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Synchrotrons and storage rings deliver radiation across the electromagnetic spectrum at high
repetition rates, and free electron lasers (FELs) produce radiation pulses with high peak brightness.
However, at present few light sources can generate both high repetition rate and high brightness
outside the optical range. We propose to create steady-state microbunching (SSMB) in a storage
ring to produce coherent radiation at a high repetition rate or in continuous wave (CW) mode. In
this paper we describe a general mechanism for producing SSMB and give sample parameters for
EUV lithography and sub-millimeter sources. We also describe a similar arrangement to produce
two pulses with variable spacing for pump-probe experiments. With technological advances, SSMB
could reach the soft X-ray range (< 10 nm).

I. INTRODUCTION

In a radiation source driven by coherent electrons, par-
ticles group into microbunches spaced at the wavelength
of the desired light. The resulting coherent light can
be orders of magnitude brighter than that of an equiv-
alent incoherent source. The FEL process, for example,
turns a constant stream of electrons into a series of mi-
crobunches, which then radiate coherently.

For high average power light sources, duty-cycle shares
the stage with coherence. Linac driven FELs use each
electron pulse once, leading to low duty cycles. (Energy
recovery linacs reach high duty cycles by recovering the
electron energy [1–3].) Storage rings, by contrast, natu-
rally provide MHz repetition rates, and fully filled rings
can provide CW radiation. However, storage rings do not
generally support sustained microbunching (MB).

Using an optical or RF modulation, we propose to mi-
crobunch stored electrons during each pass through a ra-
diator. Though the electrons may appear smeared else-
where in the ring, the MB is permanent at the radiator,
so we consider this SSMB. The result is a coherent radi-
ation source with MHz to CW repetition rate.

In a conventional storage ring, RF ‘buckets’ both ac-
celerate and trap electrons. The RF modulation accel-
erates electrons in front of the stable point (which then
slip backward because of dispersion) while decelerating
electrons behind the stable point (which then slip for-
ward), so that all particles tend to move toward the sta-
ble point. Instead of a continuous stream of electrons, we
find a train of tightly ’bunched’ beamlets spaced at the
RF wavelength. Replacing the RF with an optical laser
results in a beam bunched at optical wavelengths [4].

The drawback to bucket bunching is that the output
radiation is limited to the initial radiation wavelength; to
produce high power radiation at a wavelength, λout, we
need bunching at λout, which in turn requires high power
radiation at λout. Instead, we propose to modulate with
an easily available initial wavelength (e.g. optical) λin,
but generate stable points distributed at either a har-
monic or a multiple of λin. To distinguish harmonic or
multiplied bunching from conventional RF buckets, we

will refer to trapping at λout 6=λin as MB. For example,
seeding with λin between 200 nm and 2 µm (easily avail-
able from commercial sources), we can produce MB at
wavelengths ranging from λout= 13.5 nm to 1 mm. We
note that single-shot versions of MB (λin 6=λout) are main-
stays of FEL seeding [5, 6].

II. SSMB MECHANISM

A. Zero-Crossing SSMB

In general, particles bunch around stable fixed points.
A particle is at a fixed point in phase space if, after T
turns around the ring, the particle returns to its initial
coordinates; with a one turn map M , a fixed point exists
in phase space at X0 = (z, p) if MTX0 = X0. Each RF
bucket contains only one fixed point per wavelength (at
z = m λin, p = 0, for integers m), so the standard RF
bucket generates bunching, not MB.

(In all discussions, energy, p ≡ E−Ebeam, and position,
z, are given relative to the ideal electron defined as pI ≡
0, zI ≡ 0. We will consider the case of operation above
transition. Below transition, the slippage reverses.)

As an example of MB, we return to the particle at a
zero-crossing of a sine modulation. Instead of p = 0, we
now consider a particle with a special energy p = ∆p,
such that the particle slips backward by ∆z =λin each
turn due to dispersion. The particle does not return to
its initial position, but because of the modulation’s peri-
odicity, the particle moves to an equivalent zero-crossing,
so we still consider this to be a fixed point. At each zero-
crossing, we find a set of such fixed points arrayed at
energies p = n∆p, for n = 0,±1,±2, etc. Fixed points
with positive (negative) energies slip backward (forward)
n wavelengths per turn.

After a full turn, at the ring’s modulation point, the
microbunches stack at z = m λin, with one stack per
modulation wavelength, i.e., the electrons are bunched
at λin. However, after a fraction, 1/H, of a turn, the
fixed points have slipped only ∆z = n λin /H, and the
particles are spaced at the Hth harmonic of λin, i.e. are
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microbunched at λout=λin /H (Fig. 1).

FIG. 1. An illustration of harmonic SSMB for H = 3. At
top, we show particles in phase space at the modulator. Each
turn around the ring, particles slip forward or backward from
dispersion, but the distribution is stationary for a periodic
modulation. At bottom, at an intermediate point in the ring
(1/H the way around), the microbunches are spaced by λin

/H, i.e. the beam is microbunched with λout=λin /H.

B. Double Modulations

For a general account of the SSMB principle we de-
scribe a two-stage system; multiple modulation and dis-
persive regions improve control of phase space at a small
cost in complexity (Fig. 2). We break each turn into 4
steps:

z1 = z0, p1 = p0 + Fa(z0)

z2 = z1+ R
(a)
56 p1, p2 = p1

z3 = z2, p3 = p2 + Fb(z2)

z4 = z3+ R
(b)
56 p3, p4 = p3 . (1)

In step 1, we apply a modulation to the beam energy,

Fa(z0). In step 2, dispersion R
(a)
56 converts the change in

energy to a change in position. We then repeat with a

second modulation, Fb(z2), and dispersive section, R
(b)
56 .

We find single turn (T = 1) fixed points whenever we
satisfy the slippage condition:

∆zonepass =R
(a)
56 p1+ R

(b)
56 p3 = n λin

∆ponepass = Fa(z0) + Fb(z2) = 0 (2)

for n = 0,±1,±2, etc.
Most generally, we are looking for any combination

of R
(a)
56 , R

(b)
56 , Fa, Fb such that the resulting fixed points

have a clean, periodic structure. In our previous ex-
ample (fixed points at the modulation zero-crossing),

we set Fa(z0) = Fb(z2) = 0 and R
(a)
56 =R

(b)
56 . However,

other manipulations are possible. For example, setting
Fa(z0) = −Fb(z2), so that the two modulations can-
cel, also produces harmonic SSMB. (Canceling modu-
lations produce clean harmonic structure only for saw-
tooth waveforms, Fa,b = Va,b modλ z.) steady-state echo

enabled harmonic generation may be capable of driving
SSMB at high harmonics [6].

(1‐1/h)R56 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FIG. 2. Example schematic for a two-stage system. A laser
cavity and two undulators of length Lu and 1.9Lu modulate
the electron beam at opposite ends of a storage ring. SSMB
from the modulation and dispersion produces coherent light
in a radiator. RF modules could replace the laser modulation
to produce long wavelengths, and an additional radiator could
be placed at the same distance in front of Lu.

C. Analysis of Linearized Modulation

For simulations we consider modulations Fa,b =
Va,b sin(kz). To study the zero-crossing fixed points an-
alytically, we linearize the modulation, Fa,b(z) ≈ ha,bz,
with ha,b ≡ Va,b/k, and write the one turn map as a
matrix

M =

(
1 R

(b)
56

0 1

)(
1 0
hb 1

)(
1 R

(a)
56

0 1

)(
1 0
ha 1

)
=

(
1 + s(2 + (1 + s)η) s

ha
(2 + sη)

ha(1 + (1 + s)η) 1 + sη

)
, (3)

with R
(a)
56 =R

(b)
56 ≡ s/ha and η ≡ hb/ha. The stability

condition, |TrM | < 2, constrains

−4 < 2(s+ sη) + s2η < 0 . (4)

We also write down an equilibrium bunch length using
the Courant-Snyder parameters, 〈z2〉 = βε and 〈δ2〉 =
γε, yielding

〈z2〉 = −s 2 + sη

(1 + η + sη)

〈δ2〉
h2a

, (5)

suggesting that sη ∼ −2 can substantially reduce the
island size, increasing the maximum possible harmonic.
In reality, energy changes from damping and quantum
excitation, combined with dispersion, will increase 〈z2〉.
However, in simulations we do observe moderate bunch
compression as sη → −2.
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D. Long Wavelength Beating

It is possible to generate MB with λout�λin by us-
ing different input wavelengths, λin2= [b/(b − 1)] λin1
[7]. The wavelength beating results in periodicity at
λout= b λin1, with the potential to set b � 1. We can
drive SSMB from frequency beating in two ways. For a
double modulation (separate modulation and dispersive
regions for each wavelength), stable fixed points survive
only where the phases overlap constructively, resulting
in sets of fixed points separated by the beat wavelength,
λout. For a single modulation (beating the lasers prior to
modulation, or equivalently using a single dispersive re-
gion), stable fixed points survive across λout. However, if
we rely on the modulation to replace the synchrotron ra-
diation energy loss, δ, fixed points will only survive where
the combined modulation, Va cos(kaz) + Vb cos(kbz), is
larger than δ. For δ . Va+Vb, stable fixed points remain
only where the phases overlap, near modλout z = 0, again
resulting in SSMB at the beat wavelength, λout (Fig. 3).

FIG. 3. Phase space for harmonic SSMB at left and frequency
beating at right (with b = 10), with two-stage modulations on
top and one-stage modulations below. For harmonic SSMB,
two-stage modulations provide a cleaner phase space with
shorter stable regions. For frequency beating, the one-stage
phase space has stable islands throughout λout= b λin, but
radiative energy loss removes the side islands.

III. RADIATION SOURCE FROM SSMB

A. EUV Source

For each turn around the ring, the SSMB beam passes
through a radiator (e.g. an undulator). Matching the
MB wavelength to the resonant wavelength of an undula-
tor strongly amplifies the radiation brightness. As a first
example, we consider the feasibility of SSMB at the EUV
lithography standard, 13.5 nm. To produce a stable, high
power CW modulation, we overlay the storage ring with
a laser cavity and two undulators, with a third undula-
tor for output (Fig. 2). In general, a laser modulation
does not involve any average energy transfer. However,
in the absence of an RF bucket, the modulation process
replaces the energy loss from radiative energy loss.

We illustrate the concept with a simulation that tracks
the 4-D particle coordinates (z, p, x, x′) through a large
number of passes around the ring. The simulation in-
cludes both energy loss (δ) and quantum fluctuations (ε)
from synchrotron radiation, as well as first and second
order momentum compaction (R56, T566) and transverse
transport elements (R51, R52). We model jitter errors
by shifting the modulation relative to the particles on a
turn-by-turn basis. We assume an initially flat-top lon-
gitudinal distribution with Gaussian transverse profile of
radius σx, σx′ , though we note the two synchrotron radi-
ation terms, δ and ε, will determine the equilibrium un-
modulated energy spread (σδ). Periodic boundary con-
ditions allow for slippage across many wavelengths.

For a 13.5 nm source, we simulate a 500 MeV ring,
modulated at λin= 200 µm and look for SSMB at the
15th harmonic (Tab. I). To maintain the short wave-
length SSMB we require a large energy aperture (±6%)
and a laser cavity with a strong 50 MW stored power,
though only with a few kW of CW input power. Stability
of the laser is assumed to be 0.005◦ in phase and 0.005%
in amplitude. Choosing η = 1.9, after 10 million turns
we then observe trapping of ∼15% of the particles with
strong SSMB (Fig. 4). (A large ring with weak bends
may permit decreased laser power and energy aperture,
but we have not explored ring optimization.)
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FIG. 4. Simulation of a two-stage manipulation to produce
SSMB. After 10 million revolutions, we find bunches stacked
at steady-state in energy space (top left). After an additional
dispersive section of R56/15, we find SSMB at the 15th har-
monic (top right). The density profile is shown bottom left,
with the Fourier transform bottom right.

B. THz and Pump Probe Sources

We also provide two illustrations of long wavelength
SSMB. Rings operating with low momentum compaction
factors have produced coherent radiation from isolated,
short pulses with σz <λout [8, 12]. With a coherent train
of pulses from frequency beating SSMB, we propose to
generate high average power THz radiation. As an ex-
ample, we simulate λin1= 2 µm and multiplying factor
b = 250 for a 500 MeV ring with realistic damping and
energy spread (Tab. I). With laser stability of 0.01◦ in
phase and .01% in amplitude, we find strong bunching at
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TABLE I. Example Parameters

EUV THz Pump-probe

Rad. wavelength (λout) 13.5 nm 500 µm NA

Seed wavelength (λin) 200 nm 2.0,2.008 µm 1 cm

Modulation amp. (Va) 1 MeV 350 keV 15 MeV

Dispersion (Ra +Rb) 30 µm 0.9 mm 0.6 m

Beam energy (E) 500 MeV 500 MeV 3 GeV

Damp. decrement (δ) 5 × 10−6 5 × 10−6 3 × 10−4

Equil. E spread (σδ) 3 × 10−4 5 × 10−4 1 × 10−3

λout= 500 µm. Better laser stability would permit lower
ring energy.

Alternatively, RF modulations could be used to drive
pump-probe experiments, which use two pulses, sepa-
rated by a variable time delay, to study dynamical sys-
tems. Using SSMB to create two microbunches, a vari-
able dispersive strength between the modulation and the
radiator would change the time delay between pulses.
While not coherent, an SSMB pump-probe at a multi-
GeV ring (Tab. I) would radiate in the X-ray regime. As
a side benefit, the difference in energy of the two bunches
leads to slightly different radiation wavelengths. Such
’two-color’ output helps users distinguish the pump and
probe pulses. We note that two-color double pulses have
previously been observed from α buckets [13].

IV. TECHNICAL CHALLENGES

Operating modes with low momentum compaction fac-
tor produce short bunches, creating large ratios of peak
current to average current. To prevent the amplified peak
currents from driving longitudinal instabilities, the aver-
age currents are typically very low [8–11]. However, the
SSMB process spreads particles evenly across many mi-
crobunches in each bucket, so that the ratio of peak to
average current is approximately the harmonic number,
H, or smaller (Fig. 4). We then expect the SSMB pro-
cess to support relatively large average currents despite
the small momentum compaction factor.

SSMB is relatively immune to static errors in laser
phase (φ), modulation amplitude (V ), and dispersion

(R56) between the two stages. For steady-state solu-
tions, static errors only shift the equilibrium fixed points.
From the EUV simulation we find ∆φ < 5◦, ∆V < 5%,
∆ R56< 1% and T566 .R56 do not inhibit SSMB.

However, SSMB is potentially sensitive to stability er-
rors, especially for long damping times. Small jitters in
timing between the laser and electron bunch may ac-
cumulate and smear out the structure, requiring high
phase and amplitude stability. If the laser cavity cannot
achieve the required stability, the electron bunch itself
could serve as the modulation source, intrinsically lock-
ing the electrons to the modulation. Self-modulation is
possible for manipulations which generate bunching at
λin; in Fig. 4, we see nearly 100% bunching at λin at the
modulation point (top left). However, self-modulation
will increase the amplitude jitter.

The tightest constraints come from transverse trans-
fer elements, R51, R52, which will detrap particles and
lengthen the SSMB unless R51σx, R52σx′ �λin, λout.
Particles with the largest x, x′ values are lost, which may
result in shrinking of σx, σx′ . It is interesting to note
that keeping the transverse coordinates fixed (i.e., in-
teger transverse tune, ν) adjusts the slippage condition
(Eq. 2) by R56p→ R56p+R51x+R52x

′. The constraints
on R51σx and R52σx′ then relax, but practically it would
be difficult to operate a ring close to an integer tune.

V. CONCLUSION

We present a mechanism for producing SSMB in a
storage ring. The combination of dispersion and mod-
ulation regions produces fixed points (and thus SSMB)
at harmonics or multiples of the modulation wavelength.
We acknowledge that preserving fine SSMB will be chal-
lenging, and briefly discuss some potential technical re-
quirements. A proof of principle may be possible at long
wavelengths, and we will address practical design issues
in future studies.

VI. ACKNOWLEDGMENTS

We would like to thank J. Corbett, V. Dolgashev, Z.
Huang, Y. Nosochkov, R. Ruth, M. Sjostrom, and D.
Xiang for many helpful discussions. This work was sup-
ported by U.S. DOE Contract No. DE-AC02-76SF00515.

[1] M. Tigner, Nuovo Cimento, 37, 1228 (1965).
[2] J.M. Klopf, A. Greer, J. Gubeli, G.R. Neil, M. Shinn,

T. Siggins, D. Waldman, G.P. Williams, A. Todd, V.
Christina, and O. Chubar, Nucl. Instrum. Methods Phys.
Res., Sect. A 582, 114 (2007).

[3] B.A. Knyazev, G.N. Kulipanov, and N.A. Vinokurov,
Meas. Sci. Technol. 21 054017 (2010).

[4] V. N. Litvinenko, S. F. Mikhailov, O. A. Shevchenko, and
Y. Wu, Proceedings of the Particle Accelerator Confer-
ence, p. 2614 (2001)

[5] L.H. Yu, Phys. Rev. A 44, 5178 (1991).
[6] G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009).
[7] S. Reiche, C. Joshi, C. Pellegrini, J.B. Rosenzweig, S.Ya.

Tochitsky, and G. Shvets, Proceedings of PAC 05, 1721
(2005).



5

[8] M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, W.B.
Peatman, U. Schade, G. Wüstefeld, and H.W. Hübers
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