has been built up significantly. There
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Figure 3: All third-order resonances driven by sextupole magnets.
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Figure 4: Fourth-order resonances driven by sextupole magnets.

were no identifiable degradations due to the other third and fourth order
resonances. Clearly, this achromatic lattice has good dynamic apertures in
a large area in the tune plane.

In order to see the degradation of dynamic aperture when the driving
terms are not minimized, we increased in the phase advance by 50 in both
planes in the cell, rematched the lattice, and corrected the linear chromaticity.
As a result of this change, we violated the conditions of being an achromat.
We scanned the dynamic aperture for the detuned lattice. The result of this
is shown in Fig. 6 for a comparison to Fig. 5. One sees that a large area of
tune space is wiped out by the strong horizontal resonances. A similar result
was found for a lattice with 50 decrease in the phase advances.
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Figure 5: Dynamic aperture (in unit of σ of a beam with emittance ϵx =
ϵy = 100 pm-rad) as a function betatron tunes for the achromatic lattice of
PEP-X.

7 Discussion

Our results clearly show that the lattice built with achromats has much
more operating space in the tune plane due to many cancelations of the
driving terms of low-order resonances. We have found that the additional
cancelations of the 4th-order driving terms in the achromat are very general.
They do not depend on a particular type of cell, not on the number of
sextupole families , not on the positions of sextupoles, and not even on their
strengths and lengths. All these freedoms can be used to further optimize
tune shifts, chromaticity, and dynamic aperture.

Obviously, the methods developed in this paper can also be applied to pro-
ton storage rings, where the symplecticity is much more important. However,
in proton machines, sextupoles might not be the only dominate sources of
nonlinearity as in electron rings (especially at a limit of ultra-low emittance).
For example, the multipole errors in the dipole magnets may be necessary for
the study of the resonance driving terms and the dynamic aperture. Even for
this complicated situation, our method of calculating driving terms is still
applicable. Moreover, our method of analysis can also be used in a single-pass
system when an initial map is given.
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100 pm-rad) as a function betatron tunes for a lattice with an increase of 50

in phase advances per cell.
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