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Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons
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Sezione di Cagliari, I-09042 Monserrato (CA), Italy

(Dated: November 19, 2010)

We show that the unmeasured distribution of linearly polarized gluons inside unpolarized hadrons
can be directly probed in jet or heavy quark pair production both in electron-hadron and hadron-
hadron collisions. We present expressions for the simplest cos 2φ asymmetries and estimate their
maximal value in the particular case of electron-hadron collisions. Measurements of the linearly
polarized gluon distribution in the proton should be feasible in future EIC or LHeC experiments.
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Although quarks and gluons are confined within
hadrons, tests of their fundamental properties are pos-
sible through scattering processes. It has become clear
that quarks are in general spin-polarized within unpo-
larized hadrons, with polarization directions and magni-
tudes that depend on their transverse momentum and
flavor. This nontrivial feature of hadron structure shows
itself through specific angular asymmetries in scatter-
ing processes [1–3] that have been studied in a num-
ber of experiments [4–7]. Quark spin-polarization is also
supported by first-principle lattice QCD calculations [8].
What has received much less attention is that gluons can
exhibit a similar property, i.e. they can be linearly po-
larized inside an unpolarized hadron. In this letter we
propose measurements which are directly sensitive to this
unexplored gluon distribution.

Thus far experimental and theoretical investigations
of gluons inside hadrons have focussed on their momen-
tum and helicity distributions. The gluon density g(x)
describing the distribution of unpolarized gluons with a
collinear momentum fraction x in an unpolarized hadron,
integrated over transverse momentum p

T
, has been ex-

tracted with considerable precision from measurements of
high energy electron-proton collisions at HERA (DESY).
This distribution enters the structure function FL in in-
clusive deep inelastic scattering (DIS) at order αs, and
it drives the evolution of sea quark distributions at small
values of x. The unintegrated gluon distribution g(x,p2

T
)

enters less inclusive reactions where the transverse mo-
mentum of the gluons is taken into account, such as semi-
inclusive deep inelastic scattering or dijet production in
hadronic collisions. In these cases the gluons are not
necessarily unpolarized, even if the parent hadron itself
is unpolarized. In fact, because of their spin-orbit cou-
plings, the gluons can obtain a linear polarization.

Information on linearly polarized gluons in a hadron
is formally encoded in the hadron matrix element of a
correlator of the gluon field strengths Fµν(0) and F νσ(λ)

evaluated at fixed light-front time λ+ = λ·n = 0, where n
is a lightlike vector conjugate to the parent hadron’s four-
momentum P . Specifically, the gluon content of an un-
polarized hadron at leading twist (omitting gauge links)
for a gluon momentum p = xP + pT + p−n is described
by the correlator [9]

Φµν
g (x,p

T
) =

nρ nσ

(p·n)2
∫

d(λ·P ) d2λT

(2π)3
eip·λ

×〈P | Tr
[

Fµρ(0)F νσ(λ)
]

|P 〉
⌋

LF

=
−1

2x

{

gµν
T
fg
1 −

(

pµTp
ν
T

M2
+ gµν

T

p2
T

2M2

)

h⊥ g
1

}

, (1)

with p2
T
= −p2

T
, gµνT = gµν − Pµnν/P ·n − nµP ν/P ·n.

This defines the transverse momentum dependent dis-
tribution functions (TMDs) fg

1 (x,p
2
T
) representing the

unpolarized gluon distribution, at fixed light-front time
whereas h⊥ g

1 (x,p2
T
) is the quadrupole distribution for

linearly polarized gluons in an unpolarized hadron. It
is named h⊥ g

1 , because of its resemblance to the trans-
versely polarized quark distribution inside an unpolarized
hadron h⊥ q

1 (also frequently referred to as Boer-Mulders
function) [1]. There are notable differences though: the

T -odd distribution h⊥ q
1 for quarks is a chiral-odd distri-

bution (chirality-flip) and it is also odd in pT (it enters as
a rank 1 tensor). It is zero in the absence of initial or final
state interactions (ISI/FSI) [10–12]. The T -even distri-

bution h⊥ g
1 for gluons describes a ∆L = 2 helicity-flip

distribution, through a second rank tensor in the relative
transverse momentum pT (pT -even). Since an imaginary
phase is not required, it can in principle be nonzero in the
absence of ISI or FSI. Nevertheless, as any TMD, h⊥ g

1 can
receive contributions from ISI or FSI and therefore they
can be process dependent; in other words, non-universal.

Thus far no experimental studies of the function h⊥ g
1

have been performed. It has been pointed out [13] that it
contributes to the so-called dijet imbalance in hadronic
collisions, which is commonly used to extract the average
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partonic intrinsic transverse momentum. In this case, it
enters the observable as a convolution of two h⊥ g

1 func-
tions, similarly to the double Boer-Mulders effect which
leads to a large sin θ cos 2φ term and the leading-twist vi-
olation of the Lam-Tung relation in lepton pair produc-
tion [2, 3]. It is in principle possible to isolate the contri-

bution from the h⊥ g
1 functions by appropriate weighting

of the planar angular distribution, but that is likely too
difficult to do in practice.
Given its unique nature, it would be very interesting

to obtain an extraction of h⊥ g
1 in a simple manner. This

is possible, since unlike h⊥ q
1 , it does not need to appear

in pairs. In this letter we will discuss several new ways
to extract the linear gluon polarization from observables
that involve only a single h⊥ g

1 and, in principle, allow a
check of its dependence on ISI or FSI.
The first processes we will consider are semi-inclusive

DIS to two heavy quarks or to two jets: e p → e′QQ̄X
and e p → e′ jet jetX . Since these involve final-state
heavy quarks or jets, they require high energy colliders,
such as a future Electron-Ion Collider (EIC) or the Large
Hadron electron Collider (LHeC) proposed at CERN.
First we consider the electroproduction of heavy

quarks, e(ℓ)+h(P ) → e(ℓ′)+Q(K1)+Q̄(K2)+X , where
the four-momenta of the particles are given within brack-
ets, and the quark-antiquark pair in the final state is al-
most back-to-back in the plane perpendicular to the di-
rection of the exchanged photon and hadron. The calcu-
lation proceeds along the lines explained in Refs. [13, 14].
We obtain for the cross section integrated over the angu-
lar distribution of the back-scattered electron e(ℓ′):

dσ

dy1 dy2 dy dxB d2qT
d2K⊥

= δ(1− z1 − z2)

× α2αs

πsM2
⊥

(1 + yxB)

y5xB

[

A+
q2

T

M2
B cos 2(φT − φ⊥)

]

. (2)

This expression involves the standard DIS variables:
Q2 = −q2, where q is the momentum of the virtual pho-
ton, xB = Q2/2P · q, y = P · q/P · ℓ and s = (ℓ + P )2 =
2 ℓ·P = 2P ·q/y = Q2/xBy. Furthermore, we have for the
jet momenta K2

i⊥ = −K
2
i⊥ and introduced the rapidi-

ties yi for the jet momenta (along photon-target direc-
tion). We denote the heavy (anti)quark mass with MQ.
For the partonic subprocess we have p + q = K1 + K2,
implying z1 + z2 = 1, where zi = P · Ki/P · q. We
introduced the sum and difference of the transverse jet
momenta, K⊥ = (K1⊥ −K2⊥)/2 and qT = K1⊥ + K2⊥

with |qT | ≪ |K⊥|. In that situation, we can use the
approximate transverse jet momenta K1⊥ ≈ K⊥ and
K2⊥ ≈ −K⊥ denoting M2

i⊥ ≈M2
⊥ =M2

Q+K2
⊥. The az-

imuthal angles of q
T
and K⊥ are denoted by φT and φ⊥,

respectively. The functions A and B in general depend
on xB , y, z(≡ z2), Q

2/M2
⊥,M

2
Q/M

2
⊥, and q2

T
.

The explicit expressions for the angular independent
part A involving only fg

1 will be presented elsewhere,

along with other results. For the coefficient B of the
cos 2(φT − φ⊥) angular distribution we obtain

Beh→eQQ̄X =
∑

Q

e2Q h
⊥ g
1 (x, q2

T
)Beg→eQQ̄ , (3)

with

Beg→eQQ̄ =
1

2

z(1− z)

D3

(

1−
M2

Q

M2
⊥

)

a(y)

×
[

(

2 z(1− z) b(y)− 1
) Q2

M2
⊥

+ 2
M2

Q

M2
⊥

]

, (4)

where the denominator D is defined as

D ≡ D

(

z,
Q2

M2
⊥

)

= 1 + z(1− z)
Q2

M2
⊥

, (5)

and we have introduced the following functions of y,

a(y) = 2− y(2− y) , b(y) =
6− y(6− y)

2− y(2− y)
. (6)

One observes that the magnitude B of the cos 2φ asym-
metry, where φ = φT−φ⊥, is determined by h⊥ g

1 and that
if Q2 and/orM2

Q are of the same order as K2
⊥, the coeffi-

cient B is not power suppressed. Since h⊥ g
1 is completely

unknown, we estimate the maximum asymmetry that is
allowed by the bound:

|h⊥ g(2)
1 (x)| ≤ 〈p2

T
〉

2M2
fg
1 (x) , (7)

that we derived from the spin density matrix given in
[9] in the way presented in Ref. [15]. The superscript
(2) denotes the n = 2 transverse moment. Trans-
verse moments of TMDs are defined as: f (n)(x) ≡
∫

d2p
T

(

p2
T
/2M2

)n
f(x,p2

T
). If we select Q2 = M2

Q =

K2
⊥/4, y1 = y2, the asymmetry ratio

∣

∣

∣

∣

∫

d2q
T
q2

T
cos 2(φT − φ⊥) dσ

∫

d2q
T
q2

T
dσ

∣

∣

∣

∣

=

∫

dq2
T
q4

T
|B|

2M2
∫

dq2
T
q2

T
A
, (8)

is maximally around 13%, which we view as encouraging.
If one keeps the lepton plane angle φℓ, there are other

azimuthal dependences, such as a cos 2(φℓ−φT ), but the
bound on the latter is at least a factor of 6 smaller than
on cos 2(φT − φ⊥).
The cross section for the process e h → e′ jet jetX

can be calculated in a similar way. The correspond-
ing expressions can be obtained from Eqs. (3) and (4)
with MQ = 0. One can then also replace the rapidities
of the outgoing particles, yi, with the pseudo-rapidities
ηi=− ln

[

tan(12θi)
]

, θi being the polar angles of the final
partons in the virtual photon-hadron cms frame.
We note that the measurement or reconstruction of

the transverse momenta of the jets or heavy quarks is
essential. Here it is assumed that the individual jet
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or heavy quark transverse momenta Ki⊥ can be recon-
structed with an accuracy that is better than the magni-
tude of the sum of the transverse momenta K1⊥ +K2⊥.
Furthermore, we point out that an analogous asymme-
try arises in QED, in the ‘tridents’ processes ℓe(p) →
ℓµ+µ−e′(p′ orX) or µ−Z → µ−ℓℓ̄Z [16–19]. This could
be described by the distribution of linearly polarized pho-
tons inside a lepton, proton, or atom. QCD adds the
twist that for gluons inside a hadron, ISI or FSI can con-
siderably modify the result depending on the process.

Next we consider heavy quark production in hadronic
collisions: p p → QQ̄X . This does involve convolutions
of two TMDs, but still in some cases only a single h⊥ g

1

appears, thereby avoiding a double suppression, assum-
ing the function to be considerably smaller than the un-
polarized gluon TMD. Here we have BNL’s Relativistic
Heavy Ion Collider (RHIC) and CERN’s LHC in mind,
but the measurements can equally well be done at Fer-
milab’s Tevatron in p p̄→ QQ̄X .

The cross section for the process

h1(P1)+h2(P2)→Q(K1)+Q̄(K2)+X (9)

can be written in a way similar to the hadroproduction
of two jets discussed in Ref. [13], in the following form

dσ

dy1dy2d2K1⊥d2K2⊥
=

α2
s

sM2
⊥

×
[

A(q2
T
) +B(q2

T
)q2

T
cos 2(φT − φ⊥)

+ C(q2
T
)q4

T
cos 4(φT − φ⊥)

]

. (10)

Besides q2
T
, the terms A, B and C depend on other kine-

matic variables often not explicitly indicated, i.e. on z,
M2

Q/M
2
⊥ and on x1, x2, which are given by:

xi =
1√
s

(

M1⊥ e
σiy1 +M2⊥ e

σiy2

)

, (11)

with σ1 = +1 and σ2 = −1.

The terms A, B, and C contain convolutions of various
TMDs. Schematically,

A : f q
1 ⊗ f q̄

1 , f
g
1 ⊗ fg

1 ,

B : h⊥ q
1 ⊗ h⊥ q̄

1 ,
M2

Q

M2
⊥

fg
1 ⊗ h⊥ g

1 ,

C : h⊥ g
1 ⊗ h⊥ g

1 .

Terms with higher powers in M2
Q/M

2
⊥ are left out. The

convolutions h⊥ q
1 ⊗ h⊥ q̄

1 in B and h⊥ g
1 ⊗ h⊥ g

1 in C have
already been addressed in [13] for dijet production. Here
we will focus on B, for which we find:

B = Bqq̄→QQ̄ + (M2
Q/M

2
⊥)Bgg→QQ̄ , (12)

where

Bqq̄→QQ̄ =
N2 − 1

N2
z2(1− z)2

(

1−
M2

Q

M2
⊥

)

×
[

Hqq̄(x1, x2, q
2
T
) +Hq̄q(x1, x2, q

2
T
)

]

, (13)

Bgg→QQ̄ =
N

N2 − 1
B1Hgg(x1, x2, q

2
T
) , (14)

with N being the number of quark colors and

B1 = z(1−z)
(

z2 + (1− z)2 − 1

N2

)

(

1−
M2

Q

M2
⊥

)

. (15)

Instead of presenting the convolution expressions for Hqq̄

and Hgg, we consider here the expressions which appear
in the q2

T
/M2-weighted cross section (cf. [13]), for M1 =

M2 =M . We encounter weighted integrals,

π

∫

dq2
T

(

q2
T

M2

)

q2
T
Hqq̄(x1, x2, q

2
T
) =

8
∑

flavors

h
⊥q(1)
1 (x1)h

⊥q̄(1)
1 (x2) , (16)

already discussed in [13], and

π

∫

dq2
T

(

q2
T

M2

)

q2
T
Hgg(x1, x2, q

2
T
) =

4
(

h
⊥g(2)
1 (x1) f

g
1 (x2) + fg

1 (x1)h
⊥g(2)
1 (x2)

)

. (17)

The bound in Eq. (7) can again be used in the last ex-
pression to obtain the maximal asymmetry. Whether
it is more important than the term in Eq. (16) depends
strongly on the considered values of xi andM

2
Q/M

2
⊥, and

on whether one deals with p p or p p̄. In p p̄ collisions and
for K2

⊥ not too large compared to M2
Q, the contribution

from h⊥ g
1 is expected to be the dominant one. The im-

portance of the contribution from h⊥ q
1 can be assessed

through a comparison to photon-jet production [14].
In Fig. 1 the origin of the factorM2

Q/M
2
⊥ in the contri-

bution of h⊥ g
1 to B is explained by a comparison to the

ep case where it is absent.
We have not yet addressed the effects from the gauge

link appearing in the correlator in Eq. (1). Even in
relatively simple processes such as those discussed in
this paper, they lead to different color flow factors
for different diagrams in the partonic subprocess [20–
22]. There are actually two different T -even four-gluon
soft gluon pole matrix elements and hence functions

h
⊥g(2)
1 (x), with color structures fabe fcde and dabe dcde, re-

spectively [21, 23]. In the e q → e′ q Q Q̄ subprocess only
the matrix element with the f f -structure appears, while
in the g g → QQ̄ subprocess the d d-structure dominates
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FIG. 1: Examples of subprocesses contributing to the cos 2φ
asymmetries in e p → e′ QQ̄X and p p → QQ̄X, respec-
tively. As the helicities of the photons and gluons indicate,
the latter process requires helicity flip in quark propagators
resulting in an M2

Q/M
2

⊥ factor.

(the ff -contribution is suppressed by 1/N2). Hence, al-

though h⊥ g
1 does not require ISI or FSI to be nonzero, a

process dependence is expected.

The four-gluon operator associated with h
⊥ g(2)
1 leads

to a process-dependent pT broadening [24–26]. We
thus expect the broadening ∆p2

T
in SIDIS, (∆p2

T
)DIS ≡

〈p2
T
〉eA − 〈p2

T
〉ep, to be different from the one in hadron-

hadron collisions, (∆p2
T
)hh ≡ 〈p2

T
〉pA − 〈p2

T
〉pp.

As a final point we comment on single transverse spin
asymmetries (AN ) in heavy quark production processes.
Spin-dependent ISI and FSI in AN have been considered
in Ref. [27]. It was concluded that no such effects arise
in C-odd c c̄ meson production, such as J/ψ production.
Open charm, on the other hand, does allow one to probe
ISI or FSI. The asymmetry AN in D-meson production
has been studied in [28–30] in terms of triple-gluon soft
gluon pole correlators and in [31] in terms of the gluon
Sivers effect. Because there are two different (f and d
type) correlators to consider, the single-spin asymmetries
in D and D̄ meson production are found to be different.
In contrast, in the unpolarized scattering case considered
in this letter this problem does not arise, since only one
operator contributes or dominates.
In summary, measurements of the azimuthal asymme-

try of jet or heavy quark production in e p and in p p
or p p̄ collisions can directly probe the quadrupole dis-
tribution for linearly polarized gluons inside unpolarized
hadrons. From a theoretical viewpoint these asymme-
tries are among the simplest TMD observables since the
number of partonic subprocesses is in each case limited
to just one type. This avoids having to consider com-
plicated linear combinations of initial and final-state in-
teractions. The relative simplicity of the proposed mea-
surements (polarized beams are not required) suggests a
promising prospect for the extraction of this gluon dis-
tribution in the future.
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