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1. Introduction

The simulation of hard QCD radiation in parton-shower Monte Carlos has seen tremendous
progress over the last years. It was largely stimulated by the need for more precise predictions at
LHC energies where the large available phase space allows additional hard QCD radiation along-
side known Standard Model processes or even signals from new physics.

Two types of algorithms have been developed, which allow to improve upon the soft-collinear
approximations made in the parton shower, such that hard radiation is simulated according to exact
matrix elements. In the ME+PS approach [1] higher-order tree-level matrix elements for different
final-state jet multiplicity are merged with each other and with subsequent parton shower emissions
to generate an inclusive sample. Such a prescription is invaluable for analyses which are sensitive
to final states with a large jet multiplicity. The only remaining deficiency of such tree-level cal-
culations is the large uncertainty stemming from scale variations. The POWHEG method [2] solves
this problem for the lowest multiplicity subprocess by combining full NLO matrix elements with
the parton shower. While this leads to NLO accuracy in the inclusive cross section and the exact
radiation pattern for the first emission, it fails to describe higher-order emissions with improved
accuracy. Thus it is not sufficient if final states with high jet multiplicities are considered.

With the complementary advantages of these two approaches, the question arises naturally
whether it would be possible to combine them into an even more powerful one. Such a combined
algorithm was independently developed in [5] and [6]. Here a summary of the algorithm is given
and predictions from corresponding Monte-Carlo predictions are presented.

2. The MENLOPS formalism

To combine both, the ME+PS and POWHEG method, one has to work out how they contribute
to a cross section including up to the first emission off a given core process. All further emissions
are not affected by the POWHEG approach, and can thus be treated as before in ME+PS.

The master formula for the expectation value of an observable in the POWHEG method contains
two terms contributing to the cross section at NLO and can be written down in a simplified form
(for details the reader is referred to [2], [4]):

〈O〉POW = ∑
i

∫
dΦB B̄i(ΦB)

[
∆̄i(t0)O(ΦB)︸ ︷︷ ︸

no emission

+∑
j

∫
t0

dΦR|B
R j(ΦR)

Bi(ΦB)
∆̄i(t)O(ΦR)︸ ︷︷ ︸

resolved emission

]
, (2.1)

where B̄i(ΦB) is the differential cross section at NLO for the Born phase-space configuration ΦB

and ∆̄i(t) = exp
{
−∑ j

∫
t dΦR|B Rj/Bi

}
is the matrix-element-corrected Sudakov form factor. The

indices i and j label parton configurations, see [4]. The radiative phase space ΦR|B is parametrised
by variables in a parton-shower picture, including the ordering variable t which is bounded from
below by the cut-off t0 ∼ Λ2

QCD, regularising the integral.
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The same quantity can be calculated in the ME+PS approach again only taking into account
the first emission:

〈O〉ME+PS = ∑
i

∫
dΦB Bi(ΦB)

[
∆i(t0)O(ΦB)︸ ︷︷ ︸

no emission

+∑
j

∫
t0

dΦR|B

×
(

Θ(Qcut−Q)
8παs

t
KR j|Bi

LR j

LBi︸ ︷︷ ︸
PS domain

+Θ(Q−Qcut)
R j(ΦR)

Bi(ΦB)︸ ︷︷ ︸
ME domain

)
∆i(t)O(ΦR)

]
.

(2.2)

The term for resolved emissions is now separated into the “ME domain” and “PS domain” and de-
scribes the probability of additional QCD radiation according to the real-radiation matrix elements
and their corresponding parton-shower approximations, respectively. KR j|Bi denote the evolution
kernels of the parton shower and LR j/Bi are the parton luminosities of the real-emission and the
underlying Born configurations. The Sudakov form factor ∆i(t) is given by the parton shower and
does not include matrix-element corrections, in contrast to ∆̄i(t) in Eq. (2.1).

The MENLOPS approach then combines the two above equations:

〈O〉MENLOPS =∑
i

∫
dΦB B̄i(ΦB)

[
∆̄i(t0)O(ΦB)︸ ︷︷ ︸

no emission

+∑
j

∫
t0

dΦR|B
R j(ΦR)

Bi(ΦB)

×
(

Θ(Qcut−Q) ∆̄i(t)︸ ︷︷ ︸
PS domain

+Θ(Q−Qcut)∆i(t)︸ ︷︷ ︸
ME domain

)
O(ΦR)

]
.

(2.3)

The cross section of such a sample is determined by the NLO weight B̄ as in POWHEG and could
only be modified due to the appearance of ∆i(t) instead of ∆̄i(t) in the “ME domain”. Expanding
the induced correction factor ∆̄i(t)/∆i(t) to first order reveals that Eq. (2.3) automatically yields
next-to-leading order accurate predictions for any infrared and collinear safe observable O. At the
same time it becomes straightforward to include higher-order tree-level matrix elements to improve
the description of high-multiplicity jet final states.

3. Results

The following collection of results showcases the improved description of experimental data
as well as the significant difference to pure POWHEG samples due to the improved description of
additional hard radiation. We employ the Monte-Carlo event generator SHERPA [3], which provides
automated implementations of both ME+PS merging and the POWHEG algorithm as reformulated
in [4]. Fig. 1 displays results for electron-positron annihilation into hadrons at

√
s =91.25 GeV. In

both, the jet resolution distribution for 5→ 4 clusterings in the Durham algorithm and the KSW
angle between the four hardest jets, the improved description from exact matrix elements includ-
ing all correlations is exemplified. Results for deep-inelastic lepton-nucleon scattering (DIS) are
presented in Fig. 2. We show the pseudorapidity difference between the forward and backward
jet in dijet events. Since these distributions are differential in the jet transverse energy in the Breit
frame, they provide an excellent test of the correct simulation of jet activity in the Monte-Carlo. We
observe a drastic difference between the POWHEG and MENLOPS predictions. Only the improved
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Figure 1: Jet resolution for 5→ 4 clusterings in the Durham algorithm (left) and KSW angle between the
four hardest jets (right) in e+e−→ hadrons at

√
s =91.25 GeV.
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Figure 2: Pseudorapidity difference between the forward and backward jet in DIS dijet events for e+p→
e++jets at

√
s = 300 GeV.

simulation of additional hard QCD radiation through the MENLOPS approach allows to achieve
agreement with experimental data. For jet production in association with a Drell-Yan lepton pair at
Tevatron Run 2 energies one can find similar results in Fig. 3. Both, the inclusive jet multiplicity
as well as the azimuthal separation of the lepton pair and the leading jet are described significantly
better when higher-multiplicity matrix elements are included. Turning to predictions for the LHC,
Fig. 4 shows the scalar sum of missing ET and transverse momenta of jets and leptons as well
as the azimuthal decorrelation between the leading and second leading jet in W+W− production.
Both observables are significantly influenced by final states with many jets, and thus show a strong
difference between the POWHEG and MENLOPS results. For all processes investigated here, the
results of the tree-level ME+PS approach resemble the features of the MENLOPS results as long
as they are multiplied with a global K-factor as indicated in the plot legends.
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Figure 3: Inclusive jet multiplicity (left) and azimuthal separation of lepton pair and leading jet (right) in
p̄p→ ``+jets at

√
s =1.96 TeV
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Figure 4: Scalar sum of missing ET and transverse momenta of jets and leptons (left) and azimuthal decor-
relation between leading and second leading jet (right) in pp→W+W−+jets at

√
s =14 TeV
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