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The LHC RF station-beam interaction strongly influences the longitudinal beam dynamics, both
single bunch and collective effects. Non-linearities and noise generated within the Radio Frequency
(RF) accelerating system interact with the beam and contribute to beam motion and longitudinal
emittance blowup. Thus, the noise power spectrum of the RF accelerating voltage strongly affects
the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly
affected by the RF components and the configuration of the Low Level RF (LLRF) feedback loops.
In this work we present a formalism relating the longitudinal beam dynamics with the RF system
configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal
sensitivity to various LLRF parameters and configurations.
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I. INTRODUCTION

The LHC RF system consists of 8 RF stations per
beam. The RF system accelerates the beam during the
ramp, compensates the small energy losses during coast-
ing, and also provides longitudinal focusing. The beam
and the RF station are two dynamic systems with a
strong interaction, which complicates stability consid-
erations for the composite system. A simplified block
diagram of the LHC RF system is shown in Figure 1.
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FIG. 1. (Color) Simplified LHC RF block diagram.

Each RF station includes an accelerating super-
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conducting cavity, a 330 kW klystron, and the LLRF
system consisting of the klystron polar loop and
the impedance control feedback system. The super-
conducting cavity has an R/Q of 45, a resonance fre-
quency of 400.8 MHz, and a mechanical tuner with a
100 kHz range. The cavity voltage and loaded quality
factor QL are set to 1 MV and 20,000 respectively dur-
ing injection and to 2 MV and 60,000 during physics, for
nominal intensity beams. The klystron polar loop used at
the LHC acts around the klystron to reject power supply
perturbations and compensate the gain and phase shift
of the non-linear klystron at low frequencies for differ-
ent operation points. The feedback system controls the
accelerating fundamental impedance of the RF station
to achieve longitudinal stability. It incorporates digital
and analog paths, as well as the 1-Turn feedback (comb),
which acts to reduce the impedance at the synchrotron
sidebands.
Single-bunch longitudinal emittance growth as well as

beam stability related to collective effects are examined
in this paper. Both of these longitudinal dynamics effects
are strongly coupled to the effective impedance of the
RF station and the configurations of the feedback loop.
The RF configuration is defined by the design choices of
components and signal levels, as well as the operational
choices of variable parameters. Different approaches on
the component and parameter selection can have a sig-
nificant effect on the stability and characteristics of the
beam.
In this work, the LHC LLRF system has been mod-

eled with the existing technology implementation. The
effect of the operational choices on controller settings is
then investigated. The objective of this work is to verify
high-current and upgraded operating conditions of the
LHC, study optimal configuration techniques to achieve
minimum RF station effective impedance, estimate noise
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and stability limits of the system, and possible impacts
of technical aspects of the implementation. An ultimate
goal is to use this knowledge to build a base of future
impedance-controlled RF and LLRF system techniques
for future and upgrades of existing machines.
Section II outlines the major noise sources of the sys-

tem and defines their relationship with the RF accelerat-
ing voltage noise. In Section III a quantitative descrip-
tion of the relationship between the noise spectral density
and the longitudinal beam emittance will be presented,
as a function of the RF loop configuration and the system
noise. With this formalism and the simplification from
Section II, it is then possible to study the single bunch
dynamics for RF configurations of interest, as shown in
Section IV. The stability criterion for coupled-bunch in-
stabilities, the estimated growth rates, and the sensitivity
of collective effects on the RF parameters are discussed
in Section V.

II. NOISE SOURCES

The single bunch longitudinal emittance growth
greatly depends on the noise level in the RF acceler-
ating voltage. The major noise sources in the RF sys-
tem include components in the LLRF boards, the RF
reference (local oscillator), the klystron driver amplifier,
the klystron power supply, low frequency sources (mi-
crophonics, ground vibrations, cooling system etc.), the
effect of the non-uniform beam current on the RF cavity
voltage, and more. The spectrum of these sources spans
from very low to very high frequencies.
The models presented in this paper work for both low

frequency and wideband sources. Initial measurements
suggest that the LLRF noise contributions are indeed
wideband, but that there are also significant contribu-
tions from the RF reference (local oscillator) at low fre-
quencies. The quantitative results presented in this paper
assume wideband sources for simplicity, in particular the
LLRF noise and the klystron driver amplifier, as shown
in Figure 2. The LLRF noise includes several contri-
butions such as the digital quantizing noise and arith-
metic noise in digital signal processing, thermal noise,
analog/digital demodulator, and modulator. Based on
an understanding of the engineering implementation of
the system, these sources can be considered broadband
and incoherent.
It should be noted that the klystron power supplies

introduce coherent noise at the 50 Hz harmonics in all
the stations. The synchrotron frequency crosses the 50
Hz line during the ramp, which can lead to a resonant
effect [1]. The longitudinal emittance growth formalism
presented in this work does not include this phenomenon.
The individual noise sources for the LLRF components

are distributed throughout the electronics of the system.
To be able to effectively study the various contributions,
it is helpful to concentrate them in two equivalent noise
sources located either at the input of the LLRF board,
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FIG. 2. (Color) Noise Sources. Blocks in red represent the
major noise sources, in blue are the equivalent noise sources
for simulations purposes, and the other components are shown
in green.

or the output of the klystron polar loop (the input of the
modulator), as shown in Figure 2. Both of these sources
are in baseband and can be modeled as two independent
sources in the in-phase (i) and quadrature (q) channels,
for a total of four noise sources.
The accelerating voltage noise is modeled in amplitude

acav(t) and phase φcav(t). To calculate the relationship
between an input vector perturbation at the mth source

nm(t) =

(

nm
i

nm
q

)

and the amplitude or phase of the cavity voltage we lin-
earize the response of the RF station around the oper-
ation point and determine the impulse response hm(t)
between the output and the input

(

amcav(t)
φm
cav(t)

)

=

[

hm
ai hm

aq

hm
φi hm

φq

]

∗
(

nm
i

nm
q

)

(t)

=

(

hm
a

hm
φ

)

∗ nm(t)

where ∗ denotes convolution and hm
a = [hm

ai hm
aq] and

hm
φ = [hm

φi h
m
φq].

Since the system is linear, we can use superposition to
get

(

acav(t)
φcav(t)

)

=
∑

m

(

hm
a

hm
φ

)

∗ nm(t) (1)

where the summation is over all the noise sources. The
impulse responses hm(t) depend on the operational con-
figuration of the RF station.

III. FORMALISM FOR BUNCH LENGTH

ESTIMATION

During a long store, the bunch energy spread and lon-
gitudinal emittance shrink due to the small synchrotron
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radiation damping, whereas any noise injected in the
accelerating RF voltage leads to longitudinal emittance
blowup. Optimally, these two mechanisms should bal-
ance and the beam should keep a constant bunch length.
In this Section, a formalism relating the bunch emittance
growth with the noise in the accelerating voltage is pre-
sented. The accelerating voltage depends strongly on the
configurations of the RF station and the LLRF feedback
systems.
Following [2] it can be shown that the longitudinal

equations of beam motion are

φ̇ =
ηωRF

Eo

ǫ

ǫ̇ =
1

To

[qVo sin (φs + φ)− Urad(ǫ + Eo)] (2)

where φ, ǫ are the phase and energy of the particles with
respect to the synchronous particle, the RF voltage is
VRF = Vo sin(φs + φ), η is the slip factor, Eo the beam
energy, To the revolution period, q the charge of a proton,
ωRF the angular RF frequency, φs the phase of the syn-
chronous particle, and Urad(E) the synchrotron radiation
energy emitted by a particle of energy E over a turn. It
should be noted that even though this equation is defined
for a single particle, it extends to the whole multiparti-
cle bunch. This set of equations can be described as a
stochastic differential equation.
The cavity amplitude noise acav(t) and phase noise

φcav(t) are sampled by the beam with a period To re-

sulting in the perturbations a(t) and φ̃(t). In the pres-
ence of these perturbations, the beam motion Equation 2
becomes

φ̇ =
ηωRF

Eo

ǫ

ǫ̇ =
1

To

[qVo

(

1 + a(t)
)

sin
(

φs + φ− φ̃(t)
)

−

Urad(ǫ+ Eo)]

=
1

To

[qVo

(

1 + a(t)
)(

sin(φs) cos(φ− φ̃(t)) +

cos(φs) sin(φ − φ̃(t))
)

− Urad(ǫ + Eo)] (3)

For small energy oscillations, ǫ and φ are close to zero,
so it is possible to linearize around the synchronous par-
ticle coordinates. Then, Equation 3 becomes

ǫ̇ =
1

To

[qVo

(

sin(φs) + (φ− φ̃(t)) cos(φs) + a(t) sin(φs)
)

−Uo − ǫD]

=
1

To

[qVo

(

(φ− φ̃(t)) cos(φs) + a(t) sin(φs)
)

− ǫD] (4)

where D ≈ 2Uo/Eo with Uo the synchrotron radiation
of the synchronous particle, and qVo sin(φs) = Uo. The

second order perturbation term a(t)(φ−φ̃(t)) cos(φs) ≈ 0
has been dropped.
It is obvious from Equation 4 that the phase noise is

much more significant than the amplitude noise, since φs

is close to 180◦, so that

(φ− φ̃(t)) cos(φs) ≫ a(t) sin(φs)
)

.

Therefore, using Equations 2, 4, and assuming that the
amplitude noise is negligible, we get the linearized longi-
tudinal equations of motion:

φ̇ =
ηωRF

Eo

ǫ

ǫ̇ =
qV̇RF (0)

ωRFTo

(φ− φ̃(t))− D

To

ǫ (5)

where V̇RF (0) = ωRFVocos(φs) is the RF gradient for the
synchronous particle.
The particle beam samples the cavity phase noise

φcav(t) every revolution harmonic, so that

φ̃(t) =

∞
∑

k=−∞

δ(t− kTo)φcav(t)

=
∞
∑

k=−∞

δ(t− kTo)
∑

m

hm
φ ∗ nm(t)

according to Equation 1. To simplify the notation, and
since the noise sources are uncorrelated, the analysis is
carried using a generic representation for one of the terms
in the summation over m, so that

φ̃(t) =

∞
∑

k=−∞

δ(t− kTo)(hg ∗ ng)(t)

where (hg, ng) could be either (hφi, ni) or (hφq
, nq).

The approximation of the sampling by an impulse is still
valid for the ensemble of equations of all particles in a
bunch, since the 1 ns bunch is very fast compared to the
period of the loop dynamics (approximately 3 µs, since
the bandwidth of φcav is roughly 300 kHz).
To simplify the equations of motion, ǫ is transformed

to a normalized momentum p,

p =
ηωRF

Eo

ǫ

so that Equation 5 becomes

φ̇ = p

ṗ = −ω2

sφ− 2αp+ ω2

s φ̃(t) (6)

where

ωs = −

√

ηqV̇RF (0)

EoTo

α =
D

2To

.

The vector

X =

(

φ

p

)
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is defined, so that Equation 6 can be rewritten as

dX = AX(t)dt+ dv

where

A =

[

0 1
−ω2

s −2α

]

dv

dt
=

[

0
ω2

s

]

φ̃(t) = Kφ̃(t)

To estimate the bunch length σz , it is necessary to

determine the second order moment of φ, since

σz =
c

ωRF

σφ.

Following the procedure outlined in [3] and [4], the au-
tocorrelations of the perturbation Rφ̃φ̃ and output Rxx ,
as well as their crosscorrelation Rφ̃x are determined. It
should be noted that Rφ̃φ̃ and Rφ̃x are wide sense sta-
tionary.

Rφ̃φ̃(t2 − t1) = E[φ̃(t2)φ̃(t1)]

=
(

(

∞
∑

k=−∞

δ(t2 − kTo)hg(t2)
)

∗ E[ng(t2)ng(t1)] ∗
(

∞
∑

k=−∞

δ(t1 − kTo)hg(t1)
)

)

Rφ̃x(t2 − t1) =

∫ t1

−∞

E[φ̃(t2)φ̃(t1 − θ)](eAθ

[

0
ω2
s

]

)Tdθ

=

∫ t1

−∞

Rφ̃φ̃(t2 − t1 + θ)(eAθ

[

0
ω2
s

]

)Tdθ

=

∫ t1

−∞

Rφ̃φ̃(t2 − t1 − θ)(e−Aθ

[

0
ω2
s

]

)T dθ

Rxx(t2, t1) =

[

σ2

φ(t2, t1) E[φ(t2)p(t1)]
E[p(t2)φ(t1)] σ2

p(t2, t1)

]

=

∫ t2

−∞

eAθ

[

0
ω2
s

]

E[φ̃(t2 − θ)xT (t1)]dθ

=

∫ t2

−∞

eAθ

[

0
ω2
s

]

Rφ̃x(t2 − t1 − θ)dθ (7)

where E[x] denotes the expectation value of the random
variable x, eAθ is a matrix exponential, and AT indicates
the transpose of matrix A.
Since the system is linear and stable, the expressions in

Equation 7 converge to equilibrium values defined by the
noise power and synchrotron radiation damping. These
equilibrium values can be estimated by setting τ = t2−t1
and then taking the limit of Equation 7 as t1, t2 → ∞,
since Rxx is asymptotically wide sense stationary, to get

Rxx(τ) = eAτ ∗
[

0 0
0 ω4

s

]

Rφ̃φ̃(τ) ∗ e
−AT τ (8)

which gives the correlation matrix due to the noise per-

turbation filtered by both the RF station and the beam
dynamics. By applying the Fourier Transform to Rxx(τ)
from Equation 8 and substituting for the noise autocor-
relation Rφ̃φ̃(τ) from Equation 7, the power spectral den-

sity Sg(f) of X(t) due to the generic term is obtained

Sg(f) = BgSNg
(f)BH

g , (9)

where the superscript H denotes transpose complex con-
jugate, SNg

(f) = F(E[ng(t1)ng(t2)]), and Bg is given
by

Bg = (2πifI −A)−1

[

0 0
0 ω2

s

]

(

∞
∑

k=−∞

δ(f − kfrev)
)

∗Hg(f)

= (2πifI −A)−1

[

0 0
0 ω2

s

] ∞
∑

k=−∞

Hg(f − kfrev),
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where frev is the beam’s revolution frequency, Hg(f) =
F(hg(t)) is the frequency response of the RF station for
a particular source and channel, and (2πifI −A)−1 is a
matrix transfer function characterizing the beam filtering
of the noise spectrum.
Extending the analysis to all noise sources and chan-

nels, the total spectral density Sx(f) is given by

Sx(f) =
∑

m

(

Bm
i Sm

Ni
(f)(Bm

i )H +Bm
q Sm

Nq
(f)(Bm

q )H
)

.

(10)
Then, the square of the equilibrium bunch length σ2

z is
given by

σ2

z =
c2

ω2

RF

σ2

φ

= 2
c2

ω2

RF

[

1 0
0 0

]
∫ ∞

0

Sx(f)df (11)

since the autocorrelation Rxx(τ) is an even function.
It is obvious from Equations 10 and 11 that the bunch

length depends on the noise power spectrum injected, fil-
tered by the corresponding RF station and beam transfer
functions as intuitively expected. The aliasing effect of
the periodic sampling of the accelerating voltage signal
can also be seen. This aliasing effect practically folds the
bandwidth of the closed loop RF station response (≈ 300
kHz) on the band between DC and frev = 11.245 kHz.
The aliasing greatly enhances the effect of the noise on
the beam dynamics and multiplies the noise power spec-
trum by almost a factor of thirty. From this analysis it
also follows that the aliased and loop shaped noise power
spectral density at the synchrotron frequency fs is criti-
cal for the determination of the equilibrium bunch length,
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is at the synchrotron frequency of about 22 Hz for the physics
configuration. The resonance is even sharper during injection
due to the longer synchrotron radiation damping time.

as seen from the beam transfer function depicted in Fig-
ure 3, which shows the relationship between the beam
phase and the sampled cavity phase.
It should be noted that with this treatment, the indi-

vidual noise sources with power spectrum density SN (f)

can be shaped or colored noise sources. This is an ad-
vantage of this formalism over a similar analysis using
the Fokker-Planck equation, which cannot be extended
to colored noise sources, or to white noise sources shaped
by the dynamics of the RF station, as discussed in [5],
[6].
In this treatment we considered a single RF station.

It is obvious from this result that the equilibrium bunch
length will depend on the total power sampled by the
beam. By superposition, this will be equal to the sum
of the power introduced to the beam from all the RF
stations.

IV. AN APPLICATION TO SINGLE-BUNCH

DYNAMICS

Due to the very low synchrotron radiation of the pro-
tons in the LHC and the use of klystrons as final am-
plifiers in the RF stations, the LHC longitudinal beam
emittance greatly depends on RF station perturbations
and noise. Earlier studies [7] have determined the sub-
stantial variation of the LHC bunch length, but have con-
sidered the RF system as a generator in steady state. In
this work, RF dynamics are now included, as well as the
aliasing effect of the beam’s periodic sampling of the cav-
ity voltage on the noise power spectrum.
The equilibrium value of the bunch length can be cal-

culated by evaluating the integral of Sx(f) as shown in
Equation 11, by establishing the transfer function Hg(f)
for a given operation point, and using the known lin-
earized beam dynamics defined by matrix A and the in-
jected noise power spectral density SNg

.
Since it is impossible to separate the contributions to

the total cavity noise from the various noise sources and
channels, noise is only injected in one point at a time
during the simulations. For a given transfer function
Hg(f) it is then possible to determine the noise power
spectral density SNg

that will achieve σφ(∞) = σφ(0),
thus keeping the initial beam distribution during a store.
These values are a useful metric of the total power in-
jected to the beam for each channel and noise source.
Thus, they are significant of the relative importance of
all the sources. This is very helpful for the analysis of the
system performance, since all of the major noise sources
can be modeled by an equivalent white noise source in
the bandwidth of the RF loop.
As a result, different operation points provide differ-

ent noise levels at the accelerating voltage. The changes
of the RF station phase noise floor level due to differ-
ent settings of the LLRF feedback loops are studied, to
determine the sensitivity of the longitudinal beam emit-
tance on various RF parameters. With these results it
should be possible to determine in the future what techni-
cal components dominate the noise level and how changes
in digital quantizing choices and analog components im-
pact the emittance growth.



6

A. Transfer Function Estimation: Time-domain

Simulation

To determine the transfer function between the noise
sources and the phase of the RF accelerating voltage, a
time-domain simulation of the LHC RF station-particle
beam interaction is used [8]. The time-domain simulation
allows a simple representation of analog and digital com-
ponents, as well as the inclusion of non-linear elements.
By linearizing around each operation point, it is possi-
ble to determine the frequency domain transfer function.
The close relationship between the LHC and PEP-II RF
systems allows the use of previous experience and tools
from PEP-II operations on the LHC studies [9], [10]. De-
tailed descriptions of the systems have been presented for
PEP-II [9] and LHC [11].
The simulation captures the architecture, parameters,

technical implementation, nonlinearities and engineering
details of the LLRF and RF systems. Noise effects, quan-
tizing effects in digital systems, and dynamic range ef-
fects could also be introduced. All components shown in
Figure 1 are included in the simulation. Due to the com-
putation complexity, it is only reasonable to run the sim-
ulation for the equivalent of tens of milliseconds of real
machine time. It is then possible to extract beam and
station parameters to study the longitudinal beam dy-
namics and the RF station operation. The time-domain
simulation has also been used as a development environ-
ment for the LHC optimization and configuration tools
[12], [13].

B. RF Station Configurations of Interest

Each operation point is defined by the RF station con-
figuration; the set of values for all the adjustable loop
parameters. These parameters are 1) beam parameters,
such as the beam energy and average beam current, 2)
High-Level RF station settings: the klystron operation
point, the cavity voltage, detuning, and loaded quality
factor QL, and 3) the LLRF parameters, Analog/Digital
loop gain G, Controller phase φ, and 1-Turn feedback
gain and delay. The choices of values for this work is
described below.
For each operation point, the beam and High-Level

RF parameters are predetermined. Based on these op-
erational conditions and the current technical imple-
mentation of the LHC RF system, the LLRF parame-
ters are then adjusted to reduce the cavity fundamental
impedance presented to the beam, while satisfying RF
loop stability requirements. The optimal values are de-
termined for each configuration, using the same LHC op-
timal configuration tools as in the real system [12], [13],
[14].

1. Beam Parameters

During normal operations, each of LHC’s rings is filled
from the SPS with particles at an energy of 450 GeV
and then ramped to the collision energy (nominally 7
TeV per beam). There are three interesting stages of the
LHC operation: at the beginning of injection (Io = 0
A), at the end of injection with maximum current at low
energy, and the physics/collision phase at higher energy.
The beam and RF station dynamics change considerably
during these steps.
At the nominal current of 0.58 A the LHC klystrons

will be operating at approximately 297 kW close to the
maximum value of 330 kW. Therefore, the LHC klystrons
are operated close to saturation. In order to separate
possible saturation effects in this work, studies are con-
ducted at both the nominal current of 0.58 A DC and at
the more conservative value of 0.3 A DC.

2. High-Level RF settings

For the studies presented in this paper, the cavity volt-
age Vc and loaded quality factor QL are set to 1 MV and
20,000 respectively during injection and to 2 MV and
60,000 during the physics phase.
The LHC beam current is irregular around the ring

due to the bunch pattern and the voltage is kept con-
stant over the turn thanks to the RF and 1-Turn Feed-
back systems. If the cavity were to be detuned for min-
imum klystron power with the beam present, then the
klystron would have to switch between two power lev-
els in the presence and absence of beam. To minimize
klystron power over one turn, the cavity is set using the
half-detuning algorithm during LHC operation [14], [15],
[16]. The half-detuning algorithm decreases the instanta-
neous power of the klystron in the absence of beam and
keeps the klystron power constant during the changes in
the beam pattern. The same scheme is used in the sim-
ulations presented in this work.

3. LLRF parameters

The LLRF parameters adjusted during this work are
the feedback gain, the 1-Turn delay, and the loop phase.
The 1-Turn feedback loop gain and phase are not ad-
justed during operations, but are set to 20 dB and 0◦

respectively.

Table I shows the cavity detuning fd and the LLRF
parameters for each operational scenario considered, as
described above. It should be noted that G and φ are ref-
erence values that define relative changes to the param-
eters set in the hardware. Using the simulation, a 9 dB
gain margin was estimated for the 1-Turn feedback loop,
close to the 10 dB value reported during development
[17]. The 1-Turn feedback loop delay τd is optimized dur-
ing operations. For the simulation the optimal value was
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87.8 µs. As expected, the LLRF configuration changes

Beam High Level RF LLRF

Conf. Io(A) Vc(MV) QL Pkl(kW) fd(kHz) G(dB) φ

Inj. Beg. 0 1 2e4 139 0 17.44 2.4◦

Inj. End 0.3 1 2e4 149 -2.7 17.44 2.4◦

Physics 0.3 2 6e4 216 -1.35 22.35 5◦

Inj. End 0.58 1 2e4 177 -5.3 17.82 2.6◦

Physics 0.58 2 6e4 298 -2.65 23.3 8◦

TABLE I. RF and LLRF parameters for beginning/end of in-
jection and physics-collision configurations considered in this
paper.

significantly during the LHC ramp, whereas during in-
jection the LLRF parameters are essentially unchanged
(low beam loading), and only the klystron forward power
shows a noticeable effect.
The LHC optimal configuration tools inject noise to

the RF station for a brief period of time to characterize
the RF station through a transfer function measurement.
Due to beam emittance blowup concerns, the optimal
configuration tools will not be used in the presence of
beam according to the the current operational plan. As
a result, with the current operation plan the LLRF is
optimized with no beam before injection, and then the
LLRF is kept at the same settings throughout the LHC
operation, thus significantly reducing the performance of
the RF station compared to a situation where the param-
eters are adjusted at each stage. To estimate the effect
of this operational scenario, the simulation is run using
the optimal LLRF parameters calculated at Io = 0 but
at the physics configuration with Io = 0.3 A. The results
are reported under ”Non-optimal Physics” in Table III.
In a hypothetical scenario, it would be possible to esti-
mate the optimal LLRF parameters for physics/collision
using the simulation, and then use those settings during
injection, ramping, and physics. This scenario will have
reduced performance at injection, and the corresponding
results are reported as ”Non-optimal Injection End” in
Table II.

C. Results

To determine the noise power threshold at the output
of the LLRF and the modulator, the simulation is set to
the configurations of interest and the transfer function
Hg(f) between the noise (i or q) and the phase of the
cavity voltage is measured. As described in Equation 1,
the transfer functions for all sources and channels should
be measured for each operational condition. The transfer
function between the RF accelerating voltage phase and
the noise at the q channel at the input of the modulator is
shown in Figure 4 as an example. Assuming a wideband
noise source of power constant spectral density (Nm)2
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FIG. 4. (Color) The transfer function between the RF accel-
erating voltage phase and the noise at the q channel at the

input of the modulator φcav(f)

nMod
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(rad/V ).

for source m, Equation 11 can be simplified to

σ2

z =
2c2

ω2

RF

(Nm)2
∫ ∞

0

Bm(Bm)Hdf (12)

Then, it is possible to estimate the ratio between the
phase modulation in the RF accelerating voltage and the
noise source for each of the configurations. This ratio
is calculated using the transfer function from the whole
band which is aliased over the frequency band from the
RF operating frequency out to the first revolution har-
monic following Equations 9, 10, and 11.
The power spectral density N2

o for one channel in a sin-
gle RF station that achieves an equilibrium bunch length
equal to the initial condition for source m, can be cal-
culated using this information, so that it is possible to
calculate the noise spectral density for each source that
achieves that bunch length

N2

o =
σ2

zo
ω2

RF

2c2
∫∞

0
Bm(Bm)Hdf

for σzo equal to 11.24 and 7.55 cm during injection and
physics respectively. The results of these calculations
for all the configurations of interest are shown in Ta-
ble II and III for injection and physics configurations
respectively. As expected, the noise threshold is signif-
icantly lower for the injection configurations, since the
synchrotron radiation damping is more than three or-
ders of magnitude lower. The very low thresholds for
the injection configurations are not a reason for concern
though, since the beam is kept in this condition for a
short time. On the other hand, the large sensitivity on
the synchrotron radiation and consequently on the beam
energy levels implies that the planned low energy oper-
ation at 3.5 TeV will reduce the noise threshold limits.
Furthermore, one can see the wide variation with RF con-
figuration and input channel (i or q), as expected from
the synchronous phase of ≈ 180◦. Table II shows the
impact of the different configurations: the LLRF noise
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Configuration VModulator VLLRF

i q i q

Inj. Begin 7.3·10−2 7.9·10−3 3.3·10−2 1.3·10−3

Inj. End 0.58A 8.3·10−2 8.4·10−3 9.2·10−3 1.2·10−3

Inj. End 0.3A 9.8·10−2 8.0·10−3 1.7·10−2 1.3·10−3

Non-Optimal
3.3·10−2 6.4·10−3 2.1·10−3 5.7·10−4

Injection End 0.3A

TABLE II. Modulator and LLRF noise threshold in nV/
√
Hz

for injection configurations. These values correspond to the
RF settings shown in Table I.

Configuration VModulator VLLRF

i q i q

Physics 0.58A 1.1·103 270 30 18

Physics 0.3A 2.4·103 180 120 18

Non-optimal Physics 0.3A 2.1·103 210 360 29

TABLE III. Modulator and LLRF noise threshold in nV/
√
Hz

for physics configurations. These values correspond to the RF
settings shown in Table I.

threshold is scaled by a factor of two when the LLRF is
operated with the physics configuration during injection
(the noise threshold decreases to 5.7·10−4 nV/

√
Hz from

the optimal 1.3·10−3 nV/
√
Hz). Using the non-optimal

configurations lowers the noise threshold as anticipated.
On the other hand, in Table III there is a factor of 1.6
increase of the noise threshold when the LLRF is oper-
ated with the injection settings during physics (from 18

to 29 nV/
√
Hz). This small increase though results in a

substantial cost to beam stability, since the LLRF gain –
and consequently the fundamental impedance reduction
– is now reduced by 5 dB.
As explained above, these results correspond to only

one active noise source and channel at the time. They
also represent only one of the eight stations per beam.
Therefore, a scheme has to be devised to determine the
final threshold. It is straightforward to show that the
total power spectral density at the accelerating voltage
phase is given by the sum over all channels and sources.
Assuming uncorrelated wideband noise sources of varying
constant spectral densities and using Equation 1, Equa-
tion 12 becomes

σ2

z = 8
2c2

ω2

RF

∑

m

(Nm)2
∫ ∞

0

Bm(Bm)Hdf

σ2
z

σ2
zo

= 8
∑

m

(Nm)2

(Nm
o )2

(13)

Therefore, the values presented in Tables II and III pro-
vide the weighting coefficients for the contributions of the
individual noise sources to the equilibrium bunch length.
As such, the noise contributions are dominated by the
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FIG. 5. (Color) Noise power spectral density at the output of
the LHC RF Feedback for channel Q(wideband).
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FIG. 6. (Color) Noise power spectral density at the output of
the LHC RF Feedback for channel Q(narrowband).

source with the lower threshold or with a significantly
higher noise power.
Equation 13 can be very helpful for the system de-

signer, since the values Nm can be set based on the tech-
nical challenges related to reducing the noise levels of
each source. These noise levels define the design spec-
ifications for the LLRF and Modulator boards and can
be compared with the expected noise levels of the ar-
chitecture. Dedicated measurements will be necessary to
compare with the noise of the actual implementation and
verify the calibration of the simulation signals.
Some initial measurements of the noise spectrum at

the output of the LHC LLRF Feedback board are shown
in Figures 5 (wideband) and 6 (narrowband). These
measurements were conducted with the LLRF feedback
board input terminated to 50 Ω. These noise levels
should be comparable to the levels at the input of the
Modulator. The value of approximately 7 µV/

√
Hz in

the bandwidth of the accelerating cavity is higher than
the thresholds in Table III, so a slow growth of longitudi-
nal emittance is anticipated. Ongoing work will test the
validity of this prediction.
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V. MULTI-BUNCH STABILITY

Various studies have been conducted to evaluate the
longitudinal coupled-bunch instabilities at the LHC [18],
[19]. These studies do not include the cavity funda-
mental impedance nor consider the effect of the LLRF
impedance reduction feedback system though. Using the
time-domain simulation and related models presented
in Section IV, it is possible to estimate the effective
impedance presented to the beam by the RF station for
any configuration. The coupled-bunch instabilities can
then be computed to study the bunch centroid stability,
position, and motion due to multi-bunch coupling as a
function of the RF configurations.
An advantage of the time-domain simulation approach

is the ability to vary individual LLRF feedback parame-
ters and determine their effect on the beam stability. As
a result, the sensitivity on individual RF parameters can
be estimated, and the possible tradeoffs between beam
and RF station stability can be investigated. The related
results are presented in Subsection VB.
Impedance reduction is of fundamental importance at

the LHC since there is no dedicated bunch-by-bunch lon-
gitudinal feedback system. The substantial bunch length
leads to stability through Landau damping. The effec-
tive cavity impedance though depends strongly on the
LLRF configurations. In this section, the coupled-bunch
instabilities are investigated as a function of the LLRF
configurations to determine the stability margins for the
LHC.
The effective cavity impedance is computed using a

linearized model of the RF station and LLRF feedback
around the operation point [20], based on the system op-
erating points determined from the nonlinear simulation
tools. For operation with Vcav = 2 MV and Q = 60 k,
the analog/digital loop and the 1-Turn feedback provide
a reduction of the superconducting cavity impedance of
about 50 dB around mode 0, as expected.
Using the estimated impedance and assuming a gaus-

sian bunch, the growth rate σl and tune shift ∆ωl can be
computed for each coupled-bunch mode l [21]

σl + j∆ωl =
ηqIo

2β2ωsEoTo

∞
∑

p=−∞

Z(ω)ωeσ
2

τω
2

(14)

where η is the slip factor, q is the charge of a proton, Io is
the DC beam current, β is the ratio of the particle speed
to the speed of light, ωs is the synchrotron frequency, Eo

is the beam energy, To is the revolution period, Z is the
estimated RF station impedance contributed from all 8
stations per beam, and στ the bunch length in time units.
The impedance is evaluated at frequencies ω = (ph +
l)ωo+ωs with ωo the angular revolution frequency, h the
harmonic number, l the mode number, and p any integer.
Figures 7 and 8 show an example of the resulting modal
growth rates and tune shifts for configuration Injection
End 0.3 A with the 1-Turn Feedback on or off. The
reduction of the growth rates and tune shifts for all lower
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FIG. 7. (Color) Modal Growth Rates for configuration Injec-
tion End 0.3 A with 1-Turn Feedback (OTFB) on or off.
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FIG. 8. (Color) Tune shift for configuration Injection End 0.3
A with 1-Turn Feedback (OTFB) on or off.

order modes – except for mode 0 – is evident.

A. Stability Criterion

The interaction between the cavity fundamental
impedance and the beam produces growth rates in the
order of seconds when the LLRF feedback system is op-
erating. Even though these growth rates are very slow –
tens of thousands of turns – they are critical, because the
synchrotron damping time is in the order of hours (ap-
proximately 50,000 and 13 hours for injection and physics
respectively). Since there is no bunch-by-bunch feedback
system, stability is determined by Landau damping – a
physical process which stabilizes the otherwise unstable
ensemble of oscillating particles due to a spread of their
natural frequencies caused by the non-linearity of the RF
voltage. To determine stability, the criterion defined in
[22], [23], [24] is used with the same safety margins:

σl <
∆ωs

4
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where ∆ωs is the synchrotron frequency spread within
the bunch. The synchrotron frequency spread is given
by

∆ωs = ωs

π2

16
(
hL

2πR
)2

where h = 35640 is the harmonic number, L is the total
bunch length (4σz), and R = 4242.893 m is the LHC
radius. Since the LHC rms bunch length is 11.24 and 7.55
cm during injection and collision respectively, ∆ωs/4 is
equal to 1.19 and 1.55 for these two cases.
The growth rate of the most unstable mode σmax and

the maximum tune shift ∆fmax for each configuration
are reported in Table IV. Comparing the results from

Configuration σmax (s−1) ∆fmax (Hz)

Inj. End 0.58 A 0.055 0.0071

Physics 0.58 A 0.0041 0.0011

Inj. End 0.3 A 0.033 0.0047

Physics 0.3 A 0.0061 0.0009

Non-optimal Inj. End 0.58 A 0.083 0.0099

Non-optimal Physics 0.3 A 0.019 0.0044

TABLE IV. Growth Rates of the most unstable mode and
maximum tune shifts for each configuration, with the 1-Turn
Feedback on.

Table IV with the threshold margins of 1.19 and 1.55
for injection and physics, the fastest growth rate is at
least a factor of twenty smaller than the stability cri-
terion threshold for all configurations. It is also obvi-
ous that the configurations at physics have lower growth
rates than those at the end of injection due to the almost
twenty-fold increase in beam energy. It should be men-
tioned that the estimated impedance driven tune shifts
are insignificant compared to the frequency spread due
to the non-linearity of the RF voltage.
It is important to note the significant effect that

changes of the LLRF configuration can have on the modal
growth rates, as can be seen for the almost threefold in-
crease in growth rates with the non-optimal configura-
tions. Even though the stability threshold is not crossed,
it is important to notice the importance of the optimal
LLRF tuning not only for the RF station stability, but
also for beam stability. The tuning can be even more crit-
ical for lower beam energies. As seen from Equation 14,
the growth rates are inversely proportional to the beam
energy Eo. During the initial LHC runs, the beam energy
has been and will be kept at much lower levels than the
nominal 7 TeV. To maintain the margin level calculated
above, the current Io should be scaled similarly. For ex-
ample, an LHC configuration with the nominal current
of 0.58 A at an energy of 1 TeV will cause coupled-bunch
instabilities with growth rates seven times higher than
those presented in Table IV, and would probably lead to
beam loss. Once again, operation at lower energies can
have negative effects on the longitudinal beam dynamics.

B. Growth Rate Sensitivity to LLRF parameters

One of the important features of the LHC time-domain
simulation is the ability to study alternative configura-
tions of the RF and LLRF system, without requiring time
from the real machine. As such, it can be used to analyze
the sensitivity of the modal growth rates to variations
of the LLRF parameters. These studies provide insight
on the limits of the implementation, on the operational
margins, and on the parameters most essential to reliable
operations.
Using the configuration at the end of injection with a

beam current of 0.3 A as a reference, each of the following
parameters were modified separately to understand their
impact in the interaction between the RF station and
the beam dynamics: Cavity detuning fd, Analog/Digital
loop gain G, Controller phase φ, and 1-Turn feedback
loop gain Gc and phase φc. The variations on each case
were determined to correspond to reasonable variations
over a run. The system’s impedance and corresponding
growth rates were estimated for each case. The growth
rates of the fastest growing mode for each case are re-
ported in Table V. It is interesting to see the consider-

Parameter Adjustment Growth Rate Change

Nominal Value - 0.033 -

fd ±1 kHz 0.038/0.028 +15/− 15%

G ±3dB 0.028/0.043 −16/+ 31%

φ ±10◦ 0.23/0.19 + 590/+ 490%

Gc ±3 dB 0.026/0.039 −20/+ 20%

φc ±10◦ 0.12/0.10 +270/ + 220%

TABLE V. Growth Rate Sensitivity on LLRF parameters.

able beam stability dependence on the Controller phase
and the 1-Turn feedback phase. A six-fold increase of the
growth rates with a Controller phase rotation of 10◦ re-
duces the margin of operation to a factor of three, which
then limits the maximum reliable current for energy lev-
els lower than 7 TeV. This analysis shows the critical
importance of careful tuning of the LLRF in cases where
the beam stability margin is limited.
It is not surprising that there are changes in LLRF

parameters that improve beam stability. The LLRF is
tuned in a manner that maximizes the stability of both
the beam and the RF-LLRF loop. For example, the cav-
ity detuning fd is set to minimize the average klystron
power. The Analog/Digital loop gain as well as the 1-
Turn feedback loop gain are set to achieve predetermined
gain margins. Therefore, a trade-off exists between beam
and loop stability.
A similar study was performed for variations of the 1-

Turn feedback delay. The total delay in the 1-Turn feed-
back loop is set by a coarse delay of 100 ns increments,
and a fine delay of 10 ps increments. In our study, no
considerable effects on the estimated growth rates were
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experienced even when the delay was changed by a few
hundred ns (corresponding to multiple taps of the coarse
setting). On the other hand, a shift of even a few tens
of nanoseconds is sufficient to bring RF station instabil-
ity. Thus, optimal tuning of the 1-Turn feedback delay
might not be critical for beam stability directly, but it
is essential for RF station stability, and consequently for
reliable operation with beam.

VI. CONCLUSIONS

A theoretical formalism for the study of RF noise ef-
fects on longitudinal beam emittance has been developed
and is presented in this work. With this formalism and
the LHC RF and LLRF models and simulation [8], the
effect of RF and LLRF configurations on the longitudi-
nal beam emittance growth has been estimated. Noise
threshold limits for the input of the modulator and the
LLRF have been explored. These results can be helpful
for noise allocation and specification of technical compo-
nents in future designs.
The LHC RF and LLRF models and simulation are

valuable tools in the study of the RF station/Beam dy-
namics interaction, and have been used in this work to
also study multi-bunch stability. The variations of stabil-

ity margins with operational choices and the system sen-
sitivity on individual controller settings have been pre-
sented.
Dedicated measurements at the real system are

planned to determine the noise levels with the installed
architecture and compare the expected and actual beam
emittance growth as a function of the RF noise and con-
figuration. With the simulation and models any other
possible configuration, proposed design, algorithm, or
next generation system can be studied.
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