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Abstract

The standard model has been highly successful at describing current experimental

data. However, extensions of the standard model predict particles that have masses at

energy scales that are above the electroweak scale. The flavor-changing neutral current

processes of the B meson are sensitive to the influences of these new physics contributions.

These processes proceed through loop diagrams, thus allowing new physics to enter at the

same order as the standard model. New physics may contribute to the enhancement or

suppression of rate asymmetries or the decay rates of these processes.

The transition B → V γ (V = K∗(892), ρ(770), ω(782), φ(1020)) represents radiative

decays of the B meson that proceed through penguin processes. Hadronic uncertainties

limit the theoretical accuracy of the prediction of the branching fractions. However,

uncertainties, both theoretical and experimental, are much reduced when considering

quantities involving ratios of branching fractions, such as CP or isospin asymmetries.

The most dominant exclusive radiative b → s transition is B → K∗γ. We present the

best measurements of the branching fractions, direct CP , and isospin asymmetries of

B → K∗γ. The analogous b → d transitions are B → ργ and B → ωγ, which are

suppressed by a factor of |Vtd/Vts|2 ∼ 0.04 relative to B → K∗γ. A measurement of the

branching fractions and isospin asymmetry of B+ → ρ+γ and B0 → ρ0γ, as well as a

search for B → ωγ, are also given. These measurements are combined to calculate the

ratio of CKM matrix elements |Vtd/Vts|, which corresponds to the length of one side of

the unitary triangle. Finally, we present a search for the penguin annihilation process

B → φγ.

We use a sample of 383 million BB events collected with the BABAR detector at the

PEP-II asymmetric-energy B factory for the analysis of B → K∗γ. We measure the

branching fractions B(B0 → K∗0γ) = (4.47 ± 0.10 ± 0.16) × 10−5 and B(B+ → K∗+γ) =

(4.22 ± 0.14 ± 0.16) × 10−5. We measure the direct CP asymmetry to be −0.033 <

ACP (B → K∗γ) < 0.028 and the isospin asymmetry to be 0.017 < ∆0− < 0.116, where

the limits are determined at the 90% C.L. and include both the statistical and systematic
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uncertainties.

Using a sample of 347 million BB events, we measure the branching fractions B(B+ →
ρ+γ) = (1.10+0.37

−0.33 ± 0.09)× 10−6 and B(B0 → ρ0γ) = (0.79+0.22
−0.20 ± 0.06)× 10−6, the isospin

asymmetry ∆ = −0.35± 0.27, and set a 90% C.L. upper limit B(B → ωγ) < 0.78× 10−6.

We also measure the isospin-averaged branching fraction B(B → (ρ/ω)γ) = (1.25+0.25
−0.24 ±

0.09) × 10−6, from which we determine |Vtd/Vts|= 0.200+0.021
−0.020 ± 0.015, where the first

uncertainty is experimental and the second theoretical.

Finally, a sample of 124 million BB events is used to set an upper limit of B(B →
φγ) < 8.5 × 10−7 at the 90% C.L.

v



Acknowledgments

This thesis, like any, is the culmination of so many different people that it would be

impossible to properly acknowledge everyone. The BABAR collaboration is comprised of

numerous physicists who are spread around the world. There are many people who have

not contributed to this measurement, but also helped me develop as a graduate student.

First, I would like to thank my parents, Mom and Dad, for providing me with the

means and support for me to pursue my goals. Their love, support, and patience are

unconditional. My advisor, David Leith, and Blair Ratcliff, have welcomed me in the

group and provided guidance and helpful suggestions to point me in the right direction.

Mark Convery and I have worked closely now for many years, and he has been invaluable

for my education and learning experience. Jim Libby has also been responsible for me in

this regard. Jaroslav Va’vra has guided me through the experimental phase of my thesis.

Jochen Schwiening and Dave Aston have given their time to whatever computing question

I have had, however small. Jose Benitez, my officemate, is always there to discuss my

analysis, his analysis, or, sometimes more importantly, whatever concerns are happening

in our lives. Thanks must also go out the rest of group B, Bill Dunwoodie, who is always

ready to help the graduate students, and provide advice, Clive Field, Dave Muller, Jon

Coleman, Kazuhito Suzuki, Veronique Ziegler, Adrienne Higashi. Lilian DePorcel and

Giampiero Mancinelli have since left the group.

The Radiative Penguin AWG, and K∗γ group have contributed heavily to this the-

sis, both technically and with advice. The people involved are Kevin Flood, John Walsh,

Jurgen Kroseberg, Gabriella Sciolla, Al Eisner, Gabriele Simi, Steve Sekula, Wouter Huls-

bergen, Gavin Nesom, Jeff Berryhill, Tim Piatenko, Karsten Koeneke, Fang Fang, Ping

Tang, Patrick Spradlin, Joe Tuggle, Joel Martinez, Debbie Bard, Kyle Knoepfel, Chris

Schilling, Hojeong Kim, Jan Strube, and many others.

There are graduate students who have contributed to my life here at Stanford, who

are Nicolas Berger, Tetiana Hryn’ova, Joerg Stelzer, Erkcan Özcan, Mark Tiller, Josh
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Chapter 1

Introduction

This thesis describes a measurement of the radiative decays B → V γ, where V =

K∗, ρ, ω, or φ. It also describes the theoretical tools and experimental apparatus that

underlie these measurements. In addition, a study is presented that describes a new

background source for the DIRC (Detection of Internally Reflected Cherenkov Detector).

This chapter provides a general introduction.

1.1 Motivation

The past century has seen a vast extension in the library of scientific understanding.

Einstein has forced physicists to reconsider how they perceive space and time, which then

led him to reformulate gravity. The advent of quantum mechanics has led to a complete

upheaval of the perception of matter. In place of point-like objects of the everyday world,

there exists a formalism which speaks in terms of amplitudes and phases of a world which

is unseen. The union of quantum mechanics and relativity has brought about an era in

which matter has seemed to have lost its prominence. The advent of quantum field theory

has led physicists to formulate theories by speaking of symmetry as the prime motivator.

Indeed, it has become so central that when a symmetry is broken, understanding the

mechanism often leads to new viewpoints. The culmination of the attempt to understand

electromagnetism, weak, and strong interactions has become the standard model (SM) of

particle physics.

The SM is a combination of two theories, quantum electroweak and quantum chro-

momdynamics (QCD), that describes all known elementary particles and their interac-

tions on a vast range of scales. The electroweak theory was established by 1979 in part

1
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by experiments confirming the observation of neutral currents [1] and parity-violating

asymmetries due to the interference of weak and electromagnetic electron scattering from

nucleons using polarized electron beams performed at the Stanford Linear Accelerator

Center (SLAC) [2]. QCD came to be widely accepted a few years later in part by electron-

positron annihilation into three jets [3], and the observation of the logarithmic deviations

from Bjorken scaling. In addition, the anomalously long lifetime of the J/ψ helped to

confirm the asymptotic freedom of QCD.

Also, crucial to the development of the SM was the non-observation of flavor-changing

neutral currents (FCNCs). The decays K → µ+µ− and K → πνν̄ are highly suppressed

in the SM compared to the charged-current decay K → πeν. For example, the branching

ratios are given by [4]

B(KL → µ+µ−) = (6.84 ± 0.11) × 10−9,

B(K+ → π+νν̄) = (1.5+1.3
−0.9) × 10−10, (1.1)

B(K+ → π0e−νe) = (5.05 ± 0.06) × 10−2

Eventually, the suppression of these decays came to be understood by introducing the

charm quark. This kind of suppression is known as the Glashow-Iliopoulos-Maiani (GIM)

mechanism. Ths prediction of a charm quark was confirmed by the discovery of the J/ψ

particle. In addition, the b → s, d transitions (along with B0 − B̄0 mixing) helped to

establish the existence of a massive t quark.

It is now thirty years later and the SM has withstood an extensive range of tests,

whose level of precision is such that O(α) radiative corrections are needed. The tests of

QCD mostly lie in the high-energy range where QCD is perturbative. The strong coupling

constant has been determined on energy scales ranging from 1.7GeV to 189 GeV using

a wide range of techniques [4]. These experiments are not only consistent among each

other, but also clearly demonstrate the scale dependence of the coupling constant using the

renormalization group equation and the independence of the coupling constant from quark

flavor. Similarly, the electroweak gauge couplings of the quarks and leptons predicted by

the symmetry of the SM have been verified to less than one percent by experiments at

the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC) [4, 5].

LEP experiments have explored much of the triple gauge coupling (TGC) parameter space,

finding agreement with the SM within a few percent. These measurements verify that

the TGC’s conform to the gauge symmetries of the SM. Heavy flavor physics has been
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explored in great depth by BABAR and Belle, helping to establish the magnitude of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix elements Vcb and Vub, and the uncertainty

on sin 2β to a few percent. There are no significant deviations from the SM that cannot

be accounted for by uncertainties related to experiment or theory.

Despite the phenomenological success of the SM, it remains to many just that, namely,

a phenomenological model. It is widely believed that physics beyond the SM has to be

present, mostly for reasons that pertain to theoretical aesthetics rather than experimental

necessity. The SM is composed of a product of three distinct gauge groups with at

least eighteen arbitrary parameters. These are the three gauge couplings, six quark and

three charged lepton masses, three CKM angles with one CP violating phase, and two

parameters to characterize the Higgs sector. In addition, there could be an additional

strong CP violating parameter, which has been excluded by the non-existence of the

electric dipole moment of the neutron. This is commonly referred to as the strong CP

problem. The observations of neutrino mass brings in another seven parameters, which

are three masses, three angles, and one phase. The results of the B factories have led to

the conclusion that the CP violating phase in the SM is not enough to account for the

baryon asymmetry that we observe today. While is is possible this asymmetry could be

accounted for by a CP violating phase in the neutrino sector, new physics scenarios could

also bring in other CP violating observables. The SM gives no explanation as to the

origin of electroweak symmetry breaking, and, in addition, the origin of the left-handed

currents in the weak sector. A more sophisticated theory is needed to provide theoretical

depth.

The SM also gives no insight as to the hierarchy of masses, and, in fact, poses phe-

nomenological problems related to all the masses. Radiative corrections to the Higgs mass

have a quadratic dependence on the ultraviolet momentum cutoff, which is typically taken

to be some very high energy scale at which new physics comes in to alter the high energy

behavior of the SM. This is typically taken to be on the order of the Grand Unification

Theory (GUT) scale (∼ 1016 GeV) or a little below the Planck mass (Mpl ∼ 1019 GeV).

Since electroweak data indicate that the Higgs mass is on the order of 100 GeV, huge

cancellations must take place if the SM is taken as a fundamental theory. In fact, since

all the masses in the SM are obtained through the coupling to the Higgs, this problem

indirectly affects all of the fundamental particles. This condition is usually referred to as

the gauge hierarchy problem. The Yukawa coupling of the top quark undergoes renor-

malization in which it’s own Yukawa corrections cancel against QCD corrections, thus

creating a quasi-infrared fixed point [6] for the top quark mass. A wide range of initial
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values for the Yukawa coupling will be attracted to this fixed point, which corresponds

to the physical value of the top quark mass. Using the SM, one can calculate that the

fixed point corresponds to mt ∼ 250 GeV. However, in a theory with two Higgs dou-

blets, such as the Minimal Supersymmetric Model (MSSM), the fixed point corresponds

to mt = 190−210 GeV sin β [7] , where tanβ = υ2/υ1 is the ratio of the two Higgs vacuum

expectation values. This allows the top quark mass to lie closer to the experimentally

determined value of mt = 171.2 ± 2.1 [4].

These observations form a powerful subset of reasons why the SM is regarded as

an effective theory, much like the Fermi interaction is an effective theory for the weak

interactions. It is understood to provide a description of phenomenon up to some large

energy scale, upon which a more sophisticated theory would become applicable. The

nature of this theory is not known, although electroweak data are of sufficient precision as

to provide constraints on new physics models. For example, certain classes of Technicolor

models and a fourth generation of ordinary fermions are disfavored.

Direct detection of particles not in the SM is not possible at the B factories. This

is relegated to the Large Hadron Collider, which will produce particles at TeV energies.

However, the influences of new particles can be observed in rare radiative decays. These

decays are mediated by loop diagrams at leading order, so that new particles that can be

present in the loops can deviate SM predictions to a measurable degree. The new particles

that may be present include, but are not limited to, the charged Higgs, the charginos, and

other supersymmetric particles. Radiative decays also occur at rates proportional to G2
Fα,

which is enhanced compared to non-radiative rare decays, which have rates proportional

to G2
Fα

2. Precision measurements can not only test for SM predictions, but also restrict

new physics parameter space.

The flavor-changing neutral currents b → sγ and b → dγ provide examples of decays

which are sensitive to physics beyond the standard model, and are closely studied by

the B factories. The former decay is CKM favored over the latter, thus making it more

experimentally accessible. The inclusive calculation is more theoretically precise than

the exclusive calculations, because they are not limited by our imperfect understanding

of how the b and s, d quarks are bound into the initial and final state mesons, which

is charactered by form factors. However, the inclusive measurement is more challenging

than the exclusive counterparts, as a result of large backgrounds coming from the the

lack of a hadronic mass selection and specific final states. The decay B → K∗γ is an

exclusive b→ s transition that is the most dominant radiative decay of the B meson. The

corresponding decays B → ργ and B → ωγ are b→ d transitions, while the decay B → φγ
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proceeds through a penguin annihilation process. Even though the branching fractions

suffer from hadronic uncertainties, new physics can be extracted by considering quantities

such as asymmetries and ratios of branching fractions. In this thesis, we measure the

branching fractions, time-independent CP , and isospin asymmetries of B → K∗γ. Also,

a measurement of the branching fractions and isospin asymmetry of B+ → ρ+γ and

B0 → ρ0γ is given, as well as an upper limit on the branching fraction of B → ωγ.

We combine the measurements of B → ργ, B → ωγ, and B → K∗γ to provide a

measurement of the CKM element ratio |Vtd/Vts|. Finally, we also present a measurement

of the branching fraction of B → φγ. All of these decays are denoted by the notation

B → V γ, where V = K∗, ρ, ω, or φ.

1.2 Outline

The progression of this thesis will be to first explain the underlying theoretical concepts

and experimental apparatus used to make the measurements related to B → V γ, the

analysis of which will be presented last. Thus, Chapter 2 gives an explanation of the

elements in the BABAR detector. Chapter 3 provides a study of the DIRC fused silica bars.

Chapter 4 formulates the classical SM Lagrangian, while also giving the theoretical tools

needed for the phenomenology of B → V γ. Chapter 5 will present the event selection,

background suppression techniques, and selection optimization used for all the analyses.

The next three chapters will discuss the techniques for the specific analyses of B → K∗γ,

B → (ρ/ω)γ, and B → φγ. Finally, Chapter 9 will conclude the thesis.



Chapter 2

PEP-II and the BABAR Detector

The primary goal of the BABAR experiment is to study CP violation through studies

of B decays into neutral CP eigenstates. As such, the BABAR detector was optimized

for this purpose. However, the detector is also suited to make precision measurements of

the decays of bottom and charm mesons, and τ leptons, as well as rare processes. The

luminosity is provided by the PEP-II (Positron-Electron Project) B Factory, which was

built specifically to produce copious amounts of B mesons for BABAR. This chapter will

provide a description of the PEP-II accelerator, as well as the BABAR detector.

2.1 The PEP-II Accelerator

Figure 2.1: A rendering of the PEP-II accelerator and storage rings. Electrons and
positrons are accelerated in bunches until they are extracted at the bypass lines. They
eventually combine at the BABAR detector, located at IR-2.

6
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A schematic of PEP-II [8] is shown in Fig. 2.1. Electrons are injected and accelerated

in the linear accelerator (LINAC) until the High Energy Bypass (HEB) line, where they

are extracted at their full energy of 9.0 GeV and transported to the High Energy Ring

(HER). Some of the electrons are further conveyed until they collide with a tungsten

target, which produces electron-positron pairs. The positrons are separated from these

collisions and then returned back to the beginning of the LINAC and accelerated until

3.1 GeV, when they are extracted to the Low Energy Bypass (LEB) line. This line injects

the positrons into the Low Energy Ring (LER).

The electrons and positrons are stored in the PEP-II rings with a storage time of

approximately one hour. The circumference of the PEP-II rings is about 2.2 km, in

which the LER sits above the HER. The LER has a nominal current of 2.14 A, which

corresponds to roughly 6 × 1010 positrons per bunch, while the current for the HER is

0.99 A, or 3× 1010 electrons per bunch. The bunch collision frequency is 238 MHz, which

gives about a 4 ns time difference between bunches. They collide at the BABAR detector

located at IR-2 in Fig. 2.1.

For the majority of running, the center-of mass (CM) energy of the beams is 10.58

GeV, which is the mass of the Υ (4S) resonance. The asymmetry of the beam energies

results in the Υ (4S) being boosted in the lab frame with a Lorentz boost of βγ = 0.56.

This allows for the distance between the two B vertices to be measured for time-dependent

CP violation measurements.

As alluded to in the previous paragraph, not all of the data correspond to the Υ (4S)

resonance. Monte Carlo simulations of e+e− → cc, ss, uu, dd events are less reliable than

real data, and so approximately 12% of the data are taken about 40 MeV below this

resonance to allow for studies of the non-resonant background. In addition, ∼ 8% of the

data was taken at the Υ (2S) and Υ (3S) resonances.

PEP-II ran successfully from the fall of 1999 to the spring of 2008. It achieved a peak

luminosity of about 12.0×1033 cm−2s−1, surpassing it’s design of 3.0×1033 cm−2s−1. The

total integrated luminosity delivered to BABAR was 557 fb−1.

2.2 The BABAR Detector

Key design requirements of the BABAR detector are

• large and uniform acceptance in CM frame. Thus, the detector is asymmetric in the

boost direction;
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Figure 2.2: An overview of the BABAR detector. Starting at the collision axis and mov-
ing radially outward, the sub-detectors are the Silicon Vertex Tracker (SVT), the Drift
CHamber (DCH), the Detection of Internally Reflected Cherenkov Detector (DIRC) parti-
cle identification system, the ElectroMagnetic Calorimeter (EMC), and the Instrumented
Flux Return (IFR). The solenoid provides a 1.5 T magnetic field that is necessary to
perform momentum measurements of charged particles.

• excellent reconstruction efficiency for charged particles down to 60 MeV/c and pho-

tons down to 20 MeV;

• very good charged particle momentum resolution, as well as energy and angular

resolution for photons in the range 20 MeV to 4 GeV;

• very good vertex resolution for time-dependent CP measurements;

• excellent particle identification for leptons and hadrons. For this thesis, K/π sepa-

ration is very important;

• a computing system that can control, process, and store large amounts of data;

• detector components that can operate under high background conditions.
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Fig. 2.2 gives a schematic of the BABAR detector, which is composed of several sub-

detectors that each fulfill one or more of the physics requirements listed above. The

innermost detector is called the silicon vertex tracker (SVT), which is responsible for

measuring decay vertices and track angles of charged particles near the interaction region.

The momenta and angles of charged particles are measured with the drift chamber (DCH).

Particle identification in the low momentum region using dE/dx is also done using this

device, as well as the SVT. The DIRC performs particle identification of charged particles

using Cherenkov light in the high momentum region. The detection of electromagnetic

showers from photons and electrons is done using the electromagnetic calorimeter (EMC),

which is an array of CsI crystals that is located just inside the solenoidal coil of the

superconducting magnet. The identification of muons and neutral hadrons is done using

the instrumented flux return (IFR), which has resistive plate chambers (RPC’s) inserted

into gaps in the steel flux return. However, beginning in 2004, due to poor performance,

these RPC’s were replaced by limited streamer tubes (LST’s). All of these sub-detectors

output data which is managed by a trigger and data acquisition system designed to

maximize physics data acceptance, while minimizing deadtime and cost.

2.2.1 Silicon Vertex Tracker (SVT)

The SVT is responsible for measuring decay vertices and track trajectories near the

interaction region. Since the measurement of time-dependent CP asymmetries relies

heavily on knowledge of the B decay vertex, which is located near the interaction point

(IP), the SVT is crucial for these kinds of measurements. The B meson has an average

lifetime of ∼ 250µm in the lab frame. For accurate determination of the CP asymmetry,

a mean vertex resolution along the z-axis of at least 80 µm is necessary. Tracks with

pT < 120 MeV/c are not measured by the DCH, and so have to be reconstructed in the

SVT. This occurs, for example, for the slow pions from D∗ decays. The measurement of

track angles provided by the SVT and DCH is also used as input to the DIRC, which relies

on accurate knowledge of the point of entry into the quartz bars for particle identification.

Finally, particle identification using energy loss along the track direction is performed by

the SVT for low momentum tracks.

The SVT consists of five layers of double-sided silicon strip sensors, which are organized

into 6, 6, 6, 16, and 18 modules respectively. The strips located on one side of the sensor

run parallel to the beam and measure the azimuthal angle (φ strips), while the strips on

the other side run perpendicular and measure the z position (z strips). The innermost
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Figure 2.3: A schematic side view of the SVT.

Figure 2.4: A transverse view of the SVT.

three layers are in barrel-type structures, and lie in the radial range ∼ 3 to ∼ 6 cm. They

are used to make high-precision measurements close to the beam pipe. The outer two

layers, which lie in the radial range ∼ 12 to ∼ 15 cm, are arch-shaped to minimize the

amount of material required to cover the solid angle, and to also increase the angle of

entry for particles that enter into the outer edge of the tracker. They are redundant to

the three innermost layers, being mainly used for angle determination and linking tracks

to the drift chamber. The cutaway side view of the SVT is show in Fig. 2.3, while the

end-on view is shown in Fig. 2.4. The SVT is restricted in the forward region by the B1

magnet, while the backward region is less constrained.

The five layers of of the SVT are comprised of five different types of sensor shapes.
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The smallest sensors are 43 × 42 mm2(z × φ), while the largest are 68 × 53 mm2. They

are composed of n-type substrates with p+ and n+ strips on the two opposing sides. The

depletion voltages are in the range 25-35 V, and the bias voltage is held at about 10 V

above the depletion voltage. Charged particles which enter the substrate create electron-

hole pairs which then move in the presence of the electric field. The strips then bring the

signal to fanout circuits, which route the signal to the front-end electronics (FEE). The

main component of the FEE is the ATOM (A Time-Over-Threshold Machine) chip, whose

output is the time and time over threshold (ToT). Upon receipt of a L1 trigger, followed

by a L1 accept command from the data acquisition system, this output is routed to the

readout module (ROM). The reconstruction program then discards hits which fall more

than 200ns from the event time (determined by the DCH), and groups the remaining hits

according to position and time.

The movement of the SVT, both internally and as a whole, must be determined and

corrected for, to correctly reconstruct the tracks. The first part of the correction procedure

is the local alignment, which corrects for the relative motion of the 340 sensors. It uses

dimuon events, cosmic rays, well-isolated high momentum tracks from hadronic events,

and an optical survey to determine position information. Using all of this data, a χ2 is

formed for each sensor, and minimized with respect to the sensor’s six local parameters.

The local alignment of the sensors is expected to be relatively stable, and so is done

infrequently, typically after magnet quenches or during detector access. In addition, the

SVT, which is attached to the inside of the beryllium support tube, is not connected to the

DCH to satisfy earthquake safety requirements, and so may move with respect to it due

to factors such as thermal, mechanical, and magnetic stresses. The method to determine

the relative positions of the two is called global alignment, which is the second part of

the correction procedure. Tracks with a sufficient number of SVT and DCH hits are fit

using SVT-only and DCH-only information. Then, the six global alignment parameters

are determined by minimizing the difference between the track parameters obtained using

the two different fits. The global alignment, performed about once every 2-3 hours, is

done more frequently than local alignment.

The SVT performance is determined using various control samples, such as Bhabba

and dimuon events. The track efficiency, defined as the ratio of the number of associated

hits to the number of tracks crossing the active area of the module, is ∼97%. The hit

resolution for both z and φ varies from 15 to 40 µm in the three innermost layers. In

the two outer layers, the z resolution varies from 40 to 50 µm, while the corresponding φ

resolution is ∼15 µm. dE/dx information is also obtained using ToT information. The
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Figure 2.5: A longitudinal view of the drift chamber with the units given in mm. The IP
is offset by 370 mm from the chamber center to account for the asymmetric beams.

number of samples used to obtain dE/dx is ∼ 6, and the resolution is ∼ 14%. Up to

500 MeV/c, a 2σ separation can be obtained between kaons and pions, and the same

separation can be obtained between kaons and protons beyond 1GeV/c.

2.2.2 Drift Chamber (DCH)

The drift chamber is responsible for measuring with high precision the momentum and

angles of charged particles. The DCH is also crucial for reconstructing KS decays that

occur outside the SVT in the DCH volume. Thus, the DCH measures the longitudinal

positions and momenta, as well as the transverse component. Simultaneously, the DCH

provides particle identification for low momentum particles by measuring dE/dx. For

example, it provides π/K separation up to 700 MeV/c. In the barrel region, the DIRC

complements the DCH. However, in the extreme forward and backward regions, the DCH

is the only particle identification device.

The DCH, whose side view is shown in Fig. 2.5, is about 3 m in length with an inner

radius of ∼23 cm, and an outer radius of ∼81 cm. The inner cylinder is bounded by the

support tube and is composed of a central 1-mm-thick beryllium tube with two 5-mm-

thick aluminum extensions. It is kept thin in order to improve the track resolution for high

momentum tracks, the matching of SVT to DCH tracks, and to reduce the background
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from detector interactions. Track resolution is also improved by choosing a gas mixture

that is 80% helium and 20% isobutane, which also serves to minimize multiple scattering.

The material in the outer cylinder is minimized in order for the performance of the DIRC

and EMC to be optimized. It is composed of two 1.6-mm-thick carbon fiber skins which

enclose a 6-mm-thick hexagonal foam structure. Both are enclosed by aluminum foil on

the inside and outside to provide RF shielding. The aluminum endplates are 24 mm thick.

However, at the forward end, this thickness is reduced to 12 mm beyond a radius of 46.6

cm to minimize the material in front of the calorimeter endcap. For the same reason, the

electronics and high-voltage supplies are mounted on the backward endplate.

There are a total of 28,768 wires in the DCH, which form 7,104 hexagonal drift cells

arranged in 40 cylindrical layers. Each cell has one gold-coated tungsten-rhenium sense

wire of 20 micron diameter, which is surrounded by 6 gold-coated aluminum field wires

of 120 micron diameter. There are also aluminum guard and clearing wires which are of

diameters 80 and 120 microns respectively. The 40 layers are clustered together in groups

of 4 to form 10 superlayers. In order to obtain longitudinal position information, the wires

in 6 of the superlayers are placed at small angles with respect to the z-axis. The stereo

angles of the superlayers alternate between axial (A) and stereo (U,V) pairs, with the

overall arrangement given by AUVAUVAUVA. This is shown in Fig. 2.6 for the first four

superlayers. The complete specifications for the 10 superlayers are given in Table 2.1.

Table 2.1: The specifications of the superlayer structure of the DCH. Listed is the number
of cells per layer, the radius of the innermost sense wire, cell widths and wire angles.
Widths and radii are specified at the center of the chamber.

Superlayer Number Radius Width Angle
number of cells ( mm) ( mm) ( mrad)
1 96 260.4 17.0-19.4 0
2 112 312.4 17.5-19.5 45-50
3 128 363.4 17.8-19.6 -(53-57)
4 144 422.7 18.4-20.0 0
5 176 476.6 16.9-18.2 56-60
6 192 526.1 17.2-18.3 -(63-57)
7 208 585.4 17.7-18.8 0
8 224 636.7 17.8-18.8 65-69
9 240 688.0 18.0-18.9 -(72-76)
10 256 747.2 18.3-19.2 0

The field wires are held at ground potential, and the sense wires are at a voltage of
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Figure 2.6: Schematic layout of the drift cells for the four innermost superlayers. Lines
have been drawn between field wires to illustrate the cell boundaries. The numbers on
the right side give the stereo angles (mrad) of the sense wires, while the 1 mm beryllium
boundary is shown on the bottom.
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1930 V (although there were brief periods during the first year of operation where it was

held at 1900 V and 1960 V). The guard and clearing wires are at a voltage of 340 V and

825 V, respectively. Charged particles traversing the the DCH induce a trail of ionization.

The electrons then drift in the gas towards the positively charge sense wires. As they near

the wire, they start to accelerate and produce an “electron avalanche”. This avalanche

ionizes the gas and the positively charged particles produced in the process causes an

image charge on the sense wire. This charge then travels along the wire to be read out

by the electronics. The gain is ∼ 5 × 104 at the applied voltage. To maintain this gain

at the boundary cells, guard wires are used. Clearing wires are used at the innermost

boundary of layer 1 and the outermost boundary of layer 40 to collect charges created

through photon conversions in the materials of the walls.

There are 16 sectors positioned symmetrically around the z-axis, each of which con-

tains 3 front-end assemblies (FEAs). The sense wires are connected to the assemblies

through service boards, which route the signal and HV distribution. In the FEA, a cus-

tom amplifier IC receives the input signal and produces a discriminator output signal for

the drift time measurement and a shaped analog signal for the dE/dx measurement. This

output is stored in the trigger latency buffer until an L1 accept signal comes and initiates

the transfer to the readout buffer.

Dimuon events are used to determine the relationship between measured drift time and

drift distance. The position resolution varies as a function of drift distance. It is lowest at

5 mm from the sense wire, where the resolution is ∼0.1 mm, and is highest near the cell

edges (corresponding to a drift distance of ∼10 mm), where it is ∼0.4 mm. The dE/dx

information is obtained through measurements of the total charge deposited in each drift

cells. These measurements follow a Landau distribution, which if simply averaged do not

yield the most-probable dE/dx value, and it is the most-probable value which exhibits a

Bethe-Bloch dependence on momentum. Therefore, a truncated mean is calculated using

the lowest 80% of the individual dE/dx measurements. After applying various corrections

due to pressure, temperature, and cell geometry, the resolution obtained from a sample

of Bhabba events is ∼7.5% of dE/dx for a typical track.

The tracking efficiency of the DCH, defined as the number of reconstructed tracks

in the DCH to the number of tracks detected in the SVT, is ∼98%. The momentum

resolution is determined from cosmic ray events. The upper and lower halves of the

cosmic ray events are fit as two separate tracks, and the resolution is derived from the

difference of the measured parameters for the two track halves. The transverse momentum

resolution dependence pT varies as ∼0.5% at ∼ 0.5 GeV/c to ∼1% at 5 GeV/c.
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2.2.3 Detector of Internally Reflected Cherenkov Light (DIRC)

The function of the DIRC is to identify particles by reconstructing the Cherenkov angle

from light produced as it passes through the DIRC bars. In the case of CP violation,

the flavor of one of the B mesons must be determined in addition to fully reconstructing

the other B. In this analysis, π/K separation is important. The momentum of the pions

and kaons in the decay chain of B → K∗γ is between 0.5 and 2 GeV/c, and so must

be identified by a particle identification (PID) device other than the drift chamber, since

dE/dx separation is only effective up to ∼ 700 MeV/c. The DIRC also has geometric

requirements. It must be kept thin and uniform to minimize the energy resolution of the

calorimeter. Also, in order to minimize the cost of the calorimeter, its radius must be

kept to a minimum.

There are 144 DIRC bars composed of synthetic fused silica arranged evenly into 12

gas-tight bar boxes; within each barbox, the bars are optically isolated from each other

by ∼ 150 µm gap between each bar. Each bar is 17-mm-thick, 35-mm-wide, and 4.9-m-

long, and is assembled from four 1.225 m pieces that are glued end-to-end. It is this glue

interface that forms the basis of the study in chapter 3. Synthetic fused silica was chosen

for the following reasons: its radiation hardness, long attenuation length, large index of

refraction (n = 1.473), and because within the wavelength acceptance of the DIRC (300

to 600 nm) it exhibits low chromatic dispersion. As illustrated in Fig. 2.7, the bar boxes

are arranged in a 12-sided polygon around the beamline. The geometrical acceptance of

the bars is ∼ 94% of the azimuthal angle and ∼ 83% of the cosine of the CM polar angle.

The radial extent of the DIRC is 80 mm. Approximately 80% of the Cherenkov light is

preserved through multiple bounces along the bar.

A mirror is placed at the forward end of each bar to reflect the photons back into

the backward direction, where the photon detectors lie. To reduce the photon detection

surface, a wedge is placed at the entrance of each bar, which reflects photons upward. It

also reflects photons at large angles relative to the bar axis, which reduces the number of

required photomultiplier tubes (PMTs). A common 10-mm-thick fused silica window is

glued to the wedges contained in a barbox. This seals off the barbox from the water that

is contained within the standoff box (SOB). This structure consists of a stainless steel

cone and cylinder, and 12 sectors of PMTs. Each sector contains 896 PMTs. 6000 l of

water was chosen to fill the standoff box because it’s inexpensive, and has a refraction

index close to that of fused silica. To reduce the magnetic field inside of the PMT sector,

a bucking coil surrounds the standoff box as shown in Fig. 2.7.
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Figure 2.7: An illustration of the DIRC particle identification system. The bar boxes
house the fused silica bars which as serve radiators for the traversing particles. They
are supported by the Central Support Tube (which also supports the DCH). The whole
structure is supported by the Strong Support Tube.

The 2.5 cm-diameter PMTs are attached to the inside of the standoff box. Each PMT

has a hexagonal light catcher connected to the front of the photocathode, so that the

surface area for light detection is ∼ 90% of the total area.

A schematic of a single DIRC bar, which also gives an illustration of the principle of

the detector is shown in Fig. 2.8. Particles entering the fused silica bar with β = v/c ≈ 1

produce Cherenkov radiation which travels by total internal reflection down the bar.

Eventually, the photons enter the standoff box and are detected by the PMTs. For a

particle with β = 1, the expected number of photoelectrons is ∼ 28. The front-end

electronics (FEEs) are located outside the standoff box. There are 168 DIRC front-end

boards (DFBs), each of which processes 64 PMT signals. The output of the electronics is

the result of a time-to-digital converter (TDC), which waits for an L1 accept.

An unbinned maximum likelihood fit that uses both spatial and time information de-

termines the Cherenkov angle of the track. To distinguish between signal and background,

a selection based the difference between the measured and expected photon arrival time is

made, as illustrated in Fig. 2.9. This is calculated using the time-of-flight of the track, the

propagation time of the photon in the DIRC bar, and the measured time of the candidates

signal in the PMT. The output is a likelihood value for each of the five stable particles

(e,µ,π, K, p).
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Figure 2.8: A schematic of the DIRC bar. Cherenkov radiation emitted by the particle is
channeled to the PMTs, which produce a signal to be read out by the front-end electronics.

Figure 2.9: A reconstructed dimuon event with PMT signals that have a measured time
within the ±300 trigger window (left) and within 8 ns of the expected Cherenkov photon
arrival time (right).
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The single photon Cherenkov angle resolution is 9.8 mrad, which is determined from

track uncertainties, chromatic dispersion, finite bar and PMT size, and geometric uncer-

tainties of the DIRC (non-parallel sides of the bars, misalignment of the barbox-to-SOB,

etc.). The measured time resolution is 1.7 ns, which is dominated by the intrinsic 1.5 ns

time spread of the PMTs. At 3 GeV/c, a separation of 4.2σ is achieved between kaons and

pions. On average, the kaon selection efficiency is 96 ± 0.2%, while the pion misidentifi-

cation is 2.1 ± 0.1%. The errors are statistical only.

2.2.4 Electromagnetic Calorimeter (EMC)

The electromagnetic calorimeter is used to measure electromagnetic showers in the

energy range 20 MeV to 9 GeV. These showers are produced by particles, such as photons

and electrons, which interact with the calorimeter. Electrons need to be identified to

determine the flavor of the neutral B mesons in semileptonic decays. Neutral pions and

etas are also detected by the calorimeter through their electromagnetic decays. In this

analysis, the EMC is the only contributor to the detection of the high energy gamma in

the decay B → K∗γ.

The EMC consists of 6580 thallium-doped cesium iodide (CsI(Tl)) crystals that com-

pose the barrel and endcap. 5760 crystals make up the barrel, which are arranged into 49

rings of 120 crystals each. The endcap contains 820 crystals that form 8 rings. Thallium-

doped cesium iodide was chosen because it allows for good energy and angular resolution

due to its high light yield (50,000 γ/MeV) and small Moliere radius (3.9 cm). In addition,

its short radiation length (1.85 cm) allows for good shower containment. The detector is

illustrated in Fig. 2.10. Its solid-angle coverage in the c.m. system is 90%.

Each crystal has a tapered trapezoidal cross-section to account for the spreading of

the electromagnetic shower. The area of the front font is ∼ 4.7× 4.7 cm2, while the back

face is ∼ 6.1 × 6.0 cm2. The crystal acts as a total-absorption scintillating instrument,

and also totally internally reflects the majority of light that is incident upon it’s surface.

Thus, the light is funneled to the back end of crystal, where the photodiodes lie. To aid in

this process, the crystal is wrapped in white reflector material. Aluminum foil was placed

on top of this to act as a Faraday shield, and further, the crystal was covered in mylar

to provide electrical isolation from external support. A schematic of a crystal is given in

Fig. 2.11.

Electrons or photons which enter the calorimeter generate an electromagnetic shower.

To detect photons from this shower, two silicon PIN diodes of cross-sectional area 2×1cm2



20 CHAPTER 2. PEP-II AND THE BABAR DETECTOR

11271375
920

1555 2295

2359

1801

558

1979

22.7˚

26.8˚

15.8˚

Interaction Point 1-2001
8572A03

38.2˚

External
Support

Figure 2.10: A longitudinal view of the top-half of the EMC with the dimensions given
in mm. Displayed are the 56 axially-symmetric rings which compose the detector. The
endcap is placed at the forward end to account for the asymmetric beam conditions.

are glued to a 1.2-mm-thick polystyrene substrate that is, in turn, glued to the back-end of

the crystal. Photons that enter the depletion region of the photodiode create electron-hole

pairs, which are swept away by the voltage difference of 50V. The quantum efficiency of

the diode is 85% for the CsI(Tl) scintillation light. The signal is then amplified, and then

extracted upon receipt of an L1 accept signal. It is translated into an amount of deposited

energy, and corrected for energy losses in the back, rear, and between the crystals, as well

as energy from the shower that is not associated with the cluster. A cluster is defined

as an electromagnetic shower that is spread over one or more crystals. Reconstruction

algorithms identify these clusters and discriminate them based on whether not they comes

from a single energy maximum (called a bump), or from multiple energy maximums which

make a merged cluster. In addition, these algorithms also determine whether or not a

bump comes from a charged or neutral particle by attempting to associate a bump with

a track. If such an association is possible, then the particle is assumed to be charged,

otherwise, it is assumed to be neutral.

The energy resolution of the calorimeter is determined using control samples. With

a radioactive source, it is measured at 6.13 MeV to be 5.0 ± 0.8%, while from Bhabba

scattering, the resolution is 1.9 ± 0.07% at 7.5 GeV. The angular resolution is based an

analysis of π0 and η decays, and is about 12 mrad at low energies (∼ 200 MeV), and 3
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Figure 2.11: A schematic of a crystal. The readout is mounted on the back end.
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mrad at high energies(∼ 3 GeV). The EMC also separates electrons from hadrons. On

average, the electron efficiency is 90% over the momentum range 0.5 < p < 2 GeV/c, while

the pion misidentification rate is 0.2%.

2.2.5 Instrumented Flux Return (IFR)

The IFR serves two purposes. One is to provide a flux return for the magnetic field

coming from the superconducting solenoid. The second is to identify muons and neutral

hadrons, such as KL’s and neutrons. Like electrons, muons play a role in identifying the

flavor of a B in a semileptonic decay, as well as being used to reconstruct the J/ψ. KL’s

are detected by their hadronic showers in the iron, and are used, for example, for CP

violation studies of B → J/ψKL. Resistive plate chambers (RPCs) were initially used

for particle detection in the IFR. However, after the first year of detector operation, the

RPCs quickly degraded and were replaced by limited streamer tubes (LSTs) [9] in the

central portion (barrel) of the detector.

There are a total of 806 RPC modules, which cover a total area of 2000 m2. 57

modules are in each of the six barrel sections, 108 modules are located in each of the two

endcaps, and there are 32 cylindrical sections. The RPC’s are placed in the gaps of the

segmented steel, and comprise a total of 19 layers in the barrel, while the endcaps have

18 layers. An illustration is given in Fig. 2.12. Each planar RPC is comprised of two

layers of 2-mm-thick bakelite sheets that are separated by a gap of 2 mm, which is filled

with an argon-based gas mixture. Each external surface is coated with graphite, while the

inner surfaces are treated with linseed oil. One layer is held at ∼ 8kV, and the other is

at ground. Streamers from ionizing particles are readout through capacitive strips, which

are placed in orthogonal directions on either side the gap. A schematic of an RPC is

given in Fig. 2.13. Signals are then digitized and passed to the ROMs, upon an L1 accept

trigger.

The RPC’s performance degraded from the beginning of the experiment, and the

installation of the LST’s began in 2004. It was completed in the fall of 2006. The inner

18 layers of the IFR were used for LST installation. However, to add in absorbing material,

6 of those layers contain brass, while the other 12 contain the LST tubes. A schematic of

a tube is shown in Fig. 2.14. Each tube consists of about 7 or 8 cells, whose dimensions

are 17mm wide, 15mm high, and 380 mm long. In the center of each resides a gold-plated

anode wire, which is held in place by six wire holders placed inside the cell. The walls

are coated internally with graphite paint and held at ground, while the wire is at 5.5 kV.
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Figure 2.12: An overview of the IFR, in which the barrel and endcaps are indicated. All
dimensions are given in millimeters.
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Figure 2.13: Cross section of a planar RPC.
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Figure 2.14: Cross section of an LST module.

The inside of each cell also contains a gas mixture which is argon, isobutane, and carbon

dioxide in the ratio 3:8:89. A particle passing through the gas ionizes it and causes a

streamer discharge, which can be readout from the wire, while also inducing a charge on

a plane below the tube. Taken together with position of the layer, the full 3d information

from the hit can be determined.

From 2000 to 2005 the muon efficiency and pion rejection rates steadily declined. For

example, for a sample of high energy muons ( 2 GeV/c < p < 4 GeV/c), and a pion rejection

rate of 96%, the muon efficiency decreased from 88% to 76% using a neural net based

muon selection algorithm. The installation of the LST’s increased the muon efficiency to

92% for the same pion rejection rate.

2.2.6 Trigger

The trigger system is designed to select events of interest (e+e− → qq̄, e+e− → l+l−),

while at the same time efficiently rejecting background events. The trigger efficiency for

BB events must be above 99%, while the efficiency for continuum events is required to

be at least 95%. The beam backgrounds must held to a minimum, as the total event rate

must be under 120 Hz. The trigger is implemented in two stages. The first stage, L1, is

in hardware, while the second, L3, is based in software.

The L1 trigger uses three detectors as input, which are the drift chamber trigger

(DCT), the electromagnetic trigger (EMT), and the instrumented flux return trigger

(IFT). The former two satisfy all of the trigger requirements independently with high

efficiency, and so are largely redundant, while the IFT is used mainly for diagnostic

purposes. All three L1 triggers generate trigger primitives, which contain information

about the position and energy of a particle. These primitives are passed to the global

trigger (GLT) every 134 ns, which processes them and sends them to the Fast Control and

Timing System (FCTS). This system can mask or prescale any trigger. If one remains,

then an L1 accept signal is sent out for the event to be readout.
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The input to the DCT consist of one bit for each of the 7104 DCH cells, where the bit

contains time information from the sense wire associated with that cell. This information

is passed to 24 Track Segment Finder (TSF) modules, which find track segments in an

adjacent set of cells that span all four layers of a superlayer. The Binary Link Tracker

(BLT) then receives these track segments and forms complete tracks. In addition, eight

transverse momentum discriminators (PTDs), determine if the track segments have a pt

greater than some minimum value. The output of the DCT is a set of trigger primitives

which categorize of the output of the BLT and PTDs into short tracks (tracks reaching

DCH superlayer 5), long tracks (tracks reaching DCH superlayer 10), and high pt tracks

(pt > 800 MeV/c).

The EMT treats the calorimeter as if it divided into 280 towers, 7 × 40 (θ × φ). The

barrel has 240 towers, each of which contains 24 crystals in a 8 × 3 (θ × φ) array. The

endcap contains 40 towers, each of which contains 19-22 crystals. All crystal energies

in each tower above 20 MeV are sent to the EMT. 10 Trigger Processor Boards (TPBs)

determine the energies in the 40 φ-sectors and different ranges in θ. The output of

the EMT is five trigger primitives which categorize the crystal energies using different

minimum thresholds, and locations in the EMC.

The function of the L3 trigger software is to reconstruct and classify events using the

output of the L1 triggers, as well as the complete event data. The trigger is executed in

three phases. The first phase defines the L3 input lines. In the second, classification tests

are performed which produce pass-fail output flags. These tests are comprised of two

algorithms, which are a track finding algorithm for the DCH and a clustering algorithm

for the EMC. The DCH algorithm determines the five track helix parameters with those

tracks with pt > 250 MeV/c, while the EMC algorithm identifies energy clusters with

requirements such that minimum ionizing particles can be found. In the last phase, L3

output lines are formed.

The efficiency of the two trigger levels are derived from Monte Carlo simulation. The

combined L1 and L3 triggers achieve an efficiency of above 99.9% for BB events, and

above 92% for continuum events.



Chapter 3

Photon Background in DIRC Fused

Silica Bars

3.1 Introduction

As mentioned in Section 2.2.3, the DIRC is responsible for particle identification be-

yond a momentum of ∼ 700 MeV/c. When a particle passes through the DIRC, it emits

photons at an angle with respect to the track that is dependent on its velocity and the

index of refraction of quartz. Figure 3.1 shows this measured angle subtracted from the

expected angle per reconstructed photon for e+e− → µ+µ− events for both data and

Monte Carlo (MC) simulation. Approximately only 60 % of the observed background is

explained by Monte Carlo.

Understanding the photon background has consequences for particle identification.

The DIRC uses an unbinned extended maximum likelihood fit that incorporates both

space and time measurements, as well as the number of photons. The likelihood per track

is given by

L ∝ µNassoc
γ

e−µ

Nassoc
γ !

Nassoc
γ
∏

i=1

[

(1 − r)Si(θC , δt) + rBi

]

(3.1)

where r is the background fraction, Nassoc
γ is the number of associated photon hits,

µ = N exp
γ + rNassoc

γ is the sum of the expected number of signal photons N exp
γ and

background photons. Si(θC , δt) is the signal estimator that is a function of the measured

Cherenkov angle θC and the difference between measured and expected photon propa-

gation time δt, and Bi is the flat background contribution. Due to poor understanding

26
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Figure 3.1: The single photon angle distribution for muon tracks as reconstructed in the
DIRC (dots) and the Monte Carlo prediction using the DIRC MC program (solid line).
The signal is distributed around zero, while the background photons also lie outside the
Cherenkov cone. The Monte Carlo only explains roughly 60% of the observed background.

of the background, the mean number of background photons rNassoc
γ must be obtained

through the fit. However, this number can be understood more completely by knowing

the expected number of background photons.

The goal of this analysis, therefore, is to achieve a greater understanding of the origin of

the photons which are not understood by the Monte Carlo. This is done by performing an

experiment, described in Section 3.2, in which cosmic rays are used to generate Cherenkov

radiation. A detailed Monte Carlo simulation (independent of the Babar DIRC Monte

Carlo) is then used to simulate the experiment. The conclusion of this study is that there

are two major mechanisms that contribute to the background. They are the Cherenkov

photons generated by delta rays originating from the primary charged particles (cosmic

rays) and reflections from the EPOTEK-301-2 glue [10] and fused silica interfaces.

3.2 Experimental Setup

The experimental setups are shown in Fig. 3.2. Three standard DIRC bars with

dimensions 17 mm × 31 mm × 1225 mm are glued together with EPOTEK-301-2 glue,

where the glue joint has a thickness of 25 µm. A photomultiplier tube (PMT) type

Quantacon XP2020 Philips [11] is attached directly to each bar with the EPOTEK-301-2

glue. On this side of the bar, the surfaces are composed of fused silica, EPOTEK-301-2
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glue, Borosilicate glass, and the bi-alkali photocathode. In setup of Fig. 3.2a, the bar

end opposite to the photomultiplier is equipped with a mirror, which is air-coupled with

a spring applying pressure against the bar. The charged particles enter the bar with

an angle of 56.5◦ with respect to the bar normal and ∼ 50-cm from the left end of the

bar in Fig. 3.1, pointing away from the phototube. The particle trajectory is defined by

two entrance scintillation counters limiting the angular acceptance to ±5◦ with respect

to the mean of 56.5◦. The 12-in-thick lead shielding in front of the exit counter provides

a selection of the minimum muon energy of 0.4 GeV. The track angle ensures that all

internally reflected Cherenkov light first travels through the bar away from the PMT

and reflects from the mirror before it arrives in the phototube (or leaves the bar because

the internal reflection condition is not fulfilled). This leaves a time window of about

36 ns for collecting light from the bar before the Cherenkov signal. In setup Fig. 3.1b,

the Cherenkov photons are efficiently absorbed by the photon trap so that a study of

the background photons which would normally arrive in coincidence with the Cherenkov

peak is possible, essentially extending the observation time interval to 70 ns. The photon

trap is an aluminum box coupled to the bar with a pipe surrounding the bar end. Both

devices are filled with a fluid which matches the refraction index of fused silica and their

walls are covered with photon-absorbing cloth.

3.3 Acquired Data

The PMT signal was amplified ×10 with a LeCroy fast amplifier and the output

recorded with a HP digital scope read out by a MAC ICC computer with CAMAC-based

GPIB interface. Figs. 3.3 and 3.4(a) show the raw waveforms for a single event with the

mirror and the photon trap, respectively. In Fig. 3.3 one clearly observes the Cherenkov

signal arriving at channel number 375. The earlier activity in front of that channel can

be attributed to background photons. In Fig. 3.4(a) the Cherenkov signal is absorbed

efficiently by the photon trap. The remaining pulses slowly diminish toward the end of the

70 ns window. A peak finding algorithm was applied offline: the waveform is differentiated

channel by channel and a peak is localized if the waveform starts dropping for at least

five consecutive channels. The result was checked with a deconvolution algorithm, which

takes the single-photon pulse shape into account. The deconvolution algorithm assumes a

standard PMT amplifier pulse shape of the form t exp (−t/τ), where the shaping constant

τ is assumed to be 20ns. The raw scope waveform is converted to the deconvoluted one
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Figure 3.2: Experimental setups used to study the photon background. The Cherenkov
signal propagates to either (a) the mirror or (b) the photon trap. In the former case, a
window of ∼ 36 ns is available to study the early photon background activity before the
Cherenkov signal returns; in the latter case a ∼ 70 ns window is available
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using the equation

di = ri − 2 exp−T/τ ri−1 + exp−2T/τ ri−2, (3.2)

where T is the scope sampling time (0.4ns), ri is the i-th PMT output sample, and di is

the i-th deconvoluted sample. The deconvoluted waveform is then subject to a threshold

cut to eliminate unwanted noise pulses. The output is shown in Fig. 3.4(b). The two

algorithms produced similar results for the number of peaks and peak positions.

Figure 3.3: Digital scope output from a single event for the mirror setup. The horizontal
axis is time in terms of scope channels (1 scope channel = 0.4 ns) and the vertical axis is
the amplitude. The large Cherenkov pulse arrives at channel 375, while the background
pulses arrive earlier.

Fig. 3.5 shows the result of the peak finding algorithm for the mirror setup. The first

peak near channel 115 is due to delta-ray electrons (electrons which have been liberated

from an atom by the passing muon) traveling fast enough to produce Cherenkov photons

by themselves in somewhat randomized directions. As will be discussed later, the shoulder

at channel 130 is explained by the reflection of photons at the first glue plane. The

Cherenkov pulse arrives at channel 150. There is a drop-off of photoelectrons after this

channel because the counting algorithm is overwhelmed by the number of photoelectrons.

The background features show in Fig. 3.5 are also evident in Fig. 3.6, which shows the

result of the peak finding algorithm for the photon trap setup. However, in this case, the

Cherenkov pulse is absent. In addition, the application of a LeCroy TDC allowed one to

make a leading edge “single hit” distribution. This was consistent with a leading edge

“single hit” algorithm applied to the recorded pulse shapes.
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(a) (b)

Figure 3.4: Digital scope output from a single event for the photon setup (a), and the
output of the deconvolution algorithm (b). The horizontal axis is time in terms of scope
channels (1 scope channel = 0.4 ns) and the vertical axis is the amplitude. The lack of
the Cherenkov pulse is evident as a result of the photon trap. Also shown are the number
and positions of the peaks using the peak finding algorithm (a), and the deconvolution
algorithm (b). The two algorithms are consistent with each other.

Figure 3.5: Measured time distribution of photon pulses obtained from the peak finding
algorithm using the mirror data. The Cherenkov signal arrives at channel 150. The hits
before this time are all considered background.
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Figure 3.6: Measured time distribution of photon pulses obtained from the peak finding
algorithm using the photon trap data. The Cherenkov signal is clearly absent. Therefore,
all hits are considered background.

3.4 Supplemental Measurements

3.4.1 Measurement of Reflectivity of EPOTEK-301-2 Glue

The index of refraction of the EPOTEK-301-2 glue as a function of wavelength was

measured in a separate experiment using four different wavelengths [12]. Based on the

results, the Fresnel reflectivity at a particular wavelength is calculated for the Transverse

Electric (TE) mode. The reflectivity was also directly measured with a 442 nm laser [12].

The reflectivity as a function of the angle of incidence to the surface quartz-glue for the

different methods is shown in Fig. 3.7. The measured reflectivity was significantly higher

than what was predicted by the Fresnel theory. For our Monte Carlo simulation, a second

order polynomial curve was adjusted to describe the distinct features of the arrival-time

spectrum in the data. This yielded the curve in Fig. 3.7 which is consistent with the

measured values of the reflectivity.

3.4.2 Measurement of Scintillation

The scintillation rate of quartz was measured with a Fe source which primarily emits

5.9 keV X-rays. Its emission of energetic gamma rays, which can create Compton electrons

with enough energy to produce their own Cherenkov photons, is negligible. The only light
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Figure 3.7: The Fresnel curve is based on the measurement of the index of refraction. Also
shown is the data from two different measurements of the reflectivity per bounce from the
glue/silica interface. Finally, the curve with square references is used in the Monte-Carlo
program that simulates the 4 m long bar cosmic ray experiment.



34 CHAPTER 3. PHOTON BACKGROUND IN DIRC FUSED SILICA BARS

production mechanism is scintillation light by the photoelectric effect: the X-rays have

enough energy to kick off a bound electron, which can then travel to nearby atoms and

excite them, thus producing scintillation photons. The source emits X-rays at a rate of

3.6× 107 counts/min. When it was placed directly on the bar, a rate of (1.96± 0.3)× 103

counts/min was observed in the PMT next to it. According to the Monte Carlo simulation,

the PMT acceptance was 5%. Therefore, the probability for a single 5.9 keV X-ray to

produce a scintillation photon is (1.96×103/3.6×107)/0.05 ∼ 1.1×10−3. Assuming that all

of the energy deposited by the traversing muon is used to create scintillation photons (the

minimum ionizing muon deposits 13.5 MeV) there would be about (1.1 × 10−3/.0059) ×
13.5 ∼ 0.12 detected scintillation photons per muon. This number is negligible compared

to the ≈ 5 observed background photons in a time window of 0-70 ns.

3.5 Monte Carlo Simulation

Both experimental setups described in Section 3.2 were simulated based on the Monte

Carlo program of a single DIRC bar geometry [13]. This generates a photon spectrum

according to the physics of Cherenkov radiation and traces photons from their point

of generation through the bar taking into account wavelength dependent bulk-material

attenuation, bar surface scattering, and mirror reflection. Cherenkov light is generated

for all charged particles above their Cherenkov threshold. Delta-ray generation from

the primary particle track is simulated using the FLUKA package [14] and the optical

properties of the glue.

3.5.1 Delta Ray Simulation

The simulated light yield originating from delta rays only is shown in Fig. 3.8 together

with the data from our mirror setup. The data is the combined mirror and photon trap

data, since they agree in their characteristics within the first 30 ns. The Monte Carlo

curve shows the absolute number of photons for the corresponding number of data tracks.

It is evident that delta rays describe the time behavior of the earliest background photons

in the 30 ns window before the signal while the overall spectrum is not well reproduced.

It is interesting to note that scintillation photons emitted in random direction along the

particle track arrive at a similar time spectrum only that their rate is strongly suppressed

compared to delta rays.
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Figure 3.8: Time distribution of photon background pulses in the first 30 ns. The Monte
Carlo only simulates delta rays and is represented by the smooth line, while the data (a
combination of both the mirror and photon trap data) is given by the dots. Delta rays
are the dominant component in the first background photon peak.
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3.5.2 Reflectivity of Glue

It is obvious from Fig. 3.8 that delta rays do not explain the background features

satisfactorily. The distance to the first glue joint between the bars corresponds roughly to

the 15 ns, where the shoulder shows up in the data. Therefore, to more accurately describe

the data, the reflection of photons was included from the glue/fused silica interfaces

which so far was neglected in the DIRC simulations. The modified spectrum is shown

in Fig. 3.9(a) together with both the mirror and photon trap data. The Monte Carlo

describes the first photon arrival peak, due to delta rays, well. The ratio between the

second glue reflection peak and the first delta-ray peak was tuned using the reflectivity

per angle of incidence (Fig. 3.7). The analysis of the reflection was done as follows. First,

the measured refraction index of the glue [12] and that of fused silica were used and the

TE and Transverse Magnetic (TM) reflections were calculated using the Fresnel theory. In

this case, the second peak in Fig. 3.9(a) was underestimated by a factor of five. Second, the

refraction index of the glue was tuned to obtain the best agreement with the 4-m-long bar

data. Again, the TE and TM modes were calculated appropriately, according to Fresnel

theory. However, following this procedure, unphysical values of the refraction index of

the EPOTEK-301-2 glue were obtained. Third, the data from the direct measurement of

the reflectivity of the glue/fused silica interface for the TE mode at 442 nm was fit to.

The results of this fit were used to model the reflection. In this case, the Monte Carlo

overestimated the size of the second peak in Fig. 3.9(a). Finally, the fit was tuned to the

direct measurement of the reflectivity to achieve agreement with the data in Fig. 3.9(a).

The result of this tuning is shown in Fig. 3.7. The tuned curve explains the basic features

of the measured data, although the time between the first and second peaks in the Monte

Carlo is ∼ 1 − 2 ns greater than the time in the data. In summary, the reflection at the

glue/fused silica interface may not follow the simple Fresnel theory. In fact, the deviation

from this theory may point to a more complex situation at the interface between bars.

Fig. 3.9(b) shows the photon-trap data extending the time interval without a Cherenkov-

light signal to 70 ns together with the Monte Carlo generated with the tuned reflectivity

curve. The basic features of the distribution are reproduced well. It shows that nearly all

background photons are collected within the 70 ns.

Using the reflectivity-tuned Monte Carlo the most probable number of background

photons in the first 30 ns is determined to be three, which is shown in Fig. 3.10(a). For

the full 70-ns interval, the number of background photons is five (Fig. 3.10(b)). About 96

photoelectrons from the Cherenkov signal is expected at the dip angle of 56.5◦, so that
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(a) (b)

Figure 3.9: Time distribution of photon background pulses in the first 30 ns (a) and 0-
70 ns (b), where the glue reflectivity is included in the simulation. The Monte Carlo is
represented by the smooth line, while the data is given by the dots. For (a), the data is a
combined of the mirror and photon trap data, while the data in (b) consists solely of the
photon trap data.

the most probable number represents approximately 5% of the proper DIRC Cherenkov

signal. However, the distribution has a long tail caused by the delta-ray contribution as

shown in Fig. 3.10(a) and (b). Since the real data have a finite pulse shaping time, there is

a natural upper limit on the number of pulses one can measure and the tail is suppressed.

3.6 Conclusion

It has been shown that the two major contributions to the photon background in DIRC

fused silica bars in the BABAR experiment are as follows: a) Cherenkov photons generated

by delta-ray electrons and b) reflection of all photons from the silica/glue interfaces. The

reflection is caused by the difference in the refraction index of the glue and fused silica.

The light yield due to scintillation is negligible. The results of the glue reflection when

put into the BABAR Monte Carlo for e+e− → µ+µ− events are shown in Fig. 3.11. The

effect of the glue is that it relects photons coming from the main Cherenkov peak, which

causes them to come outside of the timing selection for the DIRC (δt = 8ns). Thus, it

causes the Cherenkov angle distribution to be somewhat less populated than without the

glue.
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(a) (b)

Figure 3.10: Multiplicity distribution of background photons for the first 30 ns (a) and
0-70 ns (b). The Monte Carlo is represented by the smooth line, while the data is given
by the dots. For (a), the data is a combined of the mirror and photon trap data, while
the data in (b) consists solely of the photon trap data. The data and Monte agree well
in terms of most probable number, which is three for (a) and five (b).

Figure 3.11: The single photon angle distribution for muon tracks as reconstructed in the
DIRC for BABAR Monte Carlo. The effects of the glue are shown. Also shown for reference
are the effects of no delta rays and no machine background (photon background coming
from the beam interactions).



Chapter 4

Theory

This chapter provides an overview of the classical SM Lagrangian relevant to B →
V γ, along with discussing the theoretical calculations for the rates and asymmetries for

B → V γ.

4.1 Standard Model Lagrangian

The SM is a renormalizable quantum field theory that makes predictions in terms of

parameters that must be experimentally obtained, such as the masses and couplings. It

describes the electromagnetic, weak, and strong interactions based on the principles of

gauge symmetries, Lorentz invariance, and renormalizability. The gauge group is a Lie

group, according to which the fields transform according to a unitary finite-dimensional

representation. The theory of the strong interactions is described by the non-abelian

gauge group SU(3)C , where the C represents the color charge, under which only the

quarks transform non-trivially. The electromagnetic and weak interactions are described

by the group SU(2)L × U(1)Y , where the L indicates that the group acts only on the

left-handed components of the field, and Y represents weak hypercharge. The quantum

number associated with group SU(2) is called weak isospin. The product of all three

groups, SU(3)C × SU(2)L × U(1)Y , forms the gauge group of the SM under which all

fields transform. To endow mass, this group is spontaneously broken to SU(3)C ×U(1)Q,

where Q is the electric charge, by the vacuum expectation value of the Higgs field. This

provides the SM a way to give mass while at the same time maintaining renormalizability,

and provides the last ingredient to give the SM Lagrangian its final form.

39
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4.1.1 Fermion-Gauge Boson Interaction Lagrangian

The contributions to penguin processes are described by the following Lagrangian,

which, in terms of mass eigenstates, gives the fermion (ν, e, u, d) interactions with the

gauge bosons. The bosons are denoted by Zµ, Aµ, G
a
µ, and W±

µ , where the µ and a denote

the vector and color index respectively. It is given by

Lf =
∑

f=ν,e,u,d

3
∑

j=1

[

f̄ ji/∂f j +
e

sW cW

(

τ 3
f f̄

j
Lγ

µf̄ j
L − s2

wQf f̄
jγµf j

)

Zµ − eQf f̄
jγµf jAµ

]

+
∑

f=u,d

3
∑

j=1

gsf̄
jγµT af jGa

µ +
3
∑

i,j=1

e√
2sW

(

Vijū
i
Lγ

µdj
LW

+
µ + V †

ij d̄
i
Lγ

µuj
LW

−
µ

)

+
3
∑

j=1

e√
2sW

(

ν̄j
Lγ

µej
LW

+
µ + ēj

Lγ
µνj

LW
−
µ

)

, (4.1)

where j denotes the family index, sW = sin θW and cW = cos θW , where θW is the weak

mixing angle, τ 3
f is the third component of weak-isospin, Qf is the charge of the fermion,

and V is the CKM matrix, which is unitary by construction. Since the rotation matrices

that transform the gauge eigenstates into the mass eigenstates have dropped out of the

terms involving the fermion fields and the neutral gauge bosons, there are no FCNCs at

tree level. FCNCs therefore occur at the loop level, and even then are further suppressed

because of the GIM mechanism. This is the observation that, owing to the unitarity

of the CKM matrix, the amplitTableude of FCNCs would vanish in the limit of equal

quark masses of the intermediate states. Since the process b → sγ is a FCNC, the GIM

mechanism applies to it.

The V − A structure of the weak interactions provides the mechanism to violate the

discrete symmetries of parity P and charge conjugation C. Under the transformation P ,

C, and time reversal T , a spinor ψ and vector field Vµ transform as

Pψ(t, ~x)P−1 = γ0ψ(t,−~x), PVµ(t, ~x)P−1 = V µ(t,−~x),
Cψ(t, ~x)C−1 = iγ2γ0ψ̄T (t, ~x), CVµ(t, ~x)C−1 = −Vµ(t, ~x),

Tψ(t, ~x)T−1 = γ1γ2ψ(−t, ~x), TVµ(t, ~x)T−1 = V µ(−t, ~x).
(4.2)

Using Eq. 4.2, one can show that the terms in Eq. 4.1 that couple the up- and down-type

quarks to the W bosons transform under P and C as



4.2. THE CKM MATRIX 41

P
(

Vijū
i
Lγ

µdj
LW

+
µ + V †

ij d̄
i
Lγ

µuj
LW

−
µ

)

P−1 = Vijū
i
Rγ

µdj
RW

+
µ + V †

ij d̄
i
Rγ

µuj
RW

−
µ ,

C
(

Vijū
i
Lγ

µdj
LW

+
µ + V †

ij d̄
i
Lγ

µuj
LW

−
µ

)

C−1 = Vij d̄
j
Rγ

µui
RW

−
µ + V †

ijū
j
Rγ

µdi
RW

+
µ .

(4.3)

Essentially, the operators C and P change the chirality of the current that is coupled to

the W boson. Since the right-handed components of the up- and down-type quarks do

not couple to W±, C and P are said to be violated maximally. Combining the operations

in Eq. 4.3, the transformation under CP is

CP
(

Vijū
i
Lγ

µdj
LW

+
µ + V †

ij d̄
i
Lγ

µuj
LW

−
µ

)

CP−1 = V †
jiū

i
Lγ

µdj
LW

+
µ + Vjid̄

i
Lγ

µuj
LW

−
µ . (4.4)

Therefore, the condition for CP violation in the SM becomes

V 6= V ∗ (4.5)

so that the reality of the CKM matrix implies CP conservation. The operation CPT is a

symmetry of the SM by the CPT theorem, which states that CPT is a symmetry of any

Lorentz invariant local quantum field theory with a Hermitian Hamiltonian.

4.2 The CKM Matrix

The CKM matrix is conventionally written as

V =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









, (4.6)

where, Vud, for example, provides the coupling between the u and d quark. The matrix can

be expressed in terms of four parameters, three angles and one phase, which manifestly

shows it’s unitarity [15],

V =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









, (4.7)

where cij = cos θij and sij = sin θij. The three generations of the SM is a necessary
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condition for the CKM matrix to have an imaginary CP -violating phase, since a 2 × 2

matrix can be expressed in terms of solely real parameters. However, it is not sufficient,

as it can shown that the phase can removed if two quarks of the same charge had equal

masses, or if the value of any of the three mixing angles were 0 or π/2 [16]. Additional

phases can be brought in with the addition of another quark generation. Practically, the

Wolfenstein parameterization [17] is used, which expands each element in powers of the

sine of the Cabibbo angle θc, λ = sin θc = |Vus| = 0.22. Up to O(λ4), the expansion is

V =









1 − λ2

2
− λ4

8
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
− (1

8
+ A2

2
)λ4 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 + Aλ4(1
2
− ρ− iη) 1 − A2 λ4

2









, (4.8)

where the relationship between (4.7) and (4.8) is given by

s12 = λ, s23 = Aλ2, s13e
−iδ = aλ3(ρ− iη). (4.9)

Eq. 4.8 shows explicitly that the CKM matrix is nearly diagonal and symmetric, a pattern

which is not theoretically understood. The unitarity of the matrix implies relationships

among it’s elements. In particular, there are twelve conditions, two of which are

VcdV
∗
cb + VtdV

∗
tb + VudV

∗
ub = 0, (4.10)

VtbV
∗
ts + VubV

∗
us + VcbV

∗
cs = 0. (4.11)

However, new physics which brings in additional generations could make these condi-

tions untrue. Each of these equations may be written in terms of the parameters ρ, A, λ,

and η, which leads to Fig. 4.1. The understanding and verification of Fig. 4.1(a) is the

primary motivation for the B-factories. Fig. 4.1(b) relates to the decay B → K∗γ. This

may be understood by considering the leading order short-distance diagram of B → K∗γ,

which is shown in Fig. 4.2. The intermediary particles are given by u, c, and t, which to-

gether with the quarks b and s form the sides of Fig. 4.1(b). The spear-shaped nature of

Fig. 4.1(b) leads to small CP -violating effects, which may be contrasted with Fig. 4.1(a).

There is also a unitary triangle that leads to a somewhat larger time-independent CP

violating asymmetry in B → ργ. However, the statistics of the dataset of this thesis

is such that this asymmetry is not measurable. This is also true of the time-dependent

CP asymmetry in B0 → ρ0γ, for which a measurement has been only obtained by the
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*
cbVcdV

3λ

*
tbVtdV

3λ
*
ubVudV

3λ

βγ

α

(a)

*
tsVtbV

2λ

*
csVcbV

2λ

*
usVubV

4λ

(b)

Figure 4.1: The unitary triangles with the sides given in terms of expansion parameter
λ portrayed in the complex plane corresponding to a) Eq. 4.10 and b) Eq. 4.11. The
openness of the former gives large CP violation in decays such as B → J/ψKS and
B → ππ, while the latter gives small CP violating effects in the decay of B → K∗γ. The
angles given in (a) are determined by measuring time-dependent asymmetries.

Belle experiment [18]. CP asymmetries in B → K∗γ, including the time-dependent CP

asymmetry in B → K∗γ(K∗0 → KSπ
0), will be discussed further in Section 4.4.2.

4.3 B → V γ Phenomenology

In this thesis, the decays B0 → K∗0γ(K∗0 → K+π−, KSπ
0), B+ → K∗+γ(K∗+ →

K+π0, KSπ
+), B0 → ρ0γ(ρ0 → π+π−), B+ → ρ+γ(ρ+ → π+π0), B → ωγ(ω → π+π−π0),

and B → φγ(φ → K+K−) are measured. This section provides a discussion of the

kinematic amplitudes involved in these transitions, as well as the line shape used to

model the vector (K∗,ρ,φ) resonance.
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Figure 4.2: Leading order short-distance Feynman digram for the b → (s, d)γ transition

4.3.1 Decay Dynamics

4.3.1.1 Helicity Amplitudes

The amplitude of a resonance of spin J decaying into two particles,

J → 1 + 2, (4.12)

can be written in terms of helicity states of the particles involved. Let M denote the

z-component of the spin of resonance J of mass m along an arbitrarily defined z-axis.

In the rest frame of the resonance J , the spherical angle Ω = (θ, φ) is defined by the

direction of the momentum of particle 1. With the helicities of particles 1 and 2 given by

λ1,λ2, the amplitude is given as [19]

A =

√

2J + 1

4π
F J

λ1λ2
DJ∗

Mλ(φ, θ, 0), (4.13)

where λ = λ1 − λ2 is the spin projection of the resonance J along the direction of the

momentum of particle 1, F J
λ1λ2

is the helicity amplitude, and DJ∗
Mλ(φ, θ, 0) are the D-

functions.

The chiral nature of the weak interactions can be used to simplify the possible helicities

of the final states for amplitudes that are evaluated in the SM for B → K∗γ, B → ργ, and

B → ωγ. The b→ qγ(q = (s, d)) amplitude can be described by the effective Hamiltonian

Heff =
GF e

16
√

2π2
mbFµν [q̄Lσ

µνbR + q̄Rσ
µνbL] (4.14)

where the CKM matrix elements and color indices have been ignored. The chiral and

helicity eigenstates for a spin 1/2 fermion can be related by
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|λ−〉 = |−〉 +
m

2E
|+〉 + O(

m2

E2
)

|λ+〉 = |+〉 +
m

2E
|−〉 + O(

m2

E2
) (4.15)

where |λ−〉,|λ+〉 represent the left and right helicity eigenstates, and |−〉,|+〉 represent

the left and right chiral eigenstates. The expansion is in powers of m/E, where m is

mass of the particle, and E is the total energy. To leading order in m/E, the first term

in Eq. 4.14 has the helicity structure bR → qLγL, while the second term mediates the

opposite transition. However, the W boson only couples to left-handed external chiral

states, so the bR → qLγL transition brings in a factor of mb and the bL → qRγR transition

brings in a factor of mq to the amplitude upon considering Eq. 4.15. So, the emission of a

right-handed polarized photon is suppressed roughly by a factor of mq/mb in a b decay. In

the case of a b̄ decay, the left-handed polarized photon is suppressed by the same factor.

This suppression has been experimentally probed by measuring the time-dependent CP

asymmetry of B → K∗γ(K∗0 → KSπ
0), as will be discussed in Section 4.4.2.2.

4.3.1.2 Angular Distributions

The amplitude for the total decay chain B → V γ(V → P1P2) can be written as

A(M,λγ) ∼
∑

λV

D
∗s(B)
M,λγ−λV

(φ, θ, 0)AλγλV
×D

∗s(V )
−λV ,λP1

−λP2
(φ′, θ′, 0)BλP1

λP2
. (4.16)

Here, the z-axis is the arbitrarily defined spin-quantization axis for M , while the z′-axis

is the direction of γ in the rest frame of the B, so that the spin projection of V along z′ is

M1 = −λV . Inserting the known values of the spins, squaring the amplitude, noting that

d1
10(θ

′) = − sin θ′/
√

2, and neglecting rotationally invariant terms, the angular distribution

is

dΓ

d cos θ′
∼ sin2 θ′. (4.17)

This distribution will be measured in this thesis.

ForB → ωγ(ω → π+π−π0), the decay chain considered is ω → di-pion(π1π2) π3, (π1π2) →
π1π2. The amplitude can be written as
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A(λV ) ∼
∑

λπ1π2

D
∗s(ω)
−λV ,λπ1π2

−λπ3
(φ, θ, 0)Aλπ1π2

λπ3
×D

∗s(π1π2)
λπ1π2

,λπ1
−λπ2

(φ′, θ′, 0)BλP1
λP2
, (4.18)

where the z-axis is in the direction of the γ in the rest frame of the B, and the z′ axis is

in the direction of the π1π2 in the rest frame of the ω. Due to parity invariance, the π1π2

system cannot have helicity zero. After computation, and permuting the pion charge over

π1,2,3, the angular distribution is given by

dΓ

d cos θnd cos θπ+π−

∼ |A′(m2
π+π− ,m2

π+π0)|2 sin2 θπ−π+ sin2 θn (4.19)

where θn is the angle between the decay plane normal and the B in the ω rest frame,

θπ+π− is the angle between the π+ and π0 in the π+π− rest frame. The θπ+π− angle is

called the Dalitz angle, while θn is the helicity angle. We have combined the coefficients

Aλπ1π2
λπ3

, BλP1
λP2

into a single coefficient A′. The coefficient A′ contains information

about possible resonances, which in this case is given by the ρ resonance. Therefore,

the mass dependence of the coefficient is given by the ρ Breit-Wigner distribution. The

two-pion invariant mass and the Dalitz angle are not independent. Therefore, the A′

coefficient can cause deviations from the sin2 θ distribution. However, it is a feature of

the ω resonance that this does not occur because the limited phase space available in

the ω decay causes the two-pion invariant mass to occur far down the ρ Breit-Wigner

distribution. Therefore, A′ ≈ constant, which causes the Dalitz angle to have a sin2 θ

distribution. Both the Dalitz angle and the helicity angle of the ω will be measured in

this thesis.

4.3.1.3 Parameterization of the V resonance

In the rest frame of the V , where V = (K∗, ρ, φ), the daughters are emitted with rela-

tivistic velocities, so that it is appropriate to use a relativistic Breit-Wigner distribution

to characterize the V resonance. In addition, an energy dependent width is utilized that

provides a high-side tail . Let m be the reconstructed V mass, and m0 be the nominal V

mass. Then, the distribution is given by

fBW (m) = CBW

p
(

p
p0

)2l
(

Bl(p, p0)
)2

(m2 −m2
0)

2 + (m0Γrel)2
(4.20)
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where

Γrel = Γ

(

p

p0

)2l+1
(m0

m

)

(

Bl(p, p0)
)2
. (4.21)

Here, p is momentum of one of the daughters in the rest frame of the V evaluated as a

function of m, p0 is p evaluated at m0, l is the relative orbital angular momentum of the

two daughters, and Γ is the nominal width. The factor (p/p0)((m0/m) accounts for the

variations of two-body phase space of the width, while the term (p/p0)
2L is a centrifugal

barrier factor. Bl(p, p0) is the Blatt-Weisskopf barrier functions [20]

B1(p, p0) =
Fl(p)

Fl(p0)
, (4.22)

where

F1(p) =
1

√

(pR)2 + 1
, (4.23)

is the Blatt-Weisskopf barrier function for a spin 1 resonance. The constant R is 5 GeV−1,

which is approximately 1fm, the range of the strong interactions. The formulation used

here is chosen such that F1(1/R) = 1. These functions arise because of the need of the spin

of the resonance to be translated into angular momentum of the decay products. Since this

is a strong decay, which has a very limited range, decay products of low momentum will

be unable to generate enough angular momentum to conserve the spin. These functions

account for this effect. Although Eq. 4.20 is valid for any resonance that has a 2-body

decay, the statistics of the samples are such that a distribution can be obtained only for

the K∗ resonance. Therefore, in this thesis, this distribution will be used to validate that

the signal events of the data sample are populated by the K∗ resonance.

4.3.2 Form Factors

The B → V (V = ρ, ω,K∗) form factor is defined by

〈V (pV , η)|iqν s̄σµνb|B̄(pB)〉 = −iFB→V (q2)ǫµαβρη
αpβqρ (4.24)

where p = pV + pB, q = pB − pV , η is the polarization vector of V , and q2 = 0. It can be

evaluated by using a variety of different approaches [21, 22, 23], including lattice QCD,

QCD sum rules, and light-cone QCD sum rules. A summary is shown in Table 4.1.
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Table 4.1: Results of form factor calculations using lattice QCD, QCD sum rules, and
light-cone QCD sum rules. For the lattice QCD entry, the first error is statistical, while
the second error is systematic.

Lattice QCD [21] QCD sum rules [22] Light-cone QCD sum rules [23]
FB→K∗

(0) 0.24 ± 0.03±+0.04
−0.01 0.35 ± 0.05 0.31 ± 0.04

FB→ρ(0) 0.27 ± 0.04
FB→ω(0) 0.25 ± 0.04

4.4 Measured Observables

4.4.1 Branching Fractions

The branching fractions can be evaluated in a variety of methods, which include heavy

quark effective theory (HQET), perturbative QCD (pQCD), and soft-collinear effective

theory (SCET). They all involve factorizing the matrix elements into hard and soft dy-

namics. The theoretical calculations for the branching fractions for B → K∗γ are shown in

Table 4.2, while the experimental measurements are shown in Table 4.3. Due to hadronic

uncertainties (represented by the forms factors listed in Table 4.1), the theoretical un-

certainties are much larger than the experimental ones. To leading order in HQET, the

B(B → K∗γ) ∝ |FB→K∗(0)|2 and B(B → ργ) ∝ |FB→ρ(0)|2 [26]. As shown in Table 4.2,

the central value of the theoretically predicted branching fractions have come down as

a function of time. This is partially due to the fact that the form factor FB→K∗

has

decreased with time. Ref. [76], which was published in 1998, uses QCD sum rules to give

FB→K∗

= 0.38 ± 0.06, while the most recent prediction gives FB→K∗

= 0.31 ± 0.04 [23].

Another factor leading to the different predictions of Ref. [24] through Ref. [28] is the

number of diagrams computed increased. However, because the large uncertainties on the

predictions, the measured branching fractions of this thesis are consistent with all of the

predictions. The theoretical predictions for B → ργ and B → ωγ are given in Table 4.4,

while the measurements are given in Table 4.5.

Prior to the measurement described in this thesis, the mode B0 → ρ0γ has only been

observed by the Belle collaboration, while the modes B+ → ρ+γ and B → ωγ were

undetected. The pure annihilation radiative decay B → φγ is further suppressed in the

Standard Model relative to B → K∗γ and B → ργ. The theoretical predictions for

B → φγ are ∼ 10−11 [35, 36], and a leading order Feynman diagram is given in Fig. 4.3.

A previous search has bounded the branching fraction to be B(B → φγ) < 3.3×10−6 [29].
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Table 4.2: Current theoretical calculations of the B → K∗γ branching fraction

B(B → K∗γ) (NLO) Reference
(7.25 ± 2.6) × 10−5 Ali and Parkhomenko [24]

(7.9+3.5
−3.0) × 10−5 Beneke, Feldmann and Seidel [25]

(7.09+2.47
−2.27) × 10−5 Bosch and Buchalla [26]

(5.8 ± 2.9) × 10−5 (B0 → K∗0γ) Matsumori, Sanda,
(6.0 ± 3.0) × 10−5 (B+ → K∗+γ) and Keum [27]
(4.3 ± 1.4) × 10−5 (B0 → K∗0γ) Ali, Pecjak,
(4.6 ± 1.4) × 10−5 (B+ → K∗+γ) and Greub [28]

Table 4.3: Previous measurements of the branching ratios and asymmetries for B → K∗γ.
The last error on the isospin asymmetry for the BABAR measurement refers to the error
on the production ratio of charged to neutral B events.

CLEOII [29] BABAR [30] Belle[31]
9.2 fb−1 81.9 fb−1 78.0 fb−1

B0 → K∗0γ 4.55+0.72
−0.68 ± 0.34 3.92 ± 0.20 ± 0.24 4.01 ± 0.21 ± 0.17

(×10−5)

B+ → K∗+γ 3.76+0.89
−0.83 ± 0.28 3.87 ± 0.28 ± 0.26 4.25 ± 0.31 ± 0.24

(×10−5)

ACP +0.08 ± 0.13 ± 0.03 −0.013 ± 0.036 ± 0.010 −0.015 ± 0.044 ± 0.012

Isospin N/A +0.050 ± 0.045 ± 0.028 ± 0.024 +0.012 ± 0.044 ± 0.026
asymmetry (measured parameter: ∆0−) (measured parameter: ∆0+)

4.4.2 CP Asymmetries

The CP asymmetry is defined as

ACP =
Γ(B̄ → K̄∗γ) − Γ(B → K∗γ)

Γ(B̄ → K̄∗γ) + Γ(B → K∗γ)
, (4.25)

In this section, the direct CP asymmetry from the decaysB → K∗γ(K∗0 → K+π−), B+ →
K∗+γ(K∗+ → K+π0, K∗+ → KSπ

+) and the time-dependent CP asymmetry involving

the decay B → K∗γ(K∗0 → KSπ
0) will be discussed briefly.

4.4.2.1 Time-independent

The total amplitude of B → K∗γ and its conjugate can be written as
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Table 4.4: Theoretical predictions of the branching fractions for B → ργ and B → ωγ.

Mode Branching fraction ( ×10−6 )

Ref. [32] Ref. [26] Ref. [23]

B+ → ρ+γ 1.37 ± 0.28 1.58+0.53
−0.46 1.16 ± 0.26

B0 → ρ0γ 0.65 ± 0.12 0.55 ± 0.13

B → ωγ 0.53 ± 0.12 0.44 ± 0.10

d

b

s

s

γ

γ

W
t

t
B0 φ

Figure 4.3: One of the leading order Feynman diagrams contributing to the decay B → φγ
in the Standard Model.
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Table 4.5: Previous measurements of the branching ratios for B → ργ and B → ωγ, where
the limits are given by the 90% confidence level. The errors on the Belle measurements
are statistical and systematic respectively, while the entry in paranthesis refers to the
significance of the measurement.

CLEOII [29] BABAR [33] Belle[34]

9.2 fb−1 191 fb−1 350.9 fb−1

B+ → ρ+γ(×10−6) < 13 < 1.8 0.55+0.42+0.36
−0.36−0.08 (1.6σ)

B0 → ρ0γ(×10−6) < 17 < 0.4 1.25+0.37+0.07
−0.33−0.06 (5.2σ)

B → ωγ(×10−6) < 92 < 1.0 0.56+0.34+0.05
−0.27−0.10 (2.3σ)

B → (ρ/ω)γ(×10−6) < 1.2 1.32+0.34+0.10
−0.31−0.09 (5.1σ)

A(B̄ → K̄∗γ) = λ∗tAte
iδt + λ∗cAce

iδc + λ∗uAue
iδu , (4.26)

A(B → K∗γ) = λtAte
iδt + λcAce

iδc + λuAue
iδu , (4.27)

where λt = V ∗
tsVtb, λc = V ∗

csVcb, λu = V ∗
usVub, the weak (λt, λc, λu) and strong (δt, δc, δu)

phases have been separated out, and At, Ac, Au are the real contributions to the amplitude

associated with the corresponding CKM elements. The strong phases arise from O(αs)

contributions which also involve the light quarks [37]. Using Eqs. 4.26 and 4.27, the CP

asymmetry can be expressed as

ACP =
N

D
, (4.28)

where

N = AtAc sin(δt − δc)Im(λtλ
∗
c) + AcAu sin(δc − δu)Im(λcλ

∗
u) (4.29)

+AuAt sin(δu − δt)Im(λuλ
∗
t ),

D = (A2
t |λt|2 + A2

c |λc|2 + A2
u|λu|2)/2 + AtAc cos(δt − δu)Re(λtλ

∗
c) (4.30)

+AcAu cos(δc − δu)Re(λcλ
∗
u) + AuAt cos(δu − δt)Re(λuλ

∗
t ).

Thus, there must be at least two amplitudes with different weak and strong phases for a

non-vanishing CP asymmetry. Eqs. 4.29 and 4.30 show that the asymmetry is determined
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not only by the phases, but also by the relative magnitudes of the amplitudes. Since the

dominant amplitude is given by At, and Im(λtλ
∗
c), Im(λcλ

∗
u), and Im(λuλ

∗
t ) are ∼ λ6,

the asymmetry is highly suppressed. The SM gives ACP ∼ −0.5% [26, 27]. The CP

asymmetry of inclusive b→ sγ also has a magnitude that is less than 1%. However, new

physics could enhance this to be 10-50% [38].

4.4.2.2 Time-dependent

As mentioned in Section 4.3.1, the photon emitted in a radiative b(b̄) decay is pre-

dominantly left(right)-handed polarized. CP asymmetries in B decays which involve the

interference with and without mixing require that both B and B̄ decay to a common state,

which means interference will only take place with states with a common photon helicity.

Therefore, new physics models which are left-right symmetric can be tested by measuring

the time-dependent CP asymmetry of B → K∗γ(K∗0 → KSπ
0). The SM prediction is

given by [39]

ACP (B → K∗γ(K∗0 → KSπ
0)) ≈ (2ms/mb) sin(2β) sin(∆mt), (4.31)

which is very small. However, in left-right symmetric models, the asymmetry can be 50%

or larger [39]. This asymmetry has been measured, and is consistent with SM expecta-

tions [40, 41]. It will not measured in this thesis.

4.4.3 Isospin Asymmetries

4.4.3.1 B → K∗γ

The isospin asymmetry is defined as

∆0− =
Γ(B̄ → K̄∗γ) − Γ(B− → K∗−γ)

Γ(B̄ → K̄∗γ) + Γ(B− → K∗−γ)
. (4.32)

In this thesis, we assume CP asymmetry when making the measurement. The SM pre-

dictions for the isospin asymmetry are given in Table 4.6. Since the theoretical hadronic

and correlated experimental systematic uncertainties partially cancel when taking the ra-

tio, the isospin asymmetry provides a good sensitivity to new physics. For example, one

new physics model is the minimal supergravity model (mSUGRA), where the number

of parameters is reduced to five, which are m0 (common mass of scalar particles at the
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supersymmetric grand unification scale), m1/2 (universal gaugino mass), A0 (universal tri-

linear SUSY breaking parameter), u (the sign of the Higgs mixing parameter), and tan(β)

(the ratio of the two Higgs vacuum expectation values). When considering this model,

Ref. [43] indicates that the isospin asymmetry could provide more severe restrictions on

parameter space than the ones coming from the branching fraction of B → Xγ. This is

displayed in Fig. 4.4 for A0 = 0, tan(β) = 30, and µ > 0.

Table 4.6: Current theoretical calculations of isospin violation in B → K∗γ decays.
FB→V (q2 = 0) is the B → K∗ form factor whose estimates range from 0.23± 0.06 [27] to
0.38 ± 0.06 [76].

Isospin violation Reference
(+8.0+2.1

−3.2)% × 0.3/TB→K∗

1 (∆0−) Kagan and Neubert [42]
(+2.7 ± 0.8)% (∆0+) Matsumori, Sanda, and Keum [27]

4.4.3.2 B → ργ

The isospin-violating ratio in B → ργ is defined as

∆ =
Γ(B+ → ρ+γ)

2Γ(B0 → ρ0γ)
− 1. (4.33)

According to isospin, we expect Γ(B+ → ρ+γ) = 2Γ(B0 → ρ0γ). This ratio is dependent

on the CKM angle α [32], so, in principle, a measurement of this quantity could yield an

independent determination of this angle. Within the SM, the isospin asymmetry is dom-

inated by weak annihilation contributions. The SM expectation using QCD factorization

is ∆ = (2.9±2.1)% [32]. However, new physics could alter this value. In this thesis, since

the branching fractions of B+ → ρ+γ and B0 → ρ0γ are measured, an estimate of this

quantity is given.

4.4.4 |Vtd/Vts|

When the unitary triangle in Fig. 4.1(a) is rescaled by dividing each side by VcdV
∗
cb,

the length of the side opposite the angle γ (Rt) is given by

Rt ≡
√

(1 − ρ̄)2 + η̄2 =
1

λ

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

, (4.34)
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Figure 4.4: Experimental constraints on mSUGRA parameter space for the B → K∗γ
isospin asymmetry (black), the B → Xγ branching fraction (magenta). The green
“Charged LSP” indicates the the cosmologically disfavored region if the lightest super-
symmetric particle (LSP) is charged and R-parity is conserved. The grey “Excluded”
region indicates constraints on the parameter space corresponding to direct searches for
the Higgs and sparticles. The assumptions are A0 = 0, tan(β) = 30, and µ > 0.
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where ρ̄ = ρ(1− λ2/2) and η̄ = η(1− λ2/2). Therefore, a measurement of the CKM ratio

|Vtd/Vts| determines one of the sides of the unitary triangle. To gain precision with the

limited statistics in B → ργ and B → ωγ for CKM phenomenology, we define the isospin

averaged branching fraction

B[B → (ρ/ω)γ] ≡ 1

2

{

B(B+ → ρ+γ) +
τB+

τB0

[B(B0 → ρ0γ) + B(B → ωγ)]
}

. (4.35)

Non-perturbative QCD uncertainties partially cancel when taking the ratio

B[B → (ρ/ω)γ]

B[B → K∗γ]
= S

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2( 1 −m2
ρ/M

2
B

1 −m2
K∗/M2

B

)3

ζ2[1 + ∆R], (4.36)

where S is 1 for ρ+ and 1
2

for ρ0 and ω, m is the particle mass, ζ = 0.85 ± 0.07 is the

ratio of form factors for the decays B → (ρ/ω)γ and B → K∗γ, and ∆R = 0.1 ± 0.1

accounts for different dynamics, including weak annihilation contributions. The latter

two quantities are obtained from Ref. [44]. In this thesis, a measurement of this ratio

will be used to extract the quantity |Vts/Vts|, which can also be obtained from the ratio

of Bd and Bs mixing frequencies. A summary of previous measurements of this quantity

is given in Table 4.7. Physics beyond the SM could affect differently B → (ρ/ω)γ and

Bd/Bs mixing, and hence create inconsistencies between the results obtained from the

two methods.

Table 4.7: Previous measurements of |Vtd/Vts|. In the CDF entry, ∆md and ∆ms de-
note the Bd and Bs mixing frequencies respectively. “Theor.” stands for the theoretical
uncertainty.

Collaboration |Vtd/Vts|
CDF [45] 0.2060 ± 0.0007(∆ms)

+0.0081
−0.0060(∆md + theor.)

Belle [34] 0.199+0.026
−0.025(exp)+0.018

−0.015(theor)



Chapter 5

Event Selection, Continuum

Background Suppression, and

Selection Optimization

In the previous chapter, the theoretical implications of the B → V γ observables

were discussed. In this chapter, the discussion will turn to the measurements of these

quantities. After a brief introduction in Section 5.1, the event and candidate selection

for all of the modes used in this study is discussed in Sections 5.2 and 5.3, along with a

description of the primary kinematic variables used to distinguish signal from background.

Then, Section 5.4 will describe how the continuum background is dealt with. The final

Section 5.5 discusses how the selection criteria were optimized. The next three chapters

will discuss the fitting procedure and the results for B → K∗γ and B → φγ. In the case

of B → (ρ/ω)γ, only the results will be presented.

5.1 Introduction

As mentioned in Section 4.4.1, there are previous measurements made by BABAR of

B → K∗γ [30] and B → (ρ/ω)γ [33]. The current analyses builds on and improves upon

those analyses. The B → φγ mode is similar to the former two modes, and much of the

analysis methods for B → φγ is borrowed from them. Eight different decay modes are

considered:

• B0 → K∗0γ(K∗0 → K+π−, K∗0 → KSπ
0)

• B+ → K∗+γ (K∗+ → K+π0, K∗+ → KSπ
+)

56
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• B0 → ρ0γ (ρ0 → π+π−)

• B+ → ρ+γ (ρ+ → π+π0)

• B → ωγ (ω → π+π−π0)

• B → φγ (φ→ K+ K−).

The reconstruction of these modes proceeds in three different analyses: the measure-

ment of B → K∗γ constitutes one analysis, the measurement of B+ → ρ+γ and B → ωγ

comprises another, and the final analysis is the search for B → φγ.

The cross-sections for e+e− collisions to produce quarks and leptons at a CM energy

of 10.58 GeV (the Υ (4S) mass) are given in Table 5.1. The production of light quark pairs

(cc, ss, uu, dd), which are known as continuum events, is about three times the produc-

tion of e+e− → bb. Given this fact, and since jets from continuum events contain high

energy gammas which can simulate the high energy gamma coming from the signal decay,

continuum processes form the majority of the background in these analyses. Background

that results from B decays also plays a role in the analyses. The importance of the B

background depends on the particular analysis, and will be discussed further below.

Table 5.1: Production cross-sections at a CM energy of 10.58 GeV [46]. The cross-section
listed for e+e− production includes the effect of limited detector acceptance.

e+e− → Cross-section( nb)

bb 1.05
cc 1.30
ss 0.35
uu 1.39

dd 0.35
τ+τ− 0.89
µ+µ− 1.16
e+e− ∼ 40

5.1.1 Data

The BABAR experiment and the PEP-II accelerator ran from October of 1999 to April

of 2008, with data begin broken into seven run periods. The recorded luminosity is given

in Table 5.2. The “Onpeak” data is recorded at the Υ (4S) mass, while the “Offpeak”
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data is taken at 200 MeV below the Υ (4S) resonance. The first six runs were taken at

the Υ (4S) mass, and the precision on the number of BB pairs corresponding to each run

is 1.1%. Run 7 was used to explore other Υ resonances, such as the Υ (2S) and the Υ (3S).

Table 5.3 lists the luminosity of each dataset that was used by each analysis. The B → φγ

analysis used Runs 1-4, the B → (ρ/ω)γ analysis used Runs 1-4 and a substantial fraction

of Run 5 (this was done in order to make the International Conference of High-Energy

Physics (ICHEP) summer deadline), while the B → K∗γ analysis used Runs 1-5. Fig. 5.1

shows the luminosity delivered by PEP-II and recorded by BABAR during the course of

the entire experiment.

Table 5.2: Luminosity recorded over the history the BABAR detector.

Run Date Range Onpeak Offpeak BB pairs
( fb−1) ( fb−1) (×106)

1 Oct 1999-Oct 2000 20.43 2.62 22.43
2 Feb 2001-June 2002 61.15 6.92 67.46
3 Dec 2002-June 2003 32.31 2.47 35.61
4 Sep 2003-July 2004 100.31 10.12 110.49
5 Apr 2005-Aug 2006 133.27 14.49 147.19
6 Jan 2007-Sep 2007 78.78 7.88 86.88
7 Dec 2007-Apr 2008 Other Υ resonances

Table 5.3: Luminosity of dataset used by each analysis.

Analysis Date Range Onpeak Offpeak BB pairs
( fb−1) ( fb−1) (×106)

B → φγ Oct 1999-July 2004 214.2 22.13 235.99
B → (ρ/ω)γ Oct 1999-June 2006 316.29 27.75 347.50
B → K∗γ Oct 1999-Aug 2006 347.46 36.62 383.18

5.1.1.1 Simulated Data

This thesis makes extensive use of simulated events, known as Monte Carlo (MC)

simulation samples. These events are generated according to models that simulate a

particular process (for example e+e− → B0B0). Each unstable particle generated in the

simulation is either forced to decay to a particular mode (for example, B → K∗γ(K∗0 →
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Figure 5.1: Delivered and recorded luminosity as a function of time.
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K+π−)) or to one of many possible modes with a probability (usually taken from the

Particle Data Group (PDG)) of decaying to a particular mode. The generated particles

traverse a detailed model of the detector. Version 4 of the GEANT software package [47]

is used to simulate the interactions of the particles with the detector material and the

responses of the detector subsystems. Real data obtained by reading out the detector at

random beam crossings are merged with simulated events in order to add realistic beam

backgrounds to the simulation.

The MC simulation samples are used for three phases in each analysis: cut optimiza-

tion, the development of the neural network, and to construct the fit models. We use

MC simulation samples that reproduce signal and continuum events in all three phases.

To understand the background coming from B decays, we use samples of e+e− → BB

MC simulation, where both B’s are allowed to decay to any one of their modes (“generic

BB”), and also MC simulation where one B is constrained to a particular mode, and

the other B is allowed to decay to any mode (“exclusive BB”). This MC simulation is

used in the construction of the fit models. The size of each MC simulation sample varies

widely. However, in general, compared to the onpeak data, the size of the continuum

MC simulation is approximately the same, the “generic BB” is about three times, and

the “exclusive BB” sample is ≈ 100 or greater. The offpeak data is used to validate the

continuum MC simulation. In the case of B → φγ, the onpeak data is used to validate

the fit procedure and extract the signal yield, while in other two analyses it is used only

for the latter.

Finally, each generated particle that traverses the detector may be reconstructed or

not. The reconstructed properties, e.g., four-momentum, may be different from its gen-

erated ones. In addition to having each reconstructed particle be recorded by the event,

each event also has a list of generated particles for the event. An attempt is made to

map each reconstructed particle to its generated counterpart. If such an association is

possible, then the particle is termed “truth-matched”. We will make use of this in the

cut optimization, when we will only use candidates in the signal MC simulation that can

be truth-matched. This is because we want our cut selection to project out true signal

events. In addition, we also make use of truth-matching when we study biases that occur

in the B → K∗γ fit model (appendix D).
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5.1.2 Overview of Analysis Method

All of the intermediate vector mesons in the signal modes decay strongly. The branch-

ing fractions of the K∗ are determined using isospin symmetry and are given by the square

of the Clebsch-Gordon coefficients(Table 5.4). When the K∗ meson decays to a KS, the

KS is reconstructed from the KS → π+π− decay only, where we assume a branching

fraction of 69.2% [48]. The branching fractions of the ρ, ω, and φ used in this thesis are

B(ρ0 → π+π−) ∼ 100%, B(ρ+ → π+π0) ∼ 100%, B(ω → π+π−π0) = (89.1 ± 0.7)% [48],

and B(φ→ K+ K−) = (49.1 ± 0.6)% [49].

Table 5.4: The isospin factors for the decay of the K∗.

Decay Mode Isospin Factor
K∗0 → K+π− 0.667
K∗0 → KSπ

0 0.333
K∗+ → K+π0 0.333
K∗+ → KSπ

+ 0.667

The φ(1020) has a width of ∼ 4 MeV and the ω(782) has a width of ∼ 8 MeV; there-

fore, a tight cut on the invariant mass of the resonance is a powerful handle to reject

combinatorial background. In contrast, the K∗(892) has a width of ∼ 50 MeV and the

ρ(770) has a width of ∼ 150 MeV, which provides less stringent background rejection.

In signal decays, due to the two-body kinematics, the low mass of the particles in

the final state, and the mass of the B meson, the γ and the meson are produced with

very high momentum in the B rest frame. Requiring only the presence of the high

energy photon allows us to reduce ≈ 85% of the combinatorial background because the

energy spectrum of the photons decreases exponentially with energy. After applying the

remaining selection criteria, the leftover continuum background is dealt with by a neural

network, the description of which is in appendix C. The B background, except for the

analysis of B → φγ, for which the B background is negligible, is dealt with by performing

a maximum likelihood fit.

The general outline of the analysis procedure is as follows:

• Preliminary Event Selection: Because of the large data sample collected by the

BABAR detector, it is impractical for the analysts to deal with a dataset that contains

every event. Therefore, preliminary event selections are designed to vastly reduce

the size of the dataset while maintaining a high signal efficiency. In addition, they
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greatly reduce the amount of disk space required to store and CPU time required

to process the events.

• Cut optimization: Selection criteria, such as the invariant mass of the vector reso-

nance and a number of variables based on photon quality, are optimized by max-

imizing the statistical signal significance, which is defined as S/
√
S +B, where S

and B are the rates for signal and background, respectively . The cuts are optimized

for each mode individually.

• Continuum background suppression: A number of variables are combined together

into a neural network (NN) and are used to suppress the continuum background.

• Signal yield extraction: We use an extended unbinned maximum likelihood fit in

order to extract the signal yield for the B → K∗γ and B → (ρ/ω)γ analyses. The

number of dimensions and components varies depending on the sensitivity needed

for the analysis. For the B → φγ analysis, we count of the number of events in a

defined signal region, and compare it to the expected number of background events

obtained from a fit. This is done because we do not expect a signal.

5.2 Preliminary Event Selection

Generic BB decays are characterized by high multiplicity and isotropic event topol-

ogy in the center-of-mass system (CMS) resulting from the cascade of decays originating

from the B meson, which is slowly moving in this frame. In contrast, background elec-

tromagnetic processes are characterized by low multiplicity (typically two tracks), and

continuum events have a more collimated jet structure from the hadronic interactions of

the fast moving quark-antiquark pair. We, therefore, require at least three tracks that

individually satisfy the following requirements:

• The distance of closest approach to the beamspot in the x-y plane to be |dxy| < 1.5

cm and along the z-axis to be |dz| < 10 cm, which rejects fake tracks and background

tracks not originating from the beamspot.

• At least 12 hits in the DCH to ensure good track quality.

• The laboratory momentum must be |p| < 10 GeV/c. A momentum greater than this

is not consistent with the beam energies.
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• The trajectory of each track is fit. The fit is required to converge.

• The transverse momentum must be pT > 100 MeV/c, which reduces beam related

background.

This set of track selection criteria is known as the GoodTracksLoose, and every charged

track in all three analyses is required to satisfy them, except for the ones coming from a

KS. Figure 5.2(a) shows the track multiplicity for the signal MC simulation and offpeak

data. The majority of the events containing two tracks are from QED processes, such

as Bhabba scattering. The event topology is characterized as the ratio of the 2nd to the

0th Fox-Wolfram moments, R2, which is shown in Fig. 5.2(b) after the requirement for

the number of tracks. For a completely isotropic event, R2 = 0, while for a completely

collimated event, R2 = 1. We require R2 < 0.9. The peak at one for the offpeak data is

from leftover electromagnetic processes.

Figure 5.2(c) displays the CMS energy distribution of the highest energy photon (a

photon is identified as a “bump”, which is described in Section 2.2.4, in the EMC) in the

event after the requirement of the number of tracks and R2. In the CMS, the B meson is

moving slowly, so that this photon is almost mono-energetic with E∗
CMS ≈ 2.5 GeV. We

require 1.5 < E∗
CMS < 3.5 GeV.

High energy π0’s are more likely to have decay products with a small opening angle.

The two photons can then have two local maxima in the EMC that are sufficiently near

each other such that the reconstruction algorithm cannot distinguish them. Such a sit-

uation is called a merged π0, and tends to have a wider lateral moment than isolated

photons. Hadronic interactions with the detector also have the same effect. The lateral

moment is defined as

LAT =

∑Ncrystals

i=2 Ei∆xi
∑Ncrystals

i=0 Ei∆xi

, (5.1)

where Ncrystals is the number of crystals in an EMC cluster, each with energy Ei and

ordered from the most energetic to the least. For i ≥ 2, ∆xi is the distance from the

cluster local maximum to crystal i, while ∆x0,1 = 5 cm. An EMC bump with Ncrystals ≤ 2

has a LAT of zero by definition. We require LAT < 0.8. In addition, the each γ from the

π0 is required to have Eγ > 30 MeV in the laboratory frame.

There are also a number of other selection criteria designated as preliminary. These

include the invariant mass of the light vector meson (0.5 < mK∗ < 1.3 GeV/c2, 0.5 < mρ0 <

1.2 GeV/c2, 0.5 < mρ+ < 1.3 GeV/c2, 0.732 < mω < 0.832 GeV/c2, 0.7 < mφ < 1.5 GeV/c2)
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and the pseudoscalars which decay inside the detector (0.115 < mπ0 < 0.150 GeV/c2,

0.47 < mKS
< 0.522 GeV/c2). These requirements will be optimized and described further

in the Section 5.3.

The preliminary criteria also include requirements on not only the properties of the

π0, but also its daughters. Both γ daughters are subject to the same requirements as the

highest energy photon, with the exception of the selection on the center-of-mass energy.

In addition, the π0 candidate is required to have an energy greater than 200 MeV in the

laboratory frame, and is subject to a mass constrained fit in which the both γ daughters are

required to originate from the primary vertex. This is done to recalculate the momentum

of the daughters. The primary vertex is estimated per event by using selected charged

tracks in the event, where each track is required to have an impact parameter in the x-y

plane, calculated at the nominal interaction point, of less than 1 mm.

Finally, the last two variables used in the preliminary event selection are described in

Section 5.2.1.

5.2.1 Kinematic Variables

Two powerful variables that are used to discriminate between signal and background

are mES and ∆E. For perfectly measured particles, they are completely anti-correlated.

However, experimental resolution allows us to treat them as uncorrelated quantities.

The final state particles are used to reconstruct the vector meson, which is then com-

bined with the γ candidate to form a B candidate. For each B candidate, ∆E is defined

in the CMS as:

∆E = E∗
γ + E∗

V − E∗

beam,

where the “*” indicates a CMS quantity, E∗
γ is the energy of the gamma, E∗

V is the

energy of the vector meson, and E∗

beam is the beam energy (5.29 GeV in the CMS for

on-resonance data). With the expectation that each B meson carries half the beam energy

in the CMS this quantity measures how close the energy of the B-candidate is to the ex-

pected energy determined from the beam, which is more precisely known than any of the

detector-reconstructed kinematic quantities in this analysis. Thus, for signal events ∆E

is centered around zero; we require |∆E| < 0.6 GeV for the preliminary event selection.

In the present case, the resolution of ∆E is dominated by the high energy γ. Fig. 5.3(b)

shows the comparison between K∗0 → K+π− signal and continuum MC simulation for
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Figure 5.2: The distributions of the number of tracks (a), R2 (b), and the CMS energy
of the highest energy photon (c) of the event. The solid line refers to B0 → K∗0γ(K∗0 →
K+π−) signal MC simulation, and the black dots represent the offpeak data. The distri-
butions have been normalized to unity.

the ∆E distribution. The pronounced tail of the ∆E distributions at negative values arise

because of the energy leakage in the calorimeter, as well as π0, η decays where one photon

has been assumed to be the signal photon. In the case of the signal MC simulation, this

is mis-reconstructed signal.

The energy-substituted mass mES of the B meson candidate is reconstructed by using

the initial state energy (the beam energy) and the momentum of the final state particles.

It is defined by

mES =
√

E∗2

beam
− (~p∗γ + ~p∗V )2,

where ~p∗γ is the three momentum of the γ candidate and the three momentum of the
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vector meson candidate is represented by ~p∗V . For signal events, mES is centered at the

B meson mass (5.28 GeV/c2 [4]). The mES distribution for K∗0 → K+π− signal and

continuum MC simulation is shown in Fig. 5.3(a). We require 5.1 < mES < 5.5 GeV/c2.

Furthermore, each analysis is “blind”, which means that the contents of the mES and

∆E region which contain the signal events (defined by 5.27 < mES < 5.29 GeV/c2 and

−0.2 < ∆E < 0.1 GeV) is kept hidden from the analyst. This is to prevent a biased

analysis.
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Figure 5.3: The mES (a) and ∆E (b) distributions after the preliminary cuts have been
applied. The solid line refers to the B0 → K∗0γ(K∗0 → K+π−) signal MC simulation,
while the black dots represent the continuum MC simulation. The distributions have been
normalized to unity.

5.3 Candidate Selection

This section describes the selections related to individual particles. Some of these

selections are optimized as described in Section 5.5, and will be stated explicitly.

5.3.1 Particle Identification

Kaons and pions are identified by using dE/dx information from the SVT and DCH,

as well as using the Cherenkov angle measurement and the number of Cherenkov photons

from the DIRC. These measurements are used to form a likelihood Li, which is the

product of the individual likelihoods for the SVT, DCH, and DIRC, for a particle type

i(i = K,π, p). The SVT and DCH are applicable approximately in the momentum range

|p| < 0.7 GeV/c, while the DIRC is valid for |p| > 0.6 GeV/c. Electrons are identified
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using a product of likelihoods L′
i(i = e, π,K, p) using the deposited energy and the lateral

shapes of showers in the EMC, as well as information from the DCH and DIRC. Muons

are chosen using a cut-based selector which uses primarily IFR information.

For the B → K∗γ analysis, the kaons are selected with the kaon Tight selection,

which is designed to keep the pion misidentification rate below 5%. This selection requires

LK/(LK+Lπ) > 0.9 and LK/(LK+Lp) > 0.2, and, if the momentum of the kaon candidate

is above 0.4 GeV/c, L′
e/(L

′
e + L′

π + L′
K + L′

p) < 0.95. This latter requirement is known

as the Tight veto for electrons. An equivalent selection is made for the kaons from the

B → φγ analysis. The pions of the B → K∗γ analysis are required to fail the kaon Tight

selector. This is done because the pion efficiency is greater with this condition than with

a selection based on a pion selector, due to the pion selector’s requirement of the particle

being in the DIRC acceptance. By requiring the pion candidate to fail the kaon Tight

selector, we accept pions that fall outside of the DIRC acceptance, as well as inside. For

the B → (ρ/ω)γ analysis, in which the B → K∗γ background is important, the choice

of selector was optimized in a previous analysis [33]. Two pion selectors are utilized:

VeryTight, which requires that LK/(LK + Lπ) < 0.2, Lp/(Lp + Lπ) < 0.5, and Tight,

which requires LK/(LK + Lπ) < 0.5 and Lp/(Lp + Lπ) < 0.98. The VeryTight selector

also requires the veto of a muon selector in which the π, e, and K misidentifcation rates

are below 2.5%, and the muon efficiecy is ≈ 70%. This is known as the VeryTight selector

for muons. Additionally, both selectors require the electron Tight veto. For the B → ργ

decay modes, a selection based on the pion VeryTight criteria is made. In addition, a

selection of 0.0001 is made on the minimal signficance criteria of the Poisson probability

of the number of photons seen in the DIRC for a particular candidate being different from

the expected number for the assigned pion hypothesis. Using aD∗ → D0π+(D0 → K+π−)

control sample, Fig 5.4 shows the pion efficiencies and kaon mis-identification rates for

the B → ργ selector. For B → ωγ, the B → K∗γ background is not quite as signficant,

so the pion Tight criteria is used with no photon consistency requirement.

5.3.2 KS Selection

As mentioned previously, the KS is reconstructed through the mode KS → π+π−. The

track parameters and covariance matrix of the two pions are used to form a χ2, which

is minimized to extract the vertex and the 4-momentum of the KS. In addition, various

constraints are used in the χ2 fit. These include a vertex constraint, which requires that

the production vertex of each pion is equal to the decay vertex of the KS, the kinematic
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Figure 5.4: Pion efficiency and kaon misidentification rates of the B → ργ selector using
the D∗ control sample. The filled circles represent the π± efficiency and the use the left-
hand scale, while the open circles represent the K± mis-identification rates and use the
right-hand scale.

constraint, which requires the the 4-momentum of the KS is equal to the sum of the

two pions, and a mass constraint, which assures the invariant mass of the KS is equal

to its mass hypothesis. Fig. 5.5(a) shows the χ2 probability distribution for signal and

continuum MC simulation for the K∗+ → KSπ
+ mode. We require the probability of

χ2 > 0.001, which essentially eliminates badly reconstructed candidates. In addition,

we make a requirement on the invariant mass of the two pions. This is optimized, and

for the K∗0 → KSπ
0 mode is 0.486 < mπ+π− < 0.521 GeV/c2, while the K∗+ → KSπ

+

mode is 0.483 < mπ+π− < 0.521 GeV/c2. Fig. 5.5(b) displays this after the χ2 probability

requirement. Finally, the KS decay length and error is extracted from a χ2 fit to the entire

decay chain [50]. The constraints of the fit are the vertex and kinematic constraints, as

well as a beamspot constraint, which forces the Υ (4S) candidate to originate from the

beamspot, the beam-energy constraint, which requires the energy of the Υ (4S) candidate

to be equal to the energy of the beam, and the lifetime constraint, which sets the sum

of the lifetimes of the 2 B candidates to be equal to twice the nominal value of the

lifetime of the B meson. The latter constraint is applied as a Gaussian, in which the

width of the Gaussian is equal to the root-mean-square of the lifetime distribution. The

flight significance is defined as the reconstructed decay length of the KS divided by its



5.3. CANDIDATE SELECTION 69

uncertainty, and is shown after the probability of χ2 selection and invariant mass selection

in Fig. 5.5(c). Combinatorial background will come primarily from the event vertex, while

there is a decay length associated with real KS’s. Therefore, the latter will have a larger

flight significance than the former. This is also optimized, and for the K∗0 → KSπ
0 mode

is required to greater than 9.3, while the K∗+ → KSπ
+ selection is greater than 10.27.
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Figure 5.5: The probability of the χ2 fit to the KS decay vertex (a), the KS invariant
mass (b), and the KS flight significance (c) are displayed for signal MC simulation (solid
line) and continuum MC simulation (black dots). The distributions have been normalized
to unity and the mode shown is K∗+ → KSπ

+.

5.3.3 π0 Selection

Fig. 5.6 shows the invariant mass of the π0 for the K∗+ → K+π0 mode. As can be

seen, additional discrimination between signal and continuum is small, and the optimized

selection for the K∗0 → KSπ
0 mode is 0.112 < mγγ < 0.150 GeV/c2, while for the K∗+ →

K+π0 mode it is 0.114 < mγγ < 0.15 GeV/c2. For the B+ → ρ+γ, the selection is
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0.117 < mγγ < 0.148 GeV/c2, and 0.122 < mγγ < 0.150 GeV/c2 for B → ωγ. In addition,

for the B → (ρ/ω)γ analysis, we consider the cosine of the opening angle the γ daughters

of the π0: cos θγγ. Continuum events are marked by high-energy π0’s, which will have a

small opening angle, while softer π0’s will have a larger opening angle.
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Figure 5.6: The invariant mass of the π0 for signal MC simulation (solid line) and con-
tinuum MC simulation (black dots) for the K∗+ → K+π0 mode.

5.3.4 Vector Meson Selection

For the cases in which the vector meson decays to two charged tracks, a vertex for the

meson is calculated using a χ2 fit, in which the vertex and kinematic constraints are used.

For the K∗0 → K+π− and the φ → K+ K− modes, the selection on the χ2 probability

is fixed to be greater than 0.01. For the ρ0 → π+π− and ω → π+π−π0 modes, the χ2

probability selection is optimized, with the result that Prob(χ2
ρ0) > 0.008 and Prob(χ2

ω) >

0.0. For the ω → π+π−π0 mode, there is an optimized KS veto in which the distance from

the vertex of the ω candidate and the beamspot is required to be less than 0.189 cm. For

all modes, an optimized selection is made on the invariant mass of the vector meson. The

selections for the B → K∗γ analysis are 0.781 < mK+π− < 1.086 GeV/c2, 0.820 < mKSπ0 <

1.000 GeV/c2, 0.786 < mK+π0 < 1.000 GeV/c2, and 0.792 < mKSπ+ < 1.03 GeV/c2. The

optimized selections for the B → (ρ/ω)γ analysis give 0.633 < mπ+π− < 0.967 GeV/c2,

0.636 < mπ+π0 < 0.932 GeV/c2, and 0.764 < mπ+π−π0 < 0.795 GeV/c2, while the invariant

mass of the φ in the B → φγ analysis is 1.011 < mK+K− < 1.029 GeV/c2. For the

K∗0 → K+π− mode, the invariant mass and the probability of χ2 of the fit is shown
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in Fig. 5.7. The separation of the signal and continuum MC simulation is evident in

Fig. 5.7(b).
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Figure 5.7: The K∗ invariant mass (a) and the probability of the χ2 fit to the K∗ decay
vertex (b) are displayed for signal MC simulation (solid line) and continuum MC simula-
tion (black dots). The distributions have been normalized to unity and the mode shown
is K∗0 → K+π−.

5.3.5 High-Energy Photon Selection

As mentioned in Section 5.2, a photon is identified as a local energy maximum in

the EMC, which is not associated with any charged track. To further ensure that the

photon and a charged track do not overlap, as well as eliminating EMC clusters at the

edge of the EMC, we restrict the range of cos θ to be [-0.74,0.93], where θ is the polar

angle with respect to the z-axis, which points in the direction of the HER beam. The

tracking coverage outside this range is dominated by the DCH and SVT. In addition,

the photon must not contain any crystals that have been identified as noisy or dead by

the online monitoring. However, sometimes the monitoring may miss noisy channels. In

this case, the number of crystals of the EMC bump will be one or a few. Therefore, we

require the number of crystals that the photon shower traverses to be greater than 4.

Hadronic neutral objects which interact with the EMC can have multiple bumps near

each other. We require the EMC bump associated with the high-energy photon candidate

to be 25 cm from the closest charged or neutral EMC bump. These distributions are

shown in Figs. 5.8(a) and (b). Hadronic objects and merged π0’s also have a wider shower

shape, as mentioned in Section 5.2. We define the second moment of the bump, which

characterizes the lateral profile of energy distribution across the crystals, to be
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Lbump
2 =

Ncrystals
∑

i=0

Ei[(θi − θc)
2 + (φi − φc)

2]
∑

iEi

, (5.2)

where θc, φc are the angular coordinates of the centroid maxima, and Ei, θi, φi are the

energy and coordinates of the ith crystal in the bump. This is optimized, and we require

Lbump
2 < 0.002. This distribution is shown in Fig. 5.9. The differences of hadronic to

electromagnetic showers are also characterized by the variable s9s25, which is the ratio

of the sums of the energies of the central 9 crystals to the central 25 crystals surrounding

the centroid. This variable is used only for the B → (ρ/ω)γ analysis, and has smaller

values for hadronic showers than for electromagnetic ones.

Finally, we veto the π0 → γγ and η → γγ decays by forming a likelihood ratio for the

B → K∗γ and B → (ρ/ω)γ analyses. Photons from π0 and η decays are a major source

of background, as the branching fractions of the decays of these mesons into two photons

are 99% and 39% respectively. To suppress these backgrounds, we associate the photon

candidate (γ1) with all other EMC bumps in the event which are not matched to a track

(γ2), and form π0 / η likelihood functions. For the B → (ρ/ω)γ analysis, we also associate

each γ1 with photons that have converted to electron-positron pairs. These converted

photons are required to satisfy the following: the invariant mass m(e+e−) smaller than

30 MeV, have a distance of closest approach (DOCA) to the beamspot in the x-y plane

< 0.5 cm, and have a DOCA to the beamspot along the z-axis of < 1.0 cm. We form the

invariant mass m(γ1e
+e−). The output of the likelihood functions is a number between

0 (signal) and 1 (π0 or η), and we veto the event if either the likelihood functions or

m(γ1e
+e−) is consistent with that of a π0 or η. The π0 and η likelihood functions are

defined as

LR(θ) =
p(M(γ1γ2), Eγ2

|θ)
p(M(γ1γ2), Eγ2

|ργ) + p(M(γ1γ2), Eγ2
|θ) ,

where θ is either π0 or η, and p is probability density function (PDF) in terms of the

invariant mass of a pair of photons, M(γ1γ2), and the energy of γ2 in the lab frame, Eγ2
.

We determine the PDF’s using signal and continuum MC simulation. Figs. 5.8(c) and (d)

show the output of the π0 and η likelihood functions.

For the B → φγ analysis, we form a mass veto only. The photon candidate (γ1) is

combined with candidates (γ2) in the event. To avoid beam background contamination,

we select γ2 candidates with an energy greater than 50 MeV for the π0 veto and greater

than 250 MeV for the η veto. Then, the γγ invariant mass of the remaining candidates
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is formed. If any combination has an invariant mass ±0.02 GeV from the π0 mass or

±0.04 GeV from the η mass, then it is excluded from the reconstruction. The performance

of the vetoes is given in Figures 5.10 and 5.11 for B0 → ρ0γ signal MC simulation.
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Figure 5.8: The distance of the photon candidate to the nearest neutral bump (a), the
distance to the nearest charged bump (b), and the output of the π0 (c) and η (d) veto
likelihood functions are displayed for signal MC simulation (solid line) and continuum
MC simulation (black dots). The distributions have been normalized to unity and the
mode shown is K∗0 → K+π−.

5.4 Continuum Background Suppression

The dominant background in all of the analyses comes from the continuum, which

mostly occurs in back-to-back high energy jets. The background is mostly from events

that contain π0’s and η’s. Continuum events have a much different topology than signal

B events, which are isotropic due to the small 3-momentum of the B meson in the Υ (4S)

rest frame. Therefore, we consider variables that exploit these differences, which are
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Figure 5.9: The second moment (Lbump
2 ) of the photon shower is displayed for signal MC

simulation (solid line) and continuum MC simulation (black dots). The distribution has
been normalized to unity and the mode shown is K∗0 → K+π−.

called event-shape variables. In addition, continuum events proceed through the strong

interactions, which do not allow for flavor changing currents, while B decays proceed

through the weak interactions, which do allow for these kinds of currents. We also consider

variables to distinguish between these two types of situations. Each analysis has a unique

set of variables as inputs to the neural network, which are described in the following

sections.

5.4.1 Input Variables

The inputs to the neural networks for all three analyses will be be first described.

During this discussion, the differences in the three analyses will be mentioned. Following

this discussion is a summary of inputs to each analysis.

The inputs are the following:

• cos θT

The thrust angle θT is the angle between the high-energy photon and the thrust axis

of the rest of the event (ROE) computed in the CM frame. The thrust axis of the

ROE is defined as the axis which maximizes the sum of the particle momenta along
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Figure 5.10: π0 efficiency vs. signal efficiency for different veto methods. The black curve
is for the veto using only M(γ1γ2), the blue curve is for the likelihood method, and the
red curve is for the likelihood veto plus converted photons.

this axis, where the particles are not associated with the signal B candidate. Since

B decays are isotropic in the CM frame, the distribution of cos θT is thus expected

to be flat. This is not true for continuum events, where the high–energy photon

originates usually from a high energy π0 or η decaying in one of these jets. Thus,

the direction of the high energy photon is almost identical with the direction of one

of the jets. For continuum events, cos θT is thus expected to be close to −1 or 1.

• cos θB

The variable θB is the angle between the momentum vector of theB meson candidate

and the beam direction computed in the CM frame. Since the Υ (4S) is a vector

meson, which is missing a helicity zero component, and the two B mesons are

scalars, the expected distribution of cos θB for signal is sin2 θB. Since there is no

true B meson candidate in a continuum event, the distribution of cos θB in this

component is expected to be flat.

• Legendre moments and Energy Cones

We further take advantage of the differences in energy distribution between contin-

uum and signal events by considering two different, but equivalent, ways to represent

the same information. The two sets of variables are called Legendre moments and
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Figure 5.11: η efficiency vs. signal efficiency for different veto methods. The black curve
is for the veto using only M(γ1γ2), the blue curve is for the likelihood method, and the
red curve is for the likelihood veto plus converted photons.

energy cones. The Legendre moments are defined as follows:

Li =
∑

jin ROE

| ~Pj| × | cos θj|i

θj is the angle between the jth particle and a specific event axis, both in the CM

frame. Two event axes are used in this analysis: the direction of high-energy photon

and the direction of the thrust-axis ~T ∗ of the ROE. ~Pj is the momentum vector

of the jth particle. In addition, only two Legendre moments are considered, L1

and L2, and both are normalized to L0. In continuum events, | cos θj| has values

that are biased towards unity, while in signal events this is not true. Therefore,

the Legendre moments have greater values for continuum events than for signal

events. An alternate way to represent the same information is to consider the

energy distribution of the tracks and neutral candidates in the ROE, and form

energy cones. The energy is binned into cones of 10-degree increments in the CMS

about the photon, for a total of 18 energy cones. Continuum events have energy

mainly distributed in a jet, whose center is the photon candidate. Therefore, these

events have particles with higher energies at small angles. Signal events are more

isotropically distributed, and do not have this behavior. The Legendre moments are
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used in the B → K∗γ and B → (ρ/ω)γ analyses, while the energy cones are used in

the B → φγ analysis. They are equivalent, and the reason for the differences in the

analyses is simply historical. The Legendre moments are considered an improvement

because they encode equivalent information more simply.

• R′
2

R′
2 is R2 calculated in a frame in the high–energy photon has been subtracted from

the total event. In this frame, an ISR event behaves like a two-jet continuum event,

thus this variable tends to have larger values for ISR events.

• ∆z significance

Using a global decay chain fit, described in Section 5.3.2, we obtain a value for the

distance between the vertices of the B candidates (∆z), as well as the resulting error

(σz). The ∆z significance is defined as ∆z/σz. Due to the lifetime of the B, signal

B events have a larger significance than continuum events, which originate from the

primary vertex.

• Flavor Identification of B0/B̄0

Continuum events proceed strongly, so should have minimal net flavor production.

In contrast, B0/B̄0 events decay weakly, which allows for flavor-changing currents.

We consider two different ways to take advantage of this information. One is neural

network based, while the other simply counts the net flavor production in the ROE.

The neural network based identification is described first, which is followed by the

description of counting the net flavor production.

BABAR utilizes several neural networks in order to distinguish B0 from B̄0 mesons.

They are described in detail in Ref. [51]. Each neural network combines variables

together, and the output is a number between −1 and 1, where −1 indicates a B̄0

and 1 indicates a B0. The number 0 corresponds to the case where no flavor was

identified. We do not distinguish between B0 and B̄0, but instead utilize the fact

that continuum events will have a neural network output near 0, while BB events

will have an output near ±1. Each of the four algorithms displayed in Fig. 5.13

corresponds to a different neural network. The “Electron Tag” and “Muon Tag”

neural networks use the charge of the electron or muon, respectively, to identify

the flavor of the B0 meson. The “Slow-Pion Tag” and the “Kaon Slow-Pion Tag”

use the slow pion from D∗ decays, and the correlations between th kaon and slow
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pion from D∗ decays, respectively, for flavor identification. Specifically, this set of

variables was used for the B → K∗γ analysis. For the B → (ρ/ω)γ analysis, in

addition to using the output the neural networks, we use the inputs of those neural

networks. This is in order to increase the sensitivity of those inputs for continuum

rejection, rather than flavor identification. The neural network for the B → (ρ/ω)γ

analysis was not done by the author, and so the details of the inputs, of which there

are 18, will not be given here. The details can be found in Ref. [52].

The B → φγ analysis uses the net flavor production of the ROE. This is defined by

the following quantity

NF = |Ne| + |Nµ| + |NK | + |NSl.π| +NK0
S

(5.3)

where

1. Net kaon number: NK = Number of K+ minus the number of K−.

2. Net electron number:Ne= Number of e+ minus the number of e−.

3. Net muon number: Nµ = Number of µ+ minus the number of µ−.

4. Net slow π number: NSl.π= Number of slow π+ minus the number of slow π−.

5. K0
S

number: NK0
S
= Number of K0

S
.

The selection of the various components of NF proceeds in the following way:

1. Kaon: Tight selection.

2. Electron: Tight selection (the conjugate of electron Tight veto) with pCMS >

0.5 GeV/c.

3. Muon: Tight selection (similar to the VeryTight selection, except that the

π, e, and K misidentification rates are below 3.0%, and the muon efficiecy is

≈ 74%) with pCMS > 1.0 GeV/c.

4. Slow π: pCMS < 0.250 GeV/c with cos θThrust/pπ
> 0.8, d0 < 0.5 cm where

θThrust/pπ
is the angle between the thrust axis of the event and the three mo-

mentum of the pion and d0 is the distance of closest approach to the primary

vertex.

5. K0
S
: Successfully vertexed candidate with MK0

S
= [0.480, 0.516] GeV/c2, at least

1 mm displacement from the φ→ K+K− vertex and cos θDisp/p
K0

S

> 0.98 where
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θDisp/p
K0

S

is the angle between the difference of the K0
S

and the φ vertexes and

the φ lab three momentum.

The candidates are selected in the order given i.e. Kaons are classified first, electron

candidates classified second from the remaining tracks, muons classified third, etc.

In all cases, the tracks do not overlap the reconstructed B → φγ decay.

The reason for the differences in the analyses is, like the case of the energy distribu-

tion variables, historical. The neural network based set of variables is an improve-

ment over the net flavor production because it considers more information in a more

efficient way.

• RAll
2

This was described in Section 5.2.

• cos θH

The helicity angle θH is the angle between the momentum of one of the daughters of

the vector meson and the inverse of the momentum of the reconstructed B candidate

in the rest frame of the vector meson. As shown in Section 4.3.1, for signal events,

cos θH has a distribution of sin2 θ. Continuum events have a flat distribution in this

variable.

The B → K∗γ analysis used the variables cos θT , cos θB, Legendre moments, R′
2, ∆z

significance, flavor identification, and RAll
2 . A comparison between signal and continuum

MC simulation for each input for the B0 → K∗0γ(K∗0 → K+π−) mode can be found

in Figs. 5.12 and 5.13, while a comparison between offpeak data and continuum MC

simulation and be found in Appendix A. All four modes of the B → K∗γ analysis

use identical input variables. The B → (ρ/ω)γ analysis used the same input variables

as the B → K∗γ analysis, with the exception of the difference described for the flavor

identification variables. Finally, the B → φγ analysis used cos θT , cos θB, cos θH , R′
2, ∆z,

energy cones, and net flavor in the ROE. A comparison between signal and continuum

MC simulation for the inputs that have not already be shown for B → K∗γ can be found

in Figs. 5.14 through 5.16.

5.4.2 Neural Network Output

The above variables are combined into a neural network, which is developed using the

“Stuttgart Neural Network Simulator”(SNNS) [53]. We divide the MC simulation sample
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Figure 5.12: cos θT , cos θB, and Legendre moments for signal (black dots) and continuum
Monte Carlo (red line). The mode shown is B0 → K∗0γ(K∗0 → K+π−) and all cuts are
applied except for the Neural Network cut. The plots are normalized to the same area.
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Figure 5.13: R′
2, ∆z significance, and subtagger output for signal (black dots) and con-

tinuum Monte Carlo (red line). The mode shown is B0 → K∗0γ(K∗0 → K+π−) and all
cuts are applied except for the Neural Network cut. The plots are normalized to the same
area.
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Figure 5.14: a) | cos θH |, b) Net Flavor, and c) ∆z distributions for continuum background
(black dots) and signal Monte Carlo (red line) for B → φγ. All cuts except the neural
network cut are applied.

into two parts, one is used to train the neural network to optimize it for signal/background

separation, and the other is a validation sample, which is used to validate that the neural

network behaves appropriately. The two samples are statistically independent of each

other. For the background sample, we use uds, cc̄, and τ+τ− MC simulation, while the

signal mode that pertains to the particular analysis is used for the signal sample. Details

of the training of the neural network can be found in appendix C.

Figure 5.17 shows the neural network output of the validation sample for the B → K∗γ

analysis. The large separation of continuum background and signal events is evident. Fig-

ure 5.18 shows the background rejection vs. selection efficiency curves using the variables

from the previous analysis [30] and for the B → K∗γ analysis. It should be noted that the

“old” curve is not taken directly from the previous analysis, but instead is created from

the current Monte Carlo dataset using the variables from the previous analysis. For three



5.4. CONTINUUM BACKGROUND SUPPRESSION 83

Forward(0-10 Deg) Energy Cone(GeV)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ve

n
ts

/.1
 G

eV

1

10

10
2

10
3

10
4

Forward(20-30 Deg) Energy Cone(GeV)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ve

n
ts

/.1
 G

eV

1

10

10
2

10
3

10
4

Forward(40-50 Deg) Energy Cone(GeV)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ve

n
ts

/.1
 G

eV

1

10

10
2

10
3

10
4

Forward(60-70 Deg) Energy Cone(GeV)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ve

n
ts

/.1
 G

eV

1

10

10
2

10
3

10
4

Foward(80-90 Deg) Energy Cone(GeV)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ve

n
ts

/.1
 G

eV

1

10

10
2

10
3

10
4

Figure 5.15: Every other forward (in the same hemisphere as the high energy photon)
energy cone distribution for signal(red line) and continuum(black dots) Monte Carlo for
B → φγ are shown. All cuts except the neural network cut are applied.
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Figure 5.16: Every other backward (in the opposite hemisphere as the high energy photon)
energy cone distribution for signal(red line) and continuum(black dots) Monte Carlo for
B → φγ are shown. All cuts except the neural network cut are applied.
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Figure 5.17: The neural network output of the validation sample for the background (red)
and signal (black) for the a) K∗0 → K+π−, b) K∗0 → KSπ

0, c) K∗+ → K+π0, and d)
K∗+ → KSπ

+ networks.

of the neural networks, there is about a 40-50% improvement, while the K∗0 → KSπ
0

mode remains the same. The neural network output is optimized.

5.5 Cut Optimization

Some of the cuts described in Section 5.3 have been explicitly described as being

optimized, while others are held fixed. In this section, we describe how we deal with

the optimization procedure. To optimize the cuts, we use “truth-matched” (described in

Section 5.1.1.1) signal and continuum MC simulation samples.

Once all the fixed cuts have been applied to the MC simulation samples, we further

constrain the events to lie in the region 5.2 < mES < 5.3 GeV/c2,−0.3 < ∆E < 0.3 GeV

for the B → K∗γ and B → (ρ/ω)γ analysis, and 5.1 < mES < 5.29 GeV/c2,−0.3 <
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Figure 5.18: The background rejection vs. selection efficiency for the a) K∗0 → K+π−, b)
K∗0 → KSπ

0, c) K∗+ → K+π0, and d) K∗+ → KSπ
+ networks for the validation sample.

The solid line is the curve made using the variables from the previous analysis [30], while
the starred curve uses the variables described in this section. All cuts except the neural
net cut are applied.
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∆E < 0.3 GeV for the B → φγ analysis. These events are then fed as input to the

StatPatternRecognition (SPR) package [54], which utilizes an algorithm [55] to find the

best region (defined by an optimized figure of merit) that is composed of all the selection

variables that are optimized. Here, the figure of merit is the statistical signal significance

S/
√
S +B. The exact set of variables used by the algorithm depends on the mode

considered. The procedure described below only applies to the B → K∗γ and B → (ρ/ω)γ

analyses. The B → φγ analysis uses a different procedure, which will be described at the

end of this section.

The algorithm searches the region in two stages. In the beginning, the first stage

considers the entire parameter space and divides each dimension into two regions, in which

the point of separation corresponding to each dimension is found by iterating through all

possible separations maximizing the figure of merit. Once an optimal separation is found,

the region with the maximal figure of merit is considered and each dimension is again

divided into two. The same process is performed and iterated upon. The rate at which

the regions are shrunk is controlled by the maximum number of events that can be removed

at each step. This number of events is given by the user, and is optimized to give the

maximum figure of merit. In the B → K∗γ analysis, the optimal number of events (given

as a percentage of the total) is found to be 30% for the K∗0 → K+π− mode, 70% for

K∗0 → KSπ
0 mode, 65% for the K∗+ → K+π0 mode, and 20% for the K∗+ → KSπ

+

mode. For the B → (ρ/ω)γ analysis, optimization gave 30% for the ρ0 → π+π− mode,

and 40% for the ρ+ → π+π0 and ω → π+π−π0 modes. The regions are gradually reduced

in size until the figure of merit can no longer be improved, at which time the process is

terminated. The second stage gradually increases the size of the region being considered

to optimize the figure of merit. Finally, the selected region is discarded and the entire

process begins again. This is because a more optimal region may be found in a region

that had not previously been considered. In order to qualitatively assess the performance

of the optimization procedure, plots of the relevant distributions in signal and continuum

MC simulation samples are compared, and have been shown throughout this section.

To increase the statistics of our final optimization sample, we use all the candidates

that pass fixed cuts and fall within the mES-∆E region described above. However, the

quantity of interest is the signal significance contained within the signal region (5.27 <

mES < 5.29 GeV/c2,−0.2 < ∆E < 0.1 GeV). Therefore, we rescale the distributions by

the ratio of the number of events found in the signal region to the number in the larger

mES-∆E region. All of the MC simulation samples are also independently scaled to 347

fb−1.
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We include cos θH , which is used in the fit, as one of the variables that is optimized in

the procedure. This variable provides good signal/background separation, which is taken

advantage of in the fitting procedure itself. Therefore, we choose to include this variable

in the optimization to obtain the best possible cuts for the rest of the variables, while

simulating the separation provided by cos θH in the fit. The limits for cos θH obtained are

then relaxed for the candidates that are used in the fit. For the B → (ρ/ω)γ analysis,

we use the neural network output as one of the dimensions of the fit. Therefore, for this

analysis only, we relax the limit on this variable as well.

For the B → φγ analysis, only two variables were optimized, the neural network

output and the invariant mass of the φ, by using an iterative procedure which minimizes

the “sensitivity”/signal efficiency as a function of these two variables. The sensitivity is

defined in Ref. [56] as the average upper limit of the number of signal events that would

be obtained by an ensemble of experiments with the expected background and no true

signal. In order to determine this number, the number of background events, which is

a function of the neural network and phi mass selection, in the signal region must be

determined. This is done as follows.

In bins of the neural net output and phi mass, we project the continuum background

events onto the fit region. The mES projection is then fitted with an Argus shape, while

the ∆E distribution is fitted with a 1st order polynomial. Both distributions are then

integrated in the signal region (5.27 < mES < 5.29 GeV/c2,−0.2 < ∆E < 0.1 GeV) and

the fit region. The ratio of these integrals multiplied by the number of events in the fit

region yields the number of background events in the signal region for that neural network

cut. This number is then converted to the sensitivity, which, when divided by the signal

efficiency, yields the expected upper limit. This is shown in Fig. 5.19 as a function of the

neural network output (for a slice of phi mass).

5.5.1 Results of cut optimization

Tables 5.5 through 5.8 summarize the final results of cut optimization for all four

modes from the B → K∗γ analysis. The K∗ mass cut was optimized separately for the

K∗0 → K+π− mode because the results from SPR were not optimal. The results for

the B → (ρ/ω)γ analysis are summarized in Tables 5.9 through 5.11. For the B → φγ

analysis, the results of the procedure described above are 1.011 < mK+K− < 1.029 GeV/c2

and a neural network output > 0.7.
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Figure 5.19: “Sensitivity”/signal efficiency as a function of neural net output for a slice
of invariant phi mass.

Table 5.5: Summary of optimized selection criteria for B0 → K∗0γ(K∗0 → K+π−) (mass
given in GeV/c2).

Variable Lower limit Upper limit

Neural Network output 0.692 1
mKπ 0.781 1.086
cos θH −0.813 0.893
η veto 0 0.970
π0 veto 0 0.874

γ 2nd moment 0 0.002

Table 5.6: Summary of optimized selection criteria for B0 → K∗0γ(K∗0 → KSπ
0) (mass

given in GeV/c2).

Variable Lower limit Upper limit

Neural Network output 0.767 1
mKSπ0 0.820 1.00
cos θH −0.932 0.582
η veto 0 0.974
π0 veto 0 0.892

γ 2nd moment 0 0.002
mπ0 0.112 0.151
mKS

0.486 0.521
KS flight significance 9.3 none
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Table 5.7: Summary of optimized selection criteria for B+ → K∗+γ(K∗+ → K+π0) (mass
given in GeV/c2).

Variable Lower limit Upper limit

Neural Network output 0.824 1
mKπ0 0.786 1.00
cos θH −0.949 0.718
η veto 0 0.987
π0 veto 0 0.918

γ 2nd moment 0 0.002
mπ0 0.114 0.151

Table 5.8: Summary of optimized selection criteria for B+ → K∗+γ(K∗+ → KSπ
+) (mass

given in GeV/c2).

Variable Lower limit Upper limit

Neural Network output 0.710 1
mKSπ 0.792 1.03
cos θH −0.846 0.90
η veto 0 0.977
π0 veto 0 0.906

γ 2nd moment 0 0.002
mKS

0.483 0.521
KS flight significance 10.27 none
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Table 5.9: Summary of optimized selection criteria for B0 → ρ0γ (mass given in GeV/c2)

Variable Lower limit Upper limit

Neural Network output 0.978 1
mππ 0.633 0.957

Prob(χ2
ρ0) 0.008 1

cos θhel −0.807 0.786
η veto 0 0.918
π0 veto 0 0.737

γ 2nd moment 0 0.002
γ s9

s25 0.938 1

Table 5.10: Summary of optimized selection criteria forB+ → ρ+γ (mass given in GeV/c2)

Variable Lower limit Upper limit

Neural Network output 0.939 1
mππ0 0.636 0.932

cos θhel −0.733 0.660
η veto 0 0.932
π0 veto 0 0.944

γ 2nd moment 0 0.002
γ s9

s25 0.944 0.996
cosθγγ 0.789 0.997
mπ0 0.117 0.148

Table 5.11: Summary of optimized selection criteria for B → ωγ (mass given in GeV/c2),
distance in cm)

Variable Lower limit Upper limit

Neural Network output 0.776 1
mπππ0 0.764 0.795

Prob(χ2
ω) 0.000 1

cos θhel −0.717 0.838
cos θDalitz −0.843 1

Flight distance 0 0.189
η veto 0 0.939
π0 veto 0 0.767

γ 2nd moment 0 0.002
γ s9

s25 0.945 0.990
cosθγγ 0.413 1
mπ0 0.122 1



Chapter 6

Measurement of Brancfhing

Fractions, CP , and Isospin

Asymmetries of B → K∗γ

The previous chapter dealt with the event and candidate selection, and also described

how the continuum background is suppressed with the application of the neural network.

Briefly, it was mentioned in Section 5.1 that B decays also contribute to the background.

In addition, the whole discussion was done in the context of the B → V γ decay modes

that are studied in this thesis. This chapter will focus on the B → K∗γ analysis. It

will detail the treatment of the B background (Section 6.1), and describe the fitting

procedure to extract the branching fractions and the time-independent CP asymmetry,

which is defined in Eq. 6.10.

6.1 B background

Approximately 30% of the background comes from B decays, which is categorized

into three types. The dominant component, about 70% of the B background, comes from

B → Xsγ decays, where Xs is a state that has an invariant mass above the K∗, and can

be either resonant or non-resonant. However, we model this component from inclusive

B → Xsγ MC simulation, where the only resonance is the K∗. We treat the effect of

not including resonances as a systematic error, which will be descrbed in Section 6.5.11.1.

Figure 6.1 shows the hadronic mass spectrum from the inclusive MC simulation, where

we have excluded the K∗ resonance by placing a hadronic mass cut of > 1.1 GeV/c2

92
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on the generated mass. Effectively, the s-quark fragments into kaon and pions whose

invariant mass is above 1.1 GeV/c2. Most of the background that is misreconstructed

comes from instances where there are three particles in the hadronic final state, and one

of the particles has not been reconstructed. As shown in Figure 6.2, this component peaks

in mES at the B meson mass, but, due to the missing particle, peaks at negative ∆E.

The cos θH distribution peaks at one. This is the result of a soft pion in the lab frame

being used in the K∗ → Kπ decay. When this is done, the kaon has a high momentum

in the lab frame, and the momentum vector nearly points in the same direction as K∗.

As a consequence, in the K∗ rest frame, the B and K momentum vectors nearly point in

opposite directions.
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Figure 6.1: The B → X+
s γ generated hadronic mass spectrum for the B+ →

K∗+γ(K∗+ → K+π0) mode. The mass selection of > 1.1 GeV/c2 has been applied. In
addition, all selection cuts have been applied.

The second component of the B background comes from B → K∗γ decays other than

the signal mode. For example, in the B0 → K∗0γ(K∗0 → KSπ
0) mode, about 15% of the

B background comes from the B+ → K∗+γ(K∗+ → KSπ
+) mode, where the π0 is taken

from the other side of the event. In general (as an average for all four B → K∗γ decays),

this component comprises approximately 10% of the B background. It is modeled by

a B → K∗γ MC simulation sample in which the K∗ decays to any allowed mode, but

the signal mode has been excluded from the sample. As displayed in Figure 6.3, the

component peaks in mES at the B meson mass, but has a ∆E distribution that has a

negative peak because the other side of the event typically contains softer particles.

The last component (≈ 5% of the B background) is made of the remaining B decays.

It is comprised mostly of B → K∗η and B → K∗π0, where one of the photons coming
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Figure 6.2: mES, ∆E, and cos θH distributions of the inclusive B → Xsγ MC simulation
for the B+ → K∗+γ(K∗+ → K+π0) mode. All selection cuts have been applied, except
for the ∆E and cos θH distributions, in which case the respective selection has not been
applied.
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Figure 6.3: mES, ∆E, and cos θH distributions of the B → K∗γ MC simulation for the
B+ → K∗+γ(K∗+ → K+π0) mode, in which the B+ → K∗+γ(K∗+ → K+π0) mode
has been removed. All selection cuts have been applied, except for the ∆E and cos θH

distributions, in which case the respective selection has not been applied.
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from the η, π0 decay has been missed in the reconstruction. The MC simulation sample

that describes this component is made of B decays in which the B is allowed to decay

generically, and the B → K∗γ and B → Xsγ decays have been removed. The distributions

are shown in figure 6.4. The cos θH distribution has a cos2 θH-like dependence because

dΓ/d cos θH ∼ cos2 θH for B → K∗P , where P = η, π0.
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Figure 6.4: mES, ∆E, and cos θH distributions of the B background, not including B →
K∗γ and B → Xsγ, for the B+ → K∗+γ(K∗+ → K+π0) mode. All selection cuts have
been applied, except for the ∆E and cos θH distributions, in which case the respective
selection has not been applied.

6.2 Signal and Background Efficiencies

After applying all of the selection criteria to each of the MC simulation samples, we

further restrict the candidates to lie in the region 5.22 < mES < 5.29 GeV/c2, |∆E| <
0.3 GeV, | cos θH | < 0.75. This region is called the fit region, and will be used as the

domain in which to perform the likelihood fit. In each event, this region can also have

multiple B candidates. There are approximately 1.1 candidates per event in signal Monte
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Carlo. We use only the B candidate that has the K∗ candidate whose mass is closest

to the nominal mass [48]. Table 6.1 shows the expected number of events for the signal,

continuum, and BB categories in 347 fb−1. The signal efficiencies, as determined using

MC simulation signal events, are 22.9±0.05%, 14.5±0.05%, 16.7±0.07%, and 21.5±0.08%

in the fit region for the K∗0 → K+π−, K∗0 → KSπ
0, K∗+ → K+π0, and K∗+ → KSπ

+

modes respectively.

Table 6.1: Number of Monte Carlo events in the fit region scaled to 347 fb−1 using the MC
equivalent luminosities. The B background is the sum of the three components described
in section 6.1. The off-peak data is shown for comparison.

K∗0 → K+π− K∗0 → KSπ
0 K∗+ → K+π0 K∗+ → KSπ

+

Signal 2327 ± 5 254 ± 1 848 ± 4 758 ± 3
Continuum + τ+τ− 2893 ± 45 505 ± 20 1493 ± 32 151 ± 33

BB 609 ± 6 108 ± 2 379 ± 5 287 ± 4
Off-Peak Data 3313 ± 202 688 ± 88 1600 ± 14 1525 ± 14

6.3 Fit Parameterization

We extract the signal yield by using a three dimensional maximum likelihood fit, in

which we use mES, ∆E, and cos θH as the dimensions. We also consider three components:

signal, continuum, and BB. All of the B background components discussed in Section 6.1

are considered as a sum in the BB component. Only the candidates that lie in the fit

region and pass the multiple candidate selection are considered, as discussed in Section 6.2.

6.3.1 PDF Line Shapes

The first step toward parameterizing the fit model is determining the PDF line shapes

by performing one dimensional fits to the Monte Carlo sample that represents each com-

ponent. The signal mES distribution for the K∗0 → KSπ
0 and K∗+ → K+π0 modes is

described by a Crystal Ball function [57]. This is defined as
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fCB(x) = CCB ·
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σ +n
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)n for x ≤ 〈x〉 − ασ

(6.1)

where 〈x〉 is the mean of the core gaussian, σ is the width, and α and n are two tail

parameters. For the K∗0 → K+π− and K∗+ → KSπ
+ modes, the signal mES distribution

is parameterized as a Cruijff function. The Cruijff function is defined as a piece-wise

function

fCruijff (x) = CCruijff · exp

(

− −(x− µ)2

σ2
L,R + αL,R(x− µ)2

)

(6.2)

defined to the left (L) and right (R) of µ, which is the peak position of the distribution.

Here, σL,R and αL,R are the widths and measures of the tails, respectively, to the left

and right of the peak. We constrain σL = σR in the Cruijff function, because the signal

distribution is approximately Gaussian in the core. The motivation to define two different

parameterizations (one for the K∗0 → KSπ
0 and K∗+ → K+π0 modes, and the other for

the K∗0 → K+π− and K∗+ → KSπ
+ modes) of the signal mES distribution is related to

the evaluation of the systematic errors, which is described in appendix D. The Cruijff

function also describes the signal ∆E distribution for each mode, but with different values

for the parameters. The cos θH distribution for the signal component is modeled by a 2nd

order polynomial.

For the continuum hypothesis, the mES PDF is parameterized by an ARGUS func-

tion [58]. The functional form is

fArgus(x) = CArgus ·
x

EBEAM

·
√

1 − x2

E2
BEAM

· e−ξ

„

1− x2

E2
BEAM

«

(6.3)

where ξ as the Argus parameter and EBEAM is the argus endpoint. Here, EBEAM =
√
s/2,

where
√
s is the center of mass energy. The continuum ∆E and cos θH shapes are modeled

by a first- or second-order polynomial.

Various functional forms are used to describe the BB background. In particular, the

mES distribution is parameterized by a Novosibirsk function, which is defined as

fNovosibirsk(x) = CNovosibirsk · exp

(

−0.5
ln2[1 + Λτ · (x− µ)]

τ 2
+ τ 2

)

(6.4)
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where Λ = sinh (τ
√

ln 4)/(στ
√

ln 4), the peak position is µ, the width is σ, and τ is the

tail parameter. The ∆E distribution is described by a Crystal Ball function, while the

cos θH distribution is modeled by a 4th order polynomial.

The full fit range is utilized in all nine fits for each separate mode, except for the

signal mES fit. For the well measured K∗0 → K+π− and K∗+ → KSπ
+ modes, the

mES fit range is narrowed to 5.27 < mES < 5.29 GeV/c2, while for the K∗0 → KSπ
0

and K∗+ → K+π0 modes, its range is set to 5.26 < mES < 5.29 GeV/c2, due to the π0

tails. This restriction occurs because the vast majority of the signal distribution is in

the narrower range. The one dimensional fits for each fit observable and component are

shown in Figures 6.5 through 6.8. The parameters of the distributions are displayed on

the plots. For the K∗0 → K+π−, K∗0 → KSπ
0, and K∗+ → K+π0 modes, the helicity

angle is determined by following the kaon daughter of the K∗, while for the K∗+ → KSπ
+

mode it is determined by the following the pion daughter.

6.3.2 Correlation of Fit Observables

We also parameterize the degree of correlation between the fit observables. The cor-

relation coefficients between each dimension for each component are listed in Tables 6.2

through 6.5, and the profile plots for the K∗0 → K+π− mode are given in appendix B.

As shown for the K∗0 → K+π− and K∗+ → KSπ
+ modes, mES and ∆E are uncorrelated

in signal MC simulation. However, for the two π0 modes for the signal MC simulation,

there exists a slight correlation between mES and ∆E. This is because there is energy

loss in the calorimeter, which creates tails on the distributions on both mES and ∆E in

the negative direction.

Table 6.2: a) Signal MC simulation, b) Continuum MC simulation, and c) B background
MC simulation correlation coefficients for the B0 → K∗0γ(K∗0 → K+π−) mode.

mES ∆E
∆E 0.0183

cos θH -0.0657 -0.0015

a) Signal MC simulation

mES ∆E
∆E -0.0266

cos θH -0.0104 -0.0211

b) Continuum MC
simulation

mES ∆E
∆E -0.1014

cos θH -0.1305 0.2776

c) B background MC
simulation



100CHAPTER 6. MEASUREMENT OFB → K∗γ BRANCHING FRACTIONS AND ASYMMETRIES

 E (GeV)∆
-0.2 0 0.2

E
ve

n
ts

 / 
( 

0.
01

2 
G

eV
 )

0

50

100

150

200  / ndf = 20.3982χ
 0.017± =  0.244 Lα

 0.030± =  0.114 Rα

 0.0035± =  0.0034 µ
 0.0036± =  0.0553 Lσ

 0.0029± =  0.0273 Rσ

 E (GeV)∆
-0.2 0 0.2

E
ve

n
ts

 / 
( 

0.
01

2 
G

eV
 )

0

50

100

150

200

 E (GeV)∆
-0.2 0 0.2

E
ve

n
ts

 / 
( 

0.
01

2 
G

eV
 )

0

20

40

60

80

 / ndf = 1.0492χ

 0.11± = -0.112 
1

p

 E (GeV)∆
-0.2 0 0.2

E
ve

n
ts

 / 
( 

0.
01

2 
G

eV
 )

0

20

40

60

80

 E (GeV)∆
-0.2 0 0.2

E
ve

n
ts

 / 
( 

0.
02

 G
eV

 )

0

20

40

60

80
 / ndf = 2.2782χ

 0.26± = -1.495 α
 0.027 GeV± = -0.2834 µ

 0.82±n =  1.70 

 0.019 GeV± =  0.103 σ

 E (GeV)∆
-0.2 0 0.2

E
ve

n
ts

 / 
( 

0.
02

 G
eV

 )

0

20

40

60

80

)2 (GeV/cESm
5.22 5.24 5.26 5.28

 )
2

E
ve

n
ts

 / 
( 

0.
00

07
 G

eV
/c

0

50

100

150

200

250
 / ndf = 18.9402χ

 0.018± =  0.090 Lα

 0.023± = -0.0020 Rα

 0.000071± =  5.280770 µ

 0.000081± =  0.002500 σ

)2 (GeV/cESm
5.22 5.24 5.26 5.28

 )
2

E
ve

n
ts

 / 
( 

0.
00

07
 G

eV
/c

0

50

100

150

200

250

)2 (GeV/cESm
5.22 5.24 5.26 5.28

 )
2

E
ve

n
ts

 / 
( 

0.
00

14
 G

eV
/c

0

20

40

60

80

 / ndf = 1.0792χ

 2.7± = -20.66 ξ

)2 (GeV/cESm
5.22 5.24 5.26 5.28

 )
2

E
ve

n
ts

 / 
( 

0.
00

14
 G

eV
/c

0

20

40

60

80

)2 (GeV/cESm
5.22 5.24 5.26 5.28

 )
2

E
ve

n
ts

 / 
( 

0.
00

14
 G

eV
/c

0

5

10

15

20

25  / ndf = 1.8052χ

 0.0013±peak =  5.2806 

 0.13±tail = -0.871 

 0.0011±width =  0.0127 

)2 (GeV/cESm
5.22 5.24 5.26 5.28

 )
2

E
ve

n
ts

 / 
( 

0.
00

14
 G

eV
/c

0

5

10

15

20

25

Hθcos
-0.5 0 0.5

E
ve

n
ts

 / 
( 

0.
03

 )

0

10

20

30

40

50

60

 / ndf = 2.7392χ
 0.033± =  0.039 

1
p

 0.066± = -1.1141 
2

p

Hθcos
-0.5 0 0.5

E
ve

n
ts

 / 
( 

0.
03

 )

0

10

20

30

40

50

60

Hθcos
-0.5 0 0.5

E
ve

n
ts

 / 
( 

0.
03

 )

0

20

40

60

80

 / ndf = 1.3762χ

 0.044± =  0.030 
1

p

Hθcos
-0.5 0 0.5

E
ve

n
ts

 / 
( 

0.
03

 )

0

20

40

60

80

Hθcos
-0.5 0 0.5

E
ve

n
ts

 / 
( 

0.
03

 )

0

5

10

15

20

25
 / ndf = 0.7242χ

 0.29± =  0.36 
1

p

 1.1± =  1.1 
2

p
 0.84± =  1.12 

3
p

 2.1± =  0.9 
4

p

Hθcos
-0.5 0 0.5

E
ve

n
ts

 / 
( 

0.
03

 )

0

5

10

15

20

25

Signal Continuum BB

Figure 6.5: 1 dimensional fits to the K∗0 → K+π− mode. The dimensions are ∆E
(top row), mES (middle row), and cos θH (bottom row). The components are signal (1st

column), continuum (2nd column), and B background (3rd column). The helicity angle is
determined by following the kaon daughter of the K∗.
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Figure 6.6: 1 dimensional fits to the K∗0 → KSπ
0 mode. The dimensions are ∆E (top

row), mES (middle row), and cos θH (bottom row). The components are signal (1st col-
umn), continuum (2nd column), and B background (3rd column). The helicity angle is
determined by following the KS.
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Figure 6.7: 1 dimensional fits to the K∗+ → K+π0 mode. The dimensions are ∆E
(top row), mES (middle row), and cos θH (bottom row). The components are signal (1st

column), continuum (2nd column), and B background (3rd column). The helicity angle is
determined by following the kaon.
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Figure 6.8: 1 dimensional fits to the K∗+ → KSπ
+ mode. The dimensions are ∆E

(top row), mES (middle row), and cos θH (bottom row). The components are signal (1st

column), continuum (2nd column), and B background (3rd column). The helicity angle is
determined by following the pion.
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Table 6.3: a) Signal, b) Continuum, and c) B background correlation coefficients for
the B0 → K∗0γ(K∗0 → KSπ

0) mode.

mES ∆E
∆E 0.1382

cos θH -0.1129 -0.0057

a) Signal MC simulation

mES ∆E
∆E -0.0149

cos θH -0.0186 -0.0645

b) Continuum MC
simulation

mES ∆E
∆E 0.0200

cos θH -0.1315 0.1607

c) B background MC
simulation

Table 6.4: a) Signal, b) Continuum, and c) B background correlation coefficients for
the B+ → K∗+γ(K∗+ → K+π0) mode.

mES ∆E
∆E 0.1419

cos θH -0.0945 -0.0047

a) Signal MC simulation

mES ∆E
∆E -0.0506

cos θH 0.0072 0.0150

b) Continuum MC
simulation

mES ∆E
∆E -0.0076

cos θH -0.1046 0.2452

c) B background MC
simulation

Table 6.5: a) Signal, b) Continuum, and c) B background correlation coefficients for
the B+ → K∗+γ(K∗+ → KSπ

+) mode.

mES ∆E
∆E 0.0403

cos θH 0.0974 -0.0036

a) Signal MC simulation

mES ∆E
∆E -0.0070

cos θH -0.0272 0.0205

b) Continuum MC
simulation

mES ∆E
∆E -0.0525

cos θH 0.1392 -0.1494

c) B background MC
simulation
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6.3.3 Maximum Likelihood Fit

The largest linear correlation coefficients are in the B background sample, in which

the largest is 0.27. We ignore the correlations in the maximum likelihood fit by using

PDFs that are products of one dimensional PDFs. We construct a separate fit for each

mode, and study the effects of correlations using embedded toys. The unbinned extended

likelihood function to extract the signal yield for the branching fraction measurements is

defined as

L = exp

(

−
M
∑

i=1

ni

)

·
N
∏

j=1

[

M
∑

i=1

niP(~xj; ~αi)

]

(6.5)

where N is the number of events, M = 3 is the number of hypotheses (signal, continuum,

and BB̄), and ni represents the yield of a particular hypothesis. Pi is the product of

one-dimensional PDFs over the three dimensions ~x (mES, ∆E, cos θH), and ~α represents

the fit parameters. The inclusion of the cos θH observable suppresses the BB background.

As shown in Figs. 6.2, 6.3, and 6.4, the cos θH distribution is not consistent with sin2 θ.

The parameterization for K∗0 → K+π− and K∗+ → KSπ
+ modes are shown in

Table 6.6, while the K∗0 → KSπ
0 and K∗+ → K+π0 modes are shown in Table 6.7.

When the parameter is labeled as floating, it is determined by performing a fit to the

full three-dimensional MC simulation sample, while the fixed designation means that it

is determined by the one-dimensional fits, and fixed in the full fit. For the branching

fraction fits, the yields are also floated.

6.3.3.1 Fit for the CP asymmetry

For the ACP fit, we divide the dataset, excluding the K∗0 → KSπ
0 mode, into two

subsamples, which correspond to B → K̄∗γ and B̄ → K∗γ decays. Each of the decay

modes can be identified as a K∗ or a K̄∗ by the charge of the final states. We then perform

a simultaneous fit to the two subsamples, in which all shape parameters are assumed to

be flavor independent, and therefore shared. Each mode has a separate fit. The fraction

of the yield of each component is extracted from the fit, and converted to ACP using the

equation

ACP =
nB̄ − nB

nB̄ + nB

= 1 − 2fB, (6.6)

where nB̄ is number of B̄’s in the sample, nB is the number of B’s, and fB is the fraction
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Table 6.6: PDF parameters for the K∗0 → K+π− and K∗+ → KSπ
+ modes.

Data Set PDF Parameter float/fix
Signal MC Cruijff(mES) 〈mES〉 (GeV/c2) float

σLmES
(GeV/c2) float

σRmES
(GeV/c2) fix to σLmES

αLmES
fix

αRmES
fix

Cruijff(∆E) 〈∆E〉 (GeV) float
σL∆E (GeV) float
σR∆E (GeV) float

αL∆E fix
αR∆E fix

2nd-order polynomial(cos(θH)) float
Continuum MC Argus(mES) ξmES

float
EBEAM (GeV) fix

1st-order polynomial(∆E) P1 float
1st-order polynomial(cos(θH)) P1 float

BB̄ Novosibirsk(mES) 〈mES〉 (GeV/c2) fix
background MC σmES

(GeV/c2) fix
τBbkg fix

Crystal Ball(∆E) 〈∆E〉 (GeV) fix
σ∆E (GeV) fix

α∆E fix
n∆E fix

4th-order polynomial(cos(θH)) P1 − P4 fix
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Table 6.7: PDF parameters for all K∗0 → KSπ
0 and K∗+ → K+π0 modes.

Data Set PDF Parameter float/fix
Signal MC Crystal Ball(mES) 〈mES〉 (GeV/c2) float

σmES
(GeV/c2) float
αmES

fix
nmES

fix
Cruijff(∆E) 〈∆E〉(GeV) float

σL∆E (GeV) float
σR∆E (GeV) float

αL∆E fix
αR∆E fix

2nd-order polynomial(cos(θH)) float
Continuum MC Argus(mES) ξmES

float
EBEAM (GeV) fix

1st-order polynomial(∆E) P1 float
K∗0 → KSπ

0 1st-order polynomial(cos(θH)) P1 float
K∗+ → K+π0 2nd-order polynomial(cos(θH)) P1, P2 float
BB̄ Novosibirsk(mES) 〈mES〉 (GeV/c2) fix
background MC σmES

(GeV/c2) fix
τBbkg fix

Crystal Ball(∆E) 〈∆E〉 (GeV) fix
σ∆E (GeV) fix

α∆E fix
n∆E fix

4th-order polynomial(cos(θH)) P1 − P4 fix
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of the B’s in the sample. In all other respects, the ACP fit is identical to the fit for the

branching fractions.

6.4 Branching Fraction Fitting

The previous section constructed each PDF line shape and the result was applicable

to both the branching fraction and CP asymmetry fits. This section will describe the

branching fraction fits, the toy studies performed, and the evaluation of the systematic

errors.

6.4.1 Toy Studies

This section describes the toy studies done to validate the fits for the branching frac-

tions. Two types of toy studies are performed, pure and embedded toys. The pure toys

are defined as a series of fits performed in which the events are generated according to

the PDFs defined in Section 6.3.1. These events are then fit with the nominal fit. The

embedded toys studies are also a series of fits. However, instead of all the components

being generated from the PDFs, a component, chosen as either signal (Signal Embedded)

or BB (B Embedded), is from the MC simulation sample.

6.4.1.1 Pure Toys

The pure toy studies primarily test if there is any bias in the fitting procedure, such

as problems with the fitting code. For each mode, there were 1000 pure toy experiments

performed, with a convergence rate of approximately 99%. Figure 6.9 shows the pull and

parameter distributions for the 3 component yields for the K∗0 → K+π− mode. The pull

is defined as

Pull =
nextracted − ngenerated

σ
, (6.7)

where nextracted is the number of extracted events, ngenerated is the number of generated

events, and σ is the error on the extracted yield. In the pure toys, we find no significant

bias in the signal yield.
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Figure 6.9: K∗0 → K+π− pure toy results for 1000 experiments for the 3 different com-
ponent yields.
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6.4.1.2 Signal Embedded Toys

The embedded toy studies characterize the deviation of the fit model from the actual

distribution of events. The deviations can be caused by correlations among the observables

as shown in 6.3.2, or by the PDF shape not modeling the one dimensional distribution

well. In this section, we embed signal Monte Carlo events only. We randomly select

events from the signal MC simulation sample. The number of events drawn is Poissonian

distributed around the expected number in 347 fb−1 (Table 6.1). In addition, we make

sure the samples are statistically independent. Some bias on the signal yield is present

(Table 6.8). The cause of the bias is investigated in appendix D. Figure 6.10 shows the pull

and yield distributions from this study for theK∗0 → K+π− mode. Table 6.11 summarizes

the correction factors, defined as the average extracted to the expected signal yield, to

the signal efficiencies associated with the fit bias. The systematic error is determined as

half of the fit bias.

Table 6.8: The pulls of the yields for each component for nominal fits (parameters behav-
ing as in tables 6.6 and 6.7). All fits are signal embedded.

B0 → K∗0γ B+ → K∗+γ
K∗0 → K+π− K∗0 → KSπ

0 K∗+ → K+π0 K∗+ → KSπ
+

Nominal Pull
Sig. Pull −0.814±0.12 −0.630±0.062 −0.751±0.15 −0.697±0.12

Cont. Pull 0.56±0.11 0.092±0.058 0.12±0.12 0.24±0.11
BB −0.076±0.098 0.206±0.061 0.22±0.13 −0.10±0.10

6.4.1.3 BB̄ Embedded Toys

In addition to the signal embedded toys, we perform independent B background em-

bedded toy experiments. The major BB backgrounds are listed in Table 6.9. These

backgrounds are weighted by luminosity and embedded into the background.

On average, approximately 90% of the total BB background is embedded per mode.

The results are shown in Table 6.10. The bias on the signal yield is almost negligible. The

correction factors resulting from all the embedded toy studies are shown in Table 6.11.

The systematic error is determined in Section 6.5.11.1.
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Figure 6.10: K∗0 → K+π− signal embedded toy results for the 3 different component
yields.
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Figure 6.11: K∗0 → K+π− BB embedded toy results for 39 experiments for the 3 different
component yields.
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Table 6.9: The major BB backgrounds of the B → K∗γ modes. Shown in parentheses is
the percentage of the total BB background.

B → K∗γ mode BB backgrounds (% of total BB background)

B0 → K∗0γ,K∗0 → K+π− B → X+
s γ (81%)

B0 → K∗0η,K∗0 → K+π− (5%)
B+ → K∗+γ,K∗+ → K+π0 (5%)

B0 → K∗0γ,K∗0 → KSπ
0 B → X+

s γ (75%)
B+ → K∗+γ,K∗+ → KSπ

+ (11%)
B+ → K∗+γ,K∗+ → K+π0 B → X+

s γ (72%)
B+ → K∗+η,K∗+ → K+π0 (4%)
B0 → K∗0γ,K∗0 → K+π− (11%)

B+ → K∗+γ,K∗+ → KSπ
+ B → X+

s γ (79%)
B+ → K∗+η,K∗+ → KSπ

+ (6%)
B0 → K∗0γ,K∗0 → KSπ

0 (8%)

Table 6.10: The pulls of the yields for each component for nominal fits (parameters
behaving as in table 6.6 and 6.7). All fits are BB embedded.

B0 → K∗0γ B+ → K∗+γ
K∗0 → K+π− K∗0 → KSπ

0 K∗+ → K+π0 K∗+ → KSπ
+

Nominal Pull
Sig. Pull −0.136±0.16 0.27±0.17 0.15±0.15 0.17±0.18

Cont. Pull 0.020±0.14 0.40±0.14 0.46±0.13 0.36±0.17
BB −0.107±0.15 −0.807±0.14 −0.824±0.14 −0.570±0.16

6.5 Branching Fraction Systematic Errors

The B → K∗γ branching fraction from each mode is calculated as

B(B → K∗γ) =
Nsig

2NB · ǫ · I · B(Υ (4S)→ BB)
(6.8)

where Nsig is the signal yield, NB is the number of B mesons, ǫ is the signal efficiency, and

I is the isospin factor. The systematic uncertainty on the branching fraction is derived

from the uncertainty on the signal efficiency, the uncertainty on B(Υ (4S)→ BB), and the

error on NB. All of the systematic uncertainties are summarized in Table 6.12. There are

two categories that the uncertainties fall into: signal reconstruction efficiency and signal

extraction. The latter are composed of “B Counting” (NB) and both systematic uncer-

tainties pertaining to the fit. The signal reconstruction efficiency systematic uncertainties
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Table 6.11: The correction factor for signal efficiency for each decay mode. Included are
the signal and BB embedded toy studies.

B0 → K∗0γ B+ → K∗+γ
K∗0 → K+π− K∗0 → KSπ

0 K∗+ → K+π0 K∗+ → KSπ
+

Expected Sig. Yield 2313 253 842 754

Signal Embedded Toys
Sig. Yield 2269.7±6.8 241.4±1.2 815.1±5.4 732.4±3.9

Correction Factor 0.981 0.954 0.969 0.971

BB Embedded Toys
Sig. Yield 2306.1±8.4 256.9±3.7 850.5±7.6 759.7±6.7

Correction Factor 1.00 1.02 1.01 1.01

Table 6.12: This table describes the factors needed to correct the Monte Carlo efficiency
and their systematic errors. Shown in paranthesis is the section number that provides a
description of the associated systematic. The final estimated efficiency is also given.

B0 → K∗0γ B+ → K∗+γ

K∗0 → K+π− K∗0 → KSπ0 K∗+ → K+π0 K∗+ → KSπ+

Monte Carlo Eff. 0.229 0.145 0.167 0.215

Descriptions (section) Factor Rel. Err. Factor Rel. Err. Factor Rel. Err. Factor Rel. Err.

BB Production (6.5.1) 1.000 1.2% 1.000 1.2% 1.000 1.2% 1.000 1.2%

B Counting (6.5.2) 1.000 1.1% 1.000 1.1% 1.000 1.1% 1.000 1.1%

Tracking Eff. (6.5.3) 1.000 1.2% - 1.000 0.6% 1.000 0.8%

Particle 1.002 0.6% - 1.003 0.6% 0.999 0.2%
Identification (6.5.4)

Photon Eff. (6.5.6) 0.993 0.7% 0.993 0.7% 0.993 0.7% 0.993 0.7%

π0 Eff. (6.5.7) - 0.968 3.0% 0.968 3.0% -

Photon Quality (6.5.8) 1.000 2.1% 1.000 2.1% 1.000 2.1% 1.000 2.1%

π0(η) veto(6.5.9) 0.993 1.0% 0.993 1.0% 0.998 1.0% 0.997 1.0%

Ks (6.5.5) - 0.992 0.7% - 0.989 0.7%

Neural network (6.5.10) 0.983 1.5% 0.974 1.0% 0.976 1.0% 0.976 1.0%

Fitting (6.5.11) 1.000 0.8% 1.000 5.6% 1.000 3.1% 1.000 1.7%

Fit bias (6.4.1.2) 0.981 0.9% 0.973 2.2% 0.979 1.6% 0.980 1.4%

Total Correction 0.953 3.8% 0.897 7.4% 0.919 5.6% 0.936 3.9%

Corrected Efficiency 0.218 3.8% 0.130 7.4% 0.153 5.6% 0.201 3.9%

Sub-Mode BR 0.667 0.114 0.329 0.231
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associated with the photon are common to all four modes. In general, the rest of the

efficiency systematic uncertainties depend on the mode. All systematic uncertainties are

described in more detail below.

6.5.1 BB Production

The BB production uncertainty comes from the measured Υ (4S) branching fraction

to B0B0, B+B−. We use [4]

B(Υ (4S)→ B0B0) = 0.484 ± 0.006 (6.9)

B(Υ (4S)→ B+B−) = 0.516 ± 0.006.

6.5.2 B Counting Systematic

The total number of Υ (4S) mesons is obtained by counting the number of hadronic

events in the on-resonance data set [59], and subtracting the number of muon pairs in

the on-resonance data set multiplied by the ratio of hadronic events to muon pairs in an

off-resonance sample. The error obtained on the number of produced Υ (4S) mesons is

1.1%, which comes primarily from systematic uncertainties in the reconstruction of the

control sample to determine the efficiency of BB pairs.

6.5.3 Tracking Efficiency

The tracking efficiency systematic uncertainty is determined from two different sources,

which are added in quadrature with each other to obtain the final uncertainty. One study

uses τ pair decays [60]. The tau pair is identified by one tau being reconstructed as the

decay τ± → l±ν̄ν(l = e, µ), while the second tau decay is τ → h±h±h±ντ (h = π,K).

These particular τ decays are utilized in order to constrain the event to a specific multi-

plicity n. The tracking efficiency is determined by requiring n−1 tracks in the event, and

then finding the probability of reconstructing the nth track. This study yields an overall

systematic uncertainty, obtained from the data/MC difference in track reconstruction,

per track of 0.45%. The second method is SVT-based [61]. The efficiency of both data

and MC simulation of the DCH is determined by taking the ratio of the number of GTL

tracks with 10 SVT hits to the number of GTL tracks with 10 SVT hits without the

requirement of 12 DCH hits. The correction is determined by taking the data/MC ratio
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of the efficiencies. The result is in bins of transverse momentum, track multiplicity, polar

angle, and azimuthal angle. An overall systematic uncertainty is obtained by applying

the correction on a track-by-track basis to the signal Monte Carlo simulation. Adding the

results from both studies in quadrature gives a variation of the signal track systematic

uncertainty of 0.6% to 0.8%.

6.5.4 Particle Identification Efficiency

The particle identification efficiency systematic uncertainty associated with the kaon

Tight selection is studied in Ref. [62]. A control sample of B → KJ/ψ and B → K∗J/ψ

decays is used to determine the data/MC efficiencies. The K correction and systematic

uncertainty is determined by removing the K identification from the B → KJ/ψ control

sample and dividing it into two datasets, one where theK is positively identified as passing

the kaon Tight selection criteria and one where it is not. The efficiency is then calculated

as the number that were positively identified over the sum of the two datasets. A similar

procedure is used for the B → K∗J/ψ control sample for the pion. The systematic

uncertainty is less than 1% for both the π and K, and comes from the statistics of the

control samples.

6.5.5 KS Efficiency

The KS efficiency systematic uncertainty is determined from an inclusive sample of

well-reconstructed KS candidates, which is documented in Ref. [63]. Using the KS se-

lection criteria specified in Section 5.3.2, data/MC ratios are made in bins of transverse

momentum of the KS, polar angle of the KS, and transverse distance between the pri-

mary vertex and the KS vertex. An overall correction is obtained by applying the cor-

rection per KS to the signal Monte Carlo simulation, while the systematic uncertainty

is given by calculating the differences in the average correction on a control sample of

B0 → π+D−(D− → KSπ
−) signal Monte Carlo simulation for different selection criteria

for the KS. For the K∗0 → KSπ
0 mode we obtain a correction of 0.992 with an uncer-

tainty of 0.7%, while for the K∗+ → KSπ
+ mode a correction of 0.989 with an uncertainty

of 0.7% is obtained.
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6.5.6 Single Photon Efficiency

Using a sample of e+e− → µ+µ−γ events, a single photon efficiency correction and

systematic uncertainty is determined [64]. This sample is used because it is large, has

relatively low backgrounds, and can provide high energy photons. The correction is given

as the data/MC ratio of the number of events observed divided by the total number

of events, while the systematic uncertainty is given by systematic uncertainties in the

reconstruction of the control sample. The correction is 0.993 with a systematic uncertainty

of 0.7%.

6.5.7 π0 Efficiency

The π0 systematic uncertainty is obtained from a sample of τ pair events [65]. One τ is

selected to decay by τ± → e±νν̄, while the other is required to decay by τ± → h±ντ (h =

π, ρ)(ρ± → π±π0). The π0 efficiency is obtained by taking the ratio of the τ → ρ to

τ → π yields. The τ → ρ yield is roughly proportional to reconstructing the π± and

the π0, while the τ → π yield proportional to the π± efficiency. The systematic error of

3% is primarily due to the discrepancy between data and MC simulation of low energy

photons and fluctuations from hadronic showers which fake a bump in the calorimeter.

These phenomena are not well understood.

6.5.8 Photon Quality Selection

There are two systematic uncertainties associated with the photon quality selection.

One is the data/MC difference of requiring the photon to be 25 cm away from the closest

charged or neutral EMC bump, while the other is the data/MC difference of requiring

the second moment, defined in Section 5.3.5, to be less than 0.002.

The efficiency of the photon isolation requirement is sensitive to any discrepancy in

the MC simulation that pertains to the number of calorimetric objects in the event. For

example, if there are more calorimetric objects in the MC simulation than in data, then

it is more likely there will be one close to the signal photon. This effect is studied by

“embedding” the photon in the MC simulation and in data [66]. The response of the

EMC to photons from radiative Bhabba events is added to MC simulated BB̄ events

and a data sample of reconstructed B → Dπ events. The event is then reconstructed

again with the new photon and the ratio of the data/MC efficiencies is determined. The

systematic uncertainty is 2%.
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The systematic uncertainty related to the second moment is determined by a control

sample of e+e− → µ+µ−γ events [52]. The energy of the γ in the control sample is

weighted to match the photon energy spectrum of B → K∗γ events, which is between 1.5

and 3.5 GeV. The systematic error is found to be 0.6%.

6.5.9 π0/η Veto

The systematic uncertainty of the π0/η veto is determined by embedding a photon

in B → Dπ Monte Carlo and data events [52]. Again, the energy of the embedded

photon matches the energy spectrum of the high energy gamma in B → K∗γ events.

The efficiency of the likelihood ratios are compared for data and MC simulation, and a

correction factor and systematic uncertainty are determined. The systematic uncertainty

obtained is 1%.

6.5.10 Neural Net systematic

6.5.10.1 Overview

The neural network systematic uncertainty is evaluated on a sample of exclusively

reconstructed B → Dπ events. The B → Dπ sample is used because it has a similar

topology to B → K∗γ events; the signal side of the event has a heavy and light particle. To

evaluate the systematic uncertainty, the neural network that is constructed in Section 5.4

is applied to the B → Dπ sample. However, the input variables are calculated by treating

the bachelor pion as the high energy photon. The modes that are reconstructed are B− →
D0π−(D0 → K+π−) and B0 → D−π+(D− → K+π−π−). To closely resemble the ROE in

the signal B → K∗γ modes, the B− → D0π−(D0 → K+π−) mode is used to validate the

K∗+ → K+π0 and K∗+ → KSπ
+ modes, while the B0 → D−π+(D− → K+π−π−) mode is

used to validate the K∗0 → K+π− and K∗0 → KSπ
0 modes. The neural network output

distribution between B → Dπ MC simulation and data is compared and a correction

factor and systematic uncertainty is extracted.

6.5.10.2 Validation Outline

The following steps are followed to validate the neural network used in B → K∗γ

decays:

• The B → Dπ decays mentioned above are reconstructed and the neural network
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variables used in B → K∗γ decays are calculated by treating the bachelor pion as

the photon.

• Additional event selections are applied on the signal side of the event to suppress

the background.

• After background rejection, we select B → Dπ events in the signal region from the

on-peak data and make a bin-by-bin comparison of the neural network shape with

the corresponding signal Monte Carlo. Background subtraction is performed on

on-peak data before this comparison. Based on this bin-by-bin comparison between

data and Monte Carlo, we calculate the efficiency ratio as a function of neural

network output between data and MC simulation.

6.5.10.3 Selections and Background Levels

Signal Region and Sidebands We define the following regions in the mES–∆E plane

for the control sample.

• Signal region: [5.27, 5.29] GeV/c2 × [−0.05, 0.05] GeV.

• Fitting region: [5.20, 5.29] GeV/c2 × [−0.05, 0.05] GeV.

• Upper sideband: [5.20, 5.29] GeV/c2 × [0.1, 0.2] GeV.

• Lower sideband: [5.20, 5.27] GeV/c2 × [−0.05, 0.05] GeV.

Event Selections The following selections are used on the B → Dπ decays to suppress

the background and to ensure that a good event is reconstructed:

• The GTL criteria is used on all charged tracks.

• The kaon veryTight LH selection is applied on charged kaons.

• The probability of the χ2 for the D vertex fit is required to be greater than 0.0001.

• A selection of ±20 MeV/c2 around the PDG [4] central value of the D mass.

• A selection of ±50 MeV around 0 of ∆E.

After all selections are applied , we choose the best candidate in each event by selecting

the one with the minimum ∆E.
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Table 6.13: The signal efficiency and expected yields for the B → Dπ control samples in
the on-peak dataset. The error on the expected yield contains the statistics error on the
signal efficiency only. The uncertainties on the branching fraction are not included.

eff.(±stat) eff.(±stat) Expected Yields
Description (fit region) (signal region) (347 fb−1)

B− → D0π−, D0 → K+π− 0.337±0.001 0.336±0.001 17373±52
B0 → D−π+, D− → K+π−π− 0.247±0.001 0.246±0.001 17276±70

Background The continuum background events contained in the signal region after the

selection criteria have been applied are dealt with as described in Sec 6.5.10.5.

After all of the selection criteria have been applied, the B background is approximately

2% in the signal region. This is determined by BB̄ MC simulation. Most of the B

background is from B → D∗π events, in which the slow pion is missing; therefore, the

event is treated as signal, since it has a neural network distribution identical to signal

decays. The remaining B background fraction is less than 1% .

6.5.10.4 Efficiency and Yields

Signal Efficiency and Expected Yield Table 6.13 shows the signal efficiency after

applying all the selection criteria and the expected yields in the on-peak dataset.

Signal Yields and Background Estimation in the On-Peak Dataset We estimate

the signal yields and the continuum background in the signal region by a one dimensional

fit tomES. The signal shape is modeled using a Gaussian and the continuum background is

modeled by an ARGUS function [58]. Figure 6.12 shows the likelihood fit of the B → Dπ

on-peak data. The number of events in the lower sideband and the signal region, the fitted

signal yields, and the estimated background in the signal region are shown in Table 6.14.

The expected yields shown in Table 6.13 are calculated using the branching fractions from

PDG [4].

6.5.10.5 Background Subtraction

The on-peak data in the signal region contains a small amount of continuum back-

ground, which is subtracted using events in the lower sideband. Table 6.14 gives the
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Figure 6.12: The likelihood fit on the (a) B− → D0π−(D0 → K+π−) and (b) B0 →
D−π+(D− → K+π−π−) on-peak data.

Table 6.14: The number of events in the lower sideband and the signal region, the fitted
signal yields, and the estimated background in the signal region for the on-peak data set.

Events Events Background
Description (lower sideband) (sig. region) Sig. yield (sig. region)

B− → D0π−, D0 → K+π− 10130 20259 18652±145 1629±17
B0 → D−π+, D− → K+π−π− 15795 20715 17711±148 2979±24
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Figure 6.13: The comparison of the neural network distributions for the Monte Carlo
simulation (red line) and the background subtracted on-peak data (black dots) for the
B → Dπ sample. The distributions, which are normalized to the same area, correspond
to the a) K∗0 → K+π−, b) K∗0 → KSπ

0, c) K∗+ → K+π0, and d) K∗+ → KSπ
+ modes.

estimated number of continuum events in the signal region. The i-th bin of the back-

ground subtracted distribution for the on-peak data is

hsub(i) = htotal(i) −Nbkg/Nlower · hlower(i)

,

where hsub is the background subtracted distribution, and htotal and hlower are the distri-

butions for all events in the signal region and lower sideband respectively. Nbkg and Nlower

are, respectively, the estimated number of background events in the signal region and the

total number of events in the lower sideband.

Figure 6.13 shows the comparison of the neural network distributions between the

B → Dπ signal Monte Carlo simulation and the background-subtracted on-peak data.
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Figure 6.14: The comparison of the signal efficiency vs. cut value between Monte Carlo
simulation (red line) and background subtracted on-peak data (black dots) for the a)
K∗0 → K+π−, b) K∗0 → KSπ

0, c) K∗+ → K+π0, and d) K∗+ → KSπ
+ modes.

6.5.10.6 Efficiency Correction

Using the background subtracted on-peak data, we calculate the signal efficiency in

data. Then, we compare this efficiency with the efficiency of the corresponding signal

Monte Carlo simulation as shown in Figure 6.14. The bin-by-bin efficiency ratio, eData/eMC

is calculated and shown Figure 6.15. A slight inefficiency is visible in the data when using

the neural network.

6.5.10.7 Result Discussion

The systematic uncertainty is evaluated using two different methods. The first method

uses the efficiency ratio at the neural network selection as the correction to the signal

efficiency. The signal efficiency corrections associated with the neural network selection
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Figure 6.15: The bin-by-bin eData/eMC for the a) K∗0 → K+π−, b) K∗0 → KSπ
0, c)

K∗+ → K+π0, and d) K∗+ → KSπ
+ modes.
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are 96.8%, 97.0%, 97.4%, and 97.1% for the K∗0 → K+π−, K∗0 → KSπ
0, K∗+ →

K+π0, and K∗+ → KSπ
+ decay modes respectively. The second method uses the neural

network selection which gives the same Monte Carlo efficiency as the B → K∗γ signal

efficiency. This method gives 98.3%, 97.4%, 97.6%, and 97.6% for the K∗0 → K+π−,

K∗0 → KSπ
0, K∗+ → K+π0, and K∗+ → KSπ

+ decay modes respectively. The statistical

error associated with both methods is ∼ 0.5%. Taking into account the differences between

the two methods, we assign a 1.5% systemtaic to K∗0 → K+π− and a 1.0% to the other

three modes, and the corrections using the second method.

6.5.11 Fitting Systematic

There are two kinds of systematic error related to the fitting. One uncertainty is that

the BB background is not well described in the Monte Carlo simulation, while the other

pertains to the variation of the fixed parameters in the fit. We describe both in more

detail below.

6.5.11.1 BB parameterization systematic

Since the BB shape is fixed in the fit, a difference between the shape obtained from

Monte Carlo simulation and the actual shape in data can cause a bias in the signal yield.

In particular, the inclusive b → sγ background is not well described in the Monte Carlo

simulation. In the b→ sγ Monte Carlo simulation, there are no resonances above the K∗.

Therefore, the particles only decay through phase space with no angular dependence. We

vary the normalization of the inclusive b→ sγ to understand what effect this component

has on the signal yield. We use two different methods to do this.

The first method varies the amount inclusive b → sγ Monte Carlo events embedded

into the fit. The experimental b→ sγ branching fraction measurement has an uncertainty

of ∼ 10% [67]. We perform independent embedded toys corresponding to two scenarios:

one where the b→ sγ yield is reduced by 20%, and another where it is increased by 20%.

The signal and continuum data are retrieved from the PDF shapes, while the BB data is

from actual Monte Carlo. In both scenarios we fit with the nominal likelihood function.

The results are shown in Table 6.15.

The second method performs pure toy experiments for three different scenarios. The

default scenario uses the nominal fit, and is a reproduction of the pure toy experiments

performed in Section 6.4.1.1. The second scenario decreases the luminosity weight of the

inclusive b → sγ sample such that the yield decreases by 20%, while the third scenario
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Table 6.15: Signal yields in which the b→ sγ yield has been varied by ±20% . The signal
yield has been extracted with the nominal fit using the BB embedded toys.

B → K∗γ mode Yield from BB embedded toys −20% b→ sγ yield +20% b→ sγ yield
K∗0 → K+π− 2306.1±8.4 2317.6±7.7 2305±10
K∗0 → KSπ

0 256.9±3.7 255.8±4.0 257.4±6.8
K∗+ → K+π0 850.5±7.6 855.6±5.2 861.1±7.0
K∗+ → KSπ

+ 759.7±6.7 760.6±4.7 763.5±5.8

increases the weight such that the inclusive b → sγ sample increases by 20%. To both

of the latter scenarios, the BB PDF is fit to the new distribution. Then, pure toys are

generated using this new PDF (in which only the BB parameters have changed), but

fit with the nominal fit. The BB fits for the K∗0 → K+π− mode for the three cases

is shown in Figure 6.16, and the results are shown in in Table 6.16. To determine the

systemtic, we take the largest average relative difference as determined by either method

using the central values. We find a systematic 0.3%, 0.9%, and 0.3% for theK∗0 → K+π−,

K∗+ → K+π0, and K∗+ → KSπ
+ modes respectively. We assign no systematic for the

K∗0 → KSπ
0 mode.

Table 6.16: Signal yields in which the b→ sγ yield has been varied by ±20% . The signal
yield has been extracted with the nominal fit using pure toys. However, the pure toys
were generated by varying the b→ sγ yield.

B → K∗γ mode Yield from pure toy study −20% b→ sγ yield +20% b→ sγ yield
K∗0 → K+π− 2315.5±1.8 2311.9±1.7 2314.0±1.7
K∗0 → KSπ

0 253.2±0.7 253.3±0.7 252.5±0.7
K∗+ → K+π0 842.4±1.2 844.6±1.2 842.1±1.2
K∗+ → KSπ

+ 752.9±1.0 755.2±1.0 754.7±1.1

6.5.11.2 Fixed signal parameters

We fix the tail parameters of the signalmES and ∆E PDFs for all four modes to the MC

simulation. Since the tail parameters are fixed, we vary them to determine a systematic

uncertainty to account for differences in the Monte Carlo simulation and real data. We

vary each parameter by one sigma according to the individual PDF fit. The average
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Figure 6.16: BB distributions and fit parameters for the three dimensions of the fit for a)
the nominal fit, b) when the b → sγ yield is decreased by 20%, and when c) the b → sγ
yield is increased by 20%. The mode shown is K∗0 → K+π−.
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Table 6.17: Values of ACP measured in onpeak mES sideband data.

ACP

K∗0 → K+π− −0.012 ± 0.005
K∗+ → K+π0 −0.005 ± 0.006
K∗+ → KSπ

+ +0.007 ± 0.008

difference of the signal yield is taken as the systematic uncertainty. Taking into account

correlations among the fit parameters, we find a systematic uncertainty of 0.8%, 5.6%,

3.0%, and 1.7% for the K∗0 → K+π−, K∗0 → KSπ
0, K∗+ → K+π0, and K∗+ → KSπ

+

modes respectively.

The total fitting systematic is found by adding in quadrature the uncertainty derived

from varying the b→ sγ background and that from the fixed parameters. These numbers

are displayed in Table 6.12.

6.6 CP Asymmetry

The time-independent CP asymmetry is measured using

ACP =
Γ(B̄ → K̄∗γ) − Γ(B → K∗γ)

Γ(B̄ → K̄∗γ) + Γ(B → K∗γ)
. (6.10)

Section 6.3.3.1 gave an overview of the method of extraction of the CP asymmetry. In

this section, a discussion of the systematic uncertainties will be given.

6.6.1 CP Asymmetry Systematic Errors

To look for any detector-induced asymmetry, we look in the mES sideband (5.22 <

mES < 5.29, −0.3 < ∆E < 0.3), remove the neural net selection and form ACP by

counting the number of events with different C quantum numbers. Table 6.17 lists the

results. The K∗0 → K+π− and K∗+ → K+π0 modes are consistent with an asymmetry of

0.5%. Due to hadronic interactions in the detector, there is a detector-induced asymmetry

for K±’s and π±’s. We divide these interactions into before and after the DCH, and

describe them both in the following sections.
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6.6.1.1 Hadronic Interactions before the DCH

As mentioned in Section 5.1.1.1, we use GEANT to simulate the passage of particles

through the detector. However, the accuracy to which GEANT handles the asymmetry is

not well understood. Therefore, we perform an independent calculation that uses hadronic

interaction data from PDG [4] and a model of the BABAR detector. This calculation is

described in this section.

The nuclear collision length λT , given in units of g/cm2, is related to the total nuclear

cross-section σT by

λ−1
T =

NA

Ar

σT (p), (6.11)

where NA is Avogadro’s number, Ar is the atomic weight, and σT (p) is a function of

momentum. However, to a good approximation σT ∝ A0.7 [4], where A is the mass

number. We use the kaon-deuteron cross-section σK−D as a reference, so that

σT (p) = σK−D(p)
A0.7

20.7
. (6.12)

This equation is normalized so that when A = 2, σT (p) = σK−D. The interaction proba-

bility is given by

P =
∑

i

Li

λT i

=
∑

i

Li ·
NAσK−D

A0.3
i 20.7

, (6.13)

where i is an index over the detector materials that were crossed, Li is the thickness, and

we have used the approximation Ar = A. Table 6.18 shows the material model that was

used. The kaon-deuteron cross-section is a function of momentum. Therefore, it must be

evaluated using existing hadronic interaction data folded in with the signal momentum

spectrum.

Toward this end, we evaluate the cross-section asymmetry forK’s and π’s from Ref. [4],

and the momentum distribution for K’s and π’s from truth-matched K∗0 → K+π− signal.

The results are shown in Figures 6.17 and 6.18. We convolute these two distributions

together and divide by the sin(θ), where θ is the polar angle of the track, on an event-

by-event basis to find the average asymmetry. The sin(θ) correction is to account for the

amount of material encountered by the track. We find ∆ACP = −0.33% for K’s and

∆ACP = −0.03% for π’s.
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Table 6.18: Material model used for hadronic interaction asymmetry calculation

Detector Element Material l(g/cm2) A
Beam Pipe Au 0.008 196.967

Be 0.157 9.012
Ni 0.008 58.693
H20 0.147 18.015
Ni 0.009 58.693
Be 0.094 9.012

Gas Bag Al 0.014 26.982
C 0.010 12.011

SVT Si 0.350 28.086
Support Tube C 0.460 12.011
DCH Support Be 0.185 9.012
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Figure 6.17: Total cross section difference for K-deuteron and π-deuteron interactions
from the PDG
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Figure 6.18: plab distribution for K’s and π’s for truth-matched K∗0 → K+π− signal
decays.

6.6.1.2 Hadronic Interactions after the DCH

The material between the DCH and the DIRC may also absorb mesons and cause an

asymmetry in the particle identification efficiency, which is not accounted for above. To

understand this effect, we use control samples of D∗+ → D0π+(D0 → K−π+) and its

charge conjugate to determine data efficiencies binned in momentum, polar angle, and

azimuthal angle. We fold this in with the momentum and θ distributions from signal

Monte Carlo simulation. We find an an ACP shift of -0.38% for K± and -0.02% for π±.

6.6.1.3 Total ACP Shift and Systematic

Adding together the two results obtained above, we find total ACP shifts of -0.66% for

K∗0 → K+π−, -0.71% for K∗+ → K+π0 and -0.05% for K∗+ → KSπ
+. We apply shifts

of +0.7% to the data for the first two modes and apply no shift to the third mode. In

addition, we adopt a systematic equal to the largest total shift (0.7%) for all three modes.

6.7 Results from the Maximum Likelihood Fit

As described in Sections 6.4.1 and 6.5, we understand the biases from the maximum

likelihood fit, in addition to data/MC differences. Thus, we are able to correct and

assign systematic errors to them. We also able to parameterize the detector-induced CP
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asymmetry. Therefore, we perform a fit to the on-peak data, which is 347 fb−1, to extract

the branching fractions and CP asymmetries.

6.7.1 Branching Fractions

6.7.1.1 Fit Projections

The fit projections for each dimension are shown in Figures 6.19 through 6.22, while

the extracted yields are shown in Tables 6.19 through 6.22. From these fits, we obtain

the individual branching fractions according to Eq. 6.8. The branching fractions are

4.45 ± 0.10 ± 0.17 × 10−5 (K∗0 → K+π−), 4.66 ± 0.37 ± 0.35 × 10−5 (K∗0 → KSπ
0),

4.38± 0.19± 0.26× 10−5 (K∗+ → K+π0), and 4.13± 0.18± 0.16× 10−5 (K∗+ → KSπ
+).

The results are displayed in Table 6.23.
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Figure 6.19: K∗0 → K+π− projection plots of the full fit to on-peak data. For each
projection, the signal region selections (5.27 < mES < 5.29,−0.2 < ∆E < 0.1) have been
applied, except for the distribution shown.

Table 6.19: Component yields for the K∗0 → K+π− mode from the full fit to the on-peak
data. The projection plots for each dimension are shown in figure 6.19.

Yield Value
Nsig 2400.0+55.4

−54.9

Ncont 3071.3+87.7
−86.3

NBB 563.0+70.1
−69.9
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Figure 6.20: K∗0 → KSπ
0 projection plots of the full fit to the on-peak data. For each

projection, the signal region selections (5.27 < mES < 5.29,−0.2 < ∆E < 0.1) have been
applied, except for the distribution shown.

Table 6.20: Component yields for the K∗0 → KSπ
0 mode from the full fit to the on-peak

data. The projection plots for each dimension are shown in figure 6.20.

Yield Value
Nsig 256.0+20.6

−19.8

Ncont 603.1+43.0
−41.1

NBB 42.9+32.9
−32.2
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Figure 6.21: K∗+ → K+π0 projection plots of the full fit to the on-peak data. For each
projection, the signal region selections (5.27 < mES < 5.29,−0.2 < ∆E < 0.1) have been
applied, except for the distribution shown.

Table 6.21: Component yields for the K∗+ → K+π0 mode from the full fit to the on-peak
data. The projection plots for each dimension are shown in figure 6.21.

Yield Value
Nsig 872.7+37.6

−36.7

Ncont 1538.3+78.4
−75.9

NBB 298.0+67.6
−67.7
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Figure 6.22: K∗+ → KSπ
+ projection plots of the full fit to the on-peak data. For each

projection, the signal region selections (5.27 < mES < 5.29,−0.2 < ∆E < 0.1) have been
applied, except for the distribution shown.

Table 6.22: Component yields for the K∗+ → KSπ
+ mode from the full fit to the on-peak

data. The projection plots for each dimension are shown in figure 6.22.

Yield Value
Nsig 759.1+33.8

−32.9

Ncont 1716.5+67.8
−66.2

NBB 141.1+52.1
−51.1
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Table 6.23: The signal yields from the fit to the on-peak data, signal efficiencies and total
systematic uncertainty, isospin factors, and branching fractions.

Mode Yield Efficiency (σsys) Isospin factor BF ± stat ± sys (×10−5)

K∗0 → K+π− 2400.0 ± 55.4 0.218 (3.6%) 0.667 4.45 ± 0.10 ± 0.17
K∗0 → KSπ

0 256.0 ± 20.6 0.130 (7.1%) 0.114 4.66 ± 0.37 ± 0.35
K∗+ → K+π0 872.7 ± 37.6 0.153 (5.3%) 0.329 4.38 ± 0.19 ± 0.26
K∗+ → KSπ

+ 759.1 ± 33.8 0.201 (3.7%) 0.231 4.13 ± 0.18 ± 0.16

6.7.1.2 Comparison of Data and Monte Carlo simulation

After performing a fit to the on-peak data, we compare the results to MC simulation

two different ways, which are described below. This is to ensure that we understand the

parameters and yields obtained from the on-peak data fit.

• Negative Log Likelihood (NLL) comparison: In this method of comparison, we fix

the parameter values of each PDF to the ones obtained from the fit to on-peak data.

Then, we randomly draw events from the signal MC simulation, while obtaining the

events from the other two components from the PDFs. We do not fit for these

events, but instead form the log likelihood, and repeat the procedure one thousand

times. The results are show in Figure 6.23, where red line indicates the log likelihood

from the on-peak fit. A large difference between the onpeak NLL and the mean of

the distribution would indicate a large disagreement between the onpeak data fit

and the signal MC simulation.

• Parameter comparison: Tables E.1 and E.2 in Appendix E compare the parameters

obtained the fit to onpeak data to those obtained from the full fit to Monte Carlo

simulation. Even though there is never more than a 3σ difference, the continuum

yield is consistently higher than the expected continuum yield. This is expected

from the studies done with off-peak data, shown in Table 6.1. In addition the, BB

yield is consistently lower than the expected value, though this difference never more

than 3σ.
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Figure 6.23: Negative maximum likelihood distributions of a signal embedded studies for
a) K∗0 → K+π−, b) K∗0 → KSπ

0, c) K∗+ → K+π0, d) K∗+ → KSπ
+, obtained as

described in the text. The negative maximum likelihoods from the on-peak data fit are
marked by a red line. There are one thousand entries in each plot.
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6.7.1.3 K∗ line shape

To further validate that the we have selected true B → K∗γ events, we fit a relativistic

P-wave Breit-Wigner to the mKπ distribution. To form the mKπ distribution, we first

widen the mKπ mass selection to be [0.7,1.1], and fit to the on-peak dataset. Finally,

we make an sPlot [68] of the mKπ distribution. The results of the fit for each mode are

shown in Figure 6.24. For the K∗0 → KSπ
0 and K∗+ → K+π0 modes, we convolve the

Breit-Wigner line shape with a Gaussian with a width of 10 MeV (determined from MC

simulation) to account for detector resolution. For the K∗0 → K+π− and the K∗+ →
KSπ

+ modes, the detector resolution is negligible. The results are consistent with the

signal events containing only P-waveK∗ mesons and no otherKπ resonances. We estimate

the contribution from the K∗(1430) to the invariant mass regions mK+π− , mK+π0 , and

mKSπ+ defined in Section 5.3.4 by using the measured values of the branching fractions

of B0 → K∗0(1430)γ and B+ → K∗+(1430)γ [69]. We find that the contribution is ∼ 1

event or less.

A comparison of the fitted values of the mass and width to the PDG [4] values are

show in Table 6.24. For the K∗0 → K+π− and K∗+ → K+π0 modes, both the mass and

width are compatible with the PDG values. However, for the K∗0 → KSπ
0 mode, the

width is about 10 MeV below the PDG value.

Table 6.24: The fitted results of the mKπ spectrum are compared with PDG [4] values for
all four decay modes.

Data PDG Value
Mode m (MeV) Γ(MeV) m (MeV) Γ(MeV)

K∗0 → K+π− 895.33± .69 50.3± 1.6 896.00± .25 50.3± 0.6
K∗0 → KSπ

0 894.4± 1.8 34.3± 3.6 896.00± .25 50.3± 0.6
K∗+ → K+π0 892.1± 1.2 46.5± 2.6 891.66± .26 50.8± 0.9
K∗+ → KSπ

+ 894.9± 1.1 44.4± 2.4 891.66± .26 50.8± 0.9

6.7.2 CP Asymmetry

We also fit for ACP to the on-peak dataset for each mode. After applying the shift

discussed in Section 6.6.1.3, the results are −0.016 ± 0.022 ± 0.007 (K∗0 → K+π−),

0.040± 0.039± 0.007 (K∗+ → K+π0), and −0.006± 0.041± 0.007 (K∗+ → KSπ
+). They

are listed in Table 6.25.
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Figure 6.24: Relativistic P-wave Breit-Wigner line shape fit to the Kπ invariant mass
distribution of the sPlot of the on-peak dataset for the a) K∗0 → K+π−, b) K∗0 → KSπ

0,
c) K∗+ → K+π0, d) K∗+ → KSπ

+ modes.

Table 6.25: The individual ACP values from the fit to the on-peak data.

Mode ACP

K∗0 → K+π− −0.016 ± 0.022 ± 0.007
K∗+ → K+π0 0.040 ± 0.039 ± 0.007
K∗+ → KSπ

+ −0.006 ± 0.041 ± 0.007
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6.8 Combined Results

After fitting to the on-peak data for the branching fractions and the CP asymmetry in

each mode, we now want to combine the individual results to form the branching fractions

B0 → K∗0γ and B+ → K∗+γ, and also a combined CP asymmetry. In addition, from the

combined branching fractions, we calculate the isospin asymmetry defined by Eq. 4.32.

Toward this end, we construct a four by four covariance matrix constructed from the

uncertainties on the branching fractions in which the diagonal elements correspond to the

total errors of each branching fraction, while the off-diagonal elements are from correlated

systematic errors. This method is described in more detail below.

6.8.1 Covariance Matrix

The covariance matrix of the four modes is constructed by examining which system-

atic uncertainties are common between any two modes. Each systematic contribution is

calculated using the definition of correlation coefficient

ρxy =
Vxy

σxσy

(6.14)

where x and y each correspond to a systematic uncertainty. In the case in which x

and y are fully correlated with each other, this reduces to Vxy = σxσy. Each matrix

element is then determined by adding each systematic contribution together in quadrature.

Table 6.26 lists the common systematic uncertainties. An error is considered correlated if

it is determined by the same control sample. The calculated covariance matrix is shown

in Table 6.27.

6.8.2 Branching Fractions

To extract a combined branching fraction for the neutral and charged modes, we

minimize a χ2 defined by [70]

χ2(B(B → K∗γ)) =
N
∑

i,j=1

(yi − B(B → K∗γ))(V −1)ij(yj − B(B → K∗γ)) (6.15)

where the indices i, j label an individual mode, yi,j corresponds to an individual branching

fraction, and V −1 is the inverse of the covariance matrix. By minimizing the χ2, a weight
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Table 6.26: The correlated systematic uncertainties of the four modes. “Common 5” refers
to the five systematics that are common are common to all modes (B Counting, Photon
Efficiency, Photon Quality, π0/η veto, and production uncertainty of Υ (4S) → BB).
The diagonal entries correspond to the total uncertainty for each mode. The matrix is
symmetric, so all entries below the diagonal are omitted

Mode K∗0 → K+π− K∗0 → KSπ
0 K∗+ → K+π0 K∗+ → KSπ

+

K∗0 → K+π− - Common 5 Common 5 Common 5
Tracking Tracking
Particle ID Particle ID

K∗0 → KSπ
0 - - Common 5 Common 5

π0 Ks

K∗+ → K+π0 - - - Common 5
Tracking

K∗+ → KSπ
+ - - - -

Table 6.27: The calculated covariance matrix for all four modes.

K∗0 → K+π− K∗0 → KSπ
0 K∗+ → K+π0 K∗+ → KSπ

+

K∗0 → K+π− 3.84 × 10−12 1.78 × 10−12 1.31 × 10−12 1.22 × 10−12

K∗0 → KSπ
0 1.77 × 10−12 2.60 × 10−11 3.00 × 10−12 1.19 × 10−12

K∗+ → K+π0 1.32 × 10−12 3.00 × 10−12 0.96 × 10−11 1.64 × 10−12

K∗+ → KSπ
+ 1.23 × 10−12 1.19 × 10−12 1.64 × 10−12 6.10 × 10−12

can be defined

wi =

∑N
j=1(V

−1)ij
∑N

k,l=1(V
−1)kl

(6.16)

where the index i corresponds to an individual mode, and the sum is over theN elements of

the inverse of the covariance matrix. Table 6.28 lists the results. The combined branching

fractions are then extracted from

B(B → K∗γ) =
N
∑

i=1

wiyi (6.17)

The variance of the combined branching fraction is determined as

V [(B → K∗γ)] =
N
∑

i,k=1

wiVijwj. (6.18)
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The results are

B(B0 → K∗0γ) = (4.47 ± 0.10 ± 0.16) × 10−5

B(B+ → K∗+γ) = (4.22 ± 0.14 ± 0.16) × 10−5.

Table 6.28: The weights of the individual modes.

Mode K∗0 → K+π− K∗0 → KSπ
0 K∗+ → K+π0 K∗+ → KSπ

+

Weight 0.9219 0.0781 0.3557 0.6443

6.8.3 Isospin Asymmetry

Using the combined branching fractions and the covariance matrix, we obtain the

isospin asymmetry defined in Eq. 4.32. We rewrite the asymmetry as

∆0− =
I τ+

τ0 − 1

I τ+

τ0 + 1
,

where τ+ is B+ lifetime, τ 0 is the B0 lifetime, and I is

I =
B(B0 → K∗0γ)

B(B∗− → K∗−γ)
.

Under the assumption that I and τ+

τ0 are approximately 1, we have,

∆0− =
1

2
(I
τ+

τ 0
− 1).

Inserting the combined branching fractions, we find, taking into account correlated errors,

I = 1.016 ± 0.040 ± 0.044.

After accounting for τ+/τ0 = 1.071 ± 0.009 [4], we have

∆0− = 0.066 ± 0.021 ± 0.022.

The 90% confidence interval for ∆0− is

0.017 < ∆0− < 0.116.
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6.8.4 CP Asymmetry

The systematic error as quoted in Section 6.6.1 is the same for each mode and fully

correlated between modes. We therefore take a weighted average using only statistical

errors to calculate the combined ACP and find ACP = −0.003±0.017±0.007. We also set

a 90% confidence level by combining the statistical and systematic errors in quadrature

and obtain −0.033 < ACP < 0.028. We also calculate the weighted average of the two

K∗± modes and find ACP (B± → K±γ) = 0.018 ± 0.028 ± 0.007.



Chapter 7

Measurements of B+ → ρ+γ,

B0 → ρ0γ, and B → ωγ Decays

This chapter will outline the measurement of the decays B → (ρ/ω)γ. To first order,

these decays are suppressed relative to B → K∗γ decays by a factor of |Vtd/Vts|2 ∼ 0.04.

In addition, the ρ mass has a width (∼ 150 MeV) that is three times greater than the

width of the K∗(∼ 50 MeV). Both of these facts lead to a dramatically lower signal-to-

background ratio than the B → K∗γ analysis. It was for this reason that the neural

network described in Section 5.4 for the B → (ρ/ω)γ analysis was designed to be more

statistically sensitive than the B → K∗γ analysis. The maximum likelihood fit is also

more sensitive, which will be described in this chapter.

The background composition is also different. The continuum and B → Xsγ back-

ground are still prominent; however, B → K∗γ events also play a significant role, despite

their suppression by the DIRC kaon/pion separation abilities. The B → (ρ/ω)γ analysis

deals with the difference in background composition in the maximum likelihood fit. This

will be described below.

7.1 Fit Overview

In Chapter 5, a series of selection criteria for the B → (ρ/ω)γ analysis was given. The

optimized selections are displayed in Tables 5.9 through 5.11. However, as mentioned in

Section 5.5, we relax the limit on cos θH and the neural network output because these

variables are used in the fit. We include the neural network output as a fit dimension to

increase the sensitivity. For the B → ωγ mode, we include as a fit dimension the cosine

145
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of the Dalitz angle cos θD, which is defined as the angle between the π+ and π0 in the

π+π− rest frame (Sec. 4.3.1.2).

Table 7.1: Number of Monte Carlo events in the fit region scaled to 316 fb−1 using the
MC luminosities for the B → (ρ/ω)γ analysis.

B0 → ρ0γ B+ → ρ+γ B → ωγ

Signal 22 ± 1 36 ± 1 13 ± 1
Continuum + τ+τ− 1658 ± 35 1852 ± 34 599 ± 19

BB 54 ± 3 150 ± 6 21 ± 2

Table 7.1 gives the number of events according to MC simulation in the fit region

after all the selection criteria have been applied. The fit region is defined as mES >

5.22 GeV/c2, |∆E| < 0.3 GeV, and cos θH < 0.75. In addition, the neural network output

is constrained to be greater than 0.85, 0.80, and 0.90 for the B0 → ρ0γ, B+ → ρ+γ and

B → ωγ modes respectively. The numbers in Tables 7.1 can be compared to the number

of events in the B → K∗γ analysis, which is given in Table 6.1. For the B0 → ρ0γ and

B+ → ρ+γ modes, the B → K∗γ modes comprises ∼ 20% of the BB background. To

extract the signal yield, we perform a maximum likelihood fit to each of the three modes

individually. The likelihood function is defined as in Eq. 6.5. The number of dimensions

and components differ for each mode. The BB background is further segregated into

individual contributions, which differ for each mode. Whether or not the normalizations

of these BB components are fixed or free in the fit also differs for each mode. The

signal and BB shapes are fixed in the fit, while the parameters related to the continuum

background are free. Differences in the ∆E PDF between data and MC simulation are

corrected by using samples of B → K∗γ decays. In order to fit to the neural network

output, we make a transformation as

Transform = tanh−1 (c1 · Output − c2) , (7.1)

where “Transform” is the transformed neural network output, “Output” is the neural

network output, and c1, c2 are constants. The constants are determined by requiring

“Output” to lie in the arbitrary range [−4.0,8.7522]. The descriptions of each fit are

given in the following sections.
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Table 7.2: BB background components used for the B0 → ρ0γ fit.

BB B0 → K∗0γ B+ → K∗+γ
(excluding B → K∗γ)

Expected
yield

NBB = 40.27 NK∗0γ = 9.41 NK∗+γ = 4.65

Fixed frac-
tional yields

NBB/Ntot NK∗0γ/Ntot NK∗+γ/Ntot

Floated yield Ntot = NBB +NK∗0γ +NK∗+γ

7.1.1 B0 → ρ0γ

TheB0 → K∗0γ background is kinematically almost the same as signal, except that the

kaon is incorrectly identified as a pion. Therefore, the ∆E distribution is shifted downward

with respect to signal. The B+ → K∗+γ background has a different distribution in ∆E,

as well as cos θH . Taking into account all of this information, the B0 → ρ0γ fit contains

the following five components:

1. Signal

2. Continuum + τ+τ−

3. BB (excluding B → K∗γ)

4. B0 → K∗0γ

5. B+ → K∗+γ

The last three components on the above list have one common yield in the fit model,

which is floated. However, the ratios between the three BB components are fixed from

MC simulation. To find the systematic uncertainty related to fixing these ratios, we vary

the components by
√

Nexpected in the on-peak data fit. This has the effect of shifting the

signal yield, which is taken as the systematic uncertainty. The treatment of the individual

BB backgrounds is summarized in Table 7.2. The PDF shapes used in the fit are given

in Table 7.3. The description of each PDF shape is given in Section 6.3.1.

7.1.2 B+ → ρ+γ

Similar to the B0 → ρ0γ mode, the B+ → ρ+γ mode also suffers from B → K∗γ back-

ground. This is dealt with in the same manner. The B+ → K∗+γ(K∗+ → K+π0) mode is
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Table 7.3: A summary of the PDFs used for each component and dimension in the
B0 → ρ0γ fit.

∆E mES NNtransform cos θH

Signal Cruijff Crystal Ball Cruijff 2nd-order
polynomial

Continuum + τ+τ− 2nd-order ARGUS Cruijff 2nd-order
polynomial polynomial

BB Cruijff ARGUS + Cruijff 2nd-order
(excluding B → K∗γ) Crystal Ball polynomial
B0 → K∗0γ Cruijff Crystal Ball Cruijff 2nd-order

polynomial
B+ → K∗+γ Cruijff ARGUS + Cruijff + Gaussian 2nd-order

Gaussian polynomial

kinematically almost the same as signal; the ∆E distribution is again shifted downward

with respect to signal. This background is treated as one component. The remaining

B → K∗γ background is again treated as one component because the distribution in ∆E

and cos θH differs from the rest of the BB background. The complete set of components

is as follows:

1. Signal

2. Continuum + τ+τ−

3. B+ → K∗+γ(K∗+ → K+π0)

4. B → K∗γ (excluding B+ → K∗+γ(K∗+ → K+π0))

5. B → Xsγ (excluding B → K∗γ)

6. BB (excluding B → Xsγ and B → K∗γ)

Unlike the B0 → ρ0γ mode, the BB plays a prominent role, and so is separated

into a different component. The last three components have one common yield in the

fit model which is floated. However, like in the previous case, the ratios between the

three BB components are fixed from MC simulation and varied in the same manner. The

B+ → K∗+γ(K∗+ → K+π0) component is fixed to the MC simulation expectation of four

events. The yield is varied by 50% in the on-peak data fit to determine the systematic

uncertainty. Table 7.4 details the treatment of the BB backgrounds, while Table 7.5 gives

the PDF shapes that were used.
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Table 7.4: BB background components used for the B+ → ρ+γ fit.

Type of B–
background

other BB other B → Xsγ other B0 →
K∗0γ

B+ → K∗+γ,
K∗+ → Kπ0

Expected
yield

NBB = 72.40 NXsγ = 50.00 NK∗γ = 23.25 NKπ0γ = 4.48

Fixed frac-
tional yields

NBB/Ntot NXsγ/Ntot NK∗γ/Ntot NKπ0γ

Floated yield Ntot = NBB +NXsγ +NK∗γ

Table 7.5: A summary of the PDFs used for each component and dimension in the
B+ → ρ+γ fit.

∆E mES NNtransform cos θH

Signal Cruijff Crystal Ball Cruijff 2nd-order
polynomial

Continuum + τ+τ− 2nd-order ARGUS Cruijff 4th-order
polynomial polynomial

B+ → K∗+γ(K∗+ → K+π0) Gaussian ARGUS + Cruijff 2nd-order
Crystal Ball polynomial

B → K∗γ Cruijff Novosibirsk Cruijff 2nd-order
(excluding B+ → K∗+γ polynomial
(K∗+ → K+π0))
B → Xsγ Cruijff Gaussian + Cruijff 4th-order
(excluding B → K∗γ) ARGUS polynomial
BB Cruijff Crystal Ball Cruijff Novosibirsk
(excluding B → Xsγ and B → K∗γ)
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Table 7.6: A summary of the PDFs used for each component and dimension in the B → ωγ
fit.

Signal Continuum + τ+τ− BB

∆E Cruijff 2nd-order polynomial Gaussian
mES Crystal Ball ARGUS Novosibirsk
NNtransform Cruijff Cruijff Cruijff
cos θH 2nd-order polynomial 2nd-order polynomial 2nd-order polynomial
cos θD 2nd-order polynomial 2nd-order polynomial 2nd-order polynomial

7.1.3 B → ωγ

The B → ωγ has negligible B → K∗γ contamination. The MC simulation expectation

is ∼ 4 events. Therefore, all of the BB background is combined into one component. The

complete set of components is identical to the B → K∗γ analysis, and is as follows:

1. Signal

2. Continuum + τ+τ−

3. BB

Table 7.6 gives the PDF shapes that were used.

7.2 Systematic Errors

Table 7.7 gives an overview of the contributions to the systematic uncertainties. Sim-

ilar to the B → K∗γ analysis, there are two types of systematic uncertainties. There

are uncertainties associated with the signal reconstruction efficiency, in addition to ones

pertaining to the the signal extraction. The latter includes the B counting uncertainty

and the uncertainties associated with the shape parameters of the PDFs. Unlike the

B → K∗γ analysis, there are systematic errors pertaining to modeling of the signal com-

ponent because these parameters are obtained from MC simulation and are fixed in the

on-peak data fit. The B counting, tracking efficiency, photon selection, π0 reconstruction,

π0(η) vetoes, and neural network systematic uncertainties are evaluated in the same way

as in Section 6.5. The particle identification systematic is determined from a sample of

D∗+ → D0π+(D0 → K−π+) decays. To estimate the uncertainty related to the modeling

of the signal and B background in the MC simulation, we vary the parameters of the
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Table 7.7: Fractional systematic errors (in %) of the measured branching fractions.

Descriptions B+ → ρ+γ B0 → ρ0γ B → ωγ B → (ρ+, ρ0)γ B → (ρ, ω)γ
B Counting 1.1% 1.1% 1.1% 1.1% 1.1%
Tracking Eff. 1.0% 2.0% 2.0% 1.4% 1.5%
Particle Identification 2.0% 4.0% 2.0% 2.9% 2.7%
Photon selection 1.9% 2.6% 1.7% 2.2% 2.1%
π0 reconstruction 3.0% - 3.0% 1.9% 2.5%
π0(η) veto 2.8% 2.8% 2.8% 2.8% 2.8%
Neural Network Eff. 1.0% 1.0% 1.0% 1.0% 1.0%
Neural Network shape 0.4% 0.3% 2.3% 0.4% 0.7%
Signal PDF shapes 4.8% 3.3% 2.4% 3.1% 2.6%
BB background PDFs 3.9% 2.9% 9.7% 3.2% 3.1%
BF (ω → π+π−π0) - - 0.8% - 0.1%
Combined 8.1% 7.4% 11.6% 7.0% 6.9%

PDFs that are fixed in the fit within their errors. The uncertainty related to the choice of

a specific functional form for the shape of the neural network distribution is evaluated by

using a binned PDF as an alternative description. All relative and absolute normaliza-

tions of B background components that are fixed in the fit are varied within their errors.

For all these variations, the corresponding change in the fitted signal yield is taken as a

systematic uncertainty.

7.3 Results

7.3.1 Branching Fractions

We perform a fit to the on-peak data assuming B(Υ (4S) → B0B0) = B(Υ (4S) →
B+B−) = 0.5 to extract the branching fractions. The fit projections for each dimension

are shown in Figs. 7.1 through 7.3. For B → ωγ, we also compute the 90% C.L. upper

limit B(B → ωγ) < 0.78× 10−6 using a Bayesian technique. We determine the branching

fraction upper limit Bl such that

∫ Bl

0

L dB/
∫ ∞

0

L dB = 0.90 (7.2)

where L is the likelihood function. We assume a flat prior for the branching fraction and
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take into account the systematic uncertainty by convoluting the likelihood function with a

Gaussian with a width equal to that of the variance due to the systematic uncertainty. We

extract a combined branching fraction defined as in Eq. 4.35 by performing a simultaneous

fit to all three decay modes using the isospin constraints on the width of the decay modes:

ΓB→ρ+γ = 2ΓB→ρ0γ = 2ΓB→ωγ. The result is

B(B → (ρ/ω)γ) = 1.25+0.25
−0.24 ± 0.09 × 10−6. (7.3)

The significance of the signal is 6.4σ, including systematic uncertainties. If we exclude the

B0 → ωγ mode from the simultaneous fit, we obtain B(B → ργ) = 1.36+0.29
−0.27±0.10×10−6.

The results are shown in Table 7.8.
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Figure 7.1: Projections for the ρ0 mode. The blue curve is the full fit, the black dashed
curve are all background components combined and the red dashed–dotted curve is the
signal component.
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Figure 7.2: Projections for the ρ+ mode. The blue curve is the full fit, the black dashed
curve are all background components combined and the red dashed–dotted curve is the
signal component.

7.3.2 Isospin Symmetry

We test the hypothesis of isospin symmetry by measuring the quantity defined in

Eq. 4.33. We obtain ∆ = −0.35 ± 0.27. The result is consistent with the theoretical

expectation [32] described in Section 4.4.3.2.

7.3.3 |Vtd/Vts|

Using the world average value of B(B → K∗γ) [48], we calculate B(B → (ρ/ω)γ)/B(B →
K∗γ) = 0.030 ± 0.006. This result can be used to calculate the ratio |Vtd/Vts| using
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Table 7.8: The signal yield (nsig), significance (Σ) in standard deviations including sys-
tematic errors, efficiency (ǫ), and branching fraction (B) for each mode. The errors on
nsig are statistical only, while for the branching fraction the first error is statistical and
the second systematic.

Mode nsig Σ ǫ(%) B(10−6)

B+ → ρ+γ 42.0+14.0
−12.7 3.8σ 11.0 1.10+0.37

−0.33 ± 0.09

B0 → ρ0γ 38.7+10.6
−9.8 4.9σ 14.1 0.79+0.22

−0.20 ± 0.06

B → ωγ 11.0+6.7
−5.6 2.2σ 7.9 0.40+0.24

−0.20 ± 0.05

B → (ρ/ω)γ 6.4σ 1.25+0.25
−0.24 ± 0.09

B → ργ 6.0σ 1.36+0.29
−0.27 ± 0.10

Eq. 4.36. We obtain

|Vtd/Vts| = 0.200+0.021
−0.020 ± 0.015, (7.4)

where the first error is experimental and the second is theoretical. The result is consistent

with Bd/Bs mixing.
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Figure 7.3: Projections for the ω mode. The blue curve is the full fit, the black dashed
curve are all background components combined and the red dashed–dotted curve is the
signal component.



Chapter 8

Search for the Rare Decay B → φγ

This chapter describes the procedure to measure the branching fraction of B → φγ.

Like the B → ργ analysis, the signal-to-background ratio is significantly affected by the

width of the φ mass, as well as the suppression due to the annihilation diagram of the

decay. However, it is the small width of the φ that leads to a negligible amount of B

background contamination. This observation, along with the rareness of the decay in

the SM, leads to a simpler fitting procedure than the B → K∗γ and B → ργ analyses.

The reconstruction, neural network, and selection criteria related to B → φγ has already

been described in Chapter 5. The fitting procedure, along with the description of the B

background, is described in this chapter.

8.1 B background

As mentioned above, the B background is significantly lower as compared to the B →
K∗γ and B → (ρ/ω)γ analyses. According to MC simulation, Table 8.1 lists the modes

that are found in the signal region (5.27 < mES < 5.29 GeV/c2,−0.2 < ∆E < 0.1 GeV).

After scaling to 113.1 fb−1, there are 0.073 ± 0.004 BB events in the signal region.

8.2 Fitting Procedure

To make a determination of the upper limit on the number of signal events, we make

a background estimate in the signal region using real data, and perform a consistency

check using MC simulation. We divide the fit region into four separate regions as follows:

Region 1 0.1 ≤ ∆E ≤ 0.5 GeV and 5.1 ≤ mES ≤ 5.29 GeV/c2

156
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Table 8.1: Origin of BB events that fall in the signal region.

Mode Number of events
in signal region

(scaled to 113.1 fb−1)
B0

d → φπ0 0.04 ± 0.002
B0

d → φη 0.02 ± 0.0009
B0

d → φK0
L 0.003 ± 0.001

B0
d → φK0

S (K0
S → π0π0) 0.01 ± 0.003

Region 2 −0.2 ≤ ∆E ≤ −0.1 GeV and 5.1 ≤ mES ≤ 5.27 GeV/c2

Region 3 −0.5 ≤ ∆E ≤ −0.2 GeV and 5.1 ≤ mES ≤ 5.29 GeV/c2

Region 4 −0.2 ≤ ∆E ≤ 0.1 GeV and 5.27 ≤ mES ≤ 5.29 GeV/c2

These regions are illustrated in Fig. 8.1. Regions 1 and 3 will be used to estimate the

number of background events in region 4 (signal region), while region 2 will be used to

validate the procedure.

Figure 8.1: The four different regions used in estimating the number of background events
in the signal region.
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8.2.1 Monte Carlo Consistency

We first determine how consistent the background distributions in each region are with

each other by fitting an Argus function to regions 1, 3, 1+3, and 2+4. This is shown in

Fig. 8.2. The Argus parameters are within ≈ 1σ of each other.
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Figure 8.2: Argus fits to the mES distributions in a) region 1, b) region 3, c) regions 1
and 3, d) regions 2 and 4. The data set used is continuum MC simulation.

8.2.2 Data Consistency and Background Estimation

We validate the procedure of fitting the mES and ∆E distributions in regions 1 and 3,

and then extrapolating into region 4, by first extrapolating into region 2 and comparing

with the actual number. We fit an Argus function to the mES distribution and a 1st order

polynomial to the ∆E distribution. Fig. 8.3 shows the mES and ∆E distributions for all

regions, with the fits to regions 1 and 3 superimposed.

The fitted number obtained upon extrapolating into region 2 is 79.4±6.3. The actual
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number is 71±8.4. Thus, the fitting procedure is validated and we use this to estimate

the background number in the signal region. The fitted number obtained is 6.0±0.8.

This is consistent with the number obtained by performing the same procedure on MC

simulation, which is 4.7±0.7.
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Figure 8.3: The (a) mES and (b) ∆E distributions of on-resonance data. Superimposed
are (a) an Argus function and (b) a 1st order polynomial that are obtained from fits to
the data in regions 1 and 3. The different regions and fitting method are described in the
text.

8.3 Systematic Errors

Table 8.2 gives an overview of the contributions to the systematic uncertainties and

corrections factors. Similar to the previous two analysis, there are uncertainties associ-

ated with the signal reconstruction efficiency and the signal extraction. In this analysis,

however, the B counting systematic is the only uncertainty associated with the signal

extraction. The B counting, tracking efficiency, photon distance, and neural network sys-

tematic uncertainties are evaluated in the same manner as in Section 6.5. The particle

identification systematic is determined from a sample of D∗+ → D0π+(D0 → K−π+) de-

cays. From this sample, the data/MC efficiencies are binned in momentum, polar angle,

and azimuthal angle. The systematic uncertainty is determined by varying these bins to

account for the different momentum spectra of the D∗+ → D0π+(D0 → K−π+) control

sample and the signal momentum distribution. The systematic uncertainty is determined

in Ref. [71], where a similar kaon momentum spectra is expected, to be 1%. The π0/η

systematic uncertainty is determined by “embedding” a signal photon into continuum MC

simulation and off-resonance data. This photon is then paired with every other photon
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in the event and the veto applied. The discrepancy between the efficiency between data

and MC simulation is taken as the systematic uncertainty. This is evaluated in Ref. [66]

and the systematic uncertainty is 1%. The photon efficiency systematic uncertainty is

determined by a sample of e+e− → τ+τ− events. One τ is selected to decay to eνeντ ,

while the other is required to decay to a charged hadron, a neutrino, and one or two

π0’s. The photon efficiency systematic uncertainty is given as half of the π0 systematic

uncertainty, which is determined by the errors on the τ branching fractions, as well as

the uncertainties mentioned in Section 6.5.7. The systematic is 2.5% with a correction of

0.997.

Table 8.2: This table shows the factors needed to correct the Monte Carlo efficiency and
their systematic errors.

Description Factor σ
B Counting 1.00 1.0%
Tracking Eff 0.984 2.6%
PID 1.00 1.0%
Distance Cut 1.00 2.0%
π0/η veto 1.00 1.0%
Photon Eff 0.997 2.5%
Neural Network 0.985 2.7%
Signal Efficiency 0.144 0.1%
Total Correction 0.966 5.2%
Corrected Efficiency 0.139 5.2%

8.4 Results

The systematic uncertainties described in the previous section are incorporating into

upper limit on the branching fraction using the technique of Cousins and Highland [72].

The upper limit is obtained as

B(B → φγ) =
N90

UL

2ǫs × L× σB0B0 × B(φ→ K+K−)
(1 + 1.15σ2

S) (8.1)

where N90
UL is the upper limit on the expected number of signal events at the 90% confi-

dence interval, ǫs is the signal efficiency, L is the luminosity, B(φ→ K+K−) = 0.491±.006,

σB0B0 is the cross-section for Υ (4S) to decay into B0B0 pairs, and σS is the total system-

atic uncertainty. The factor of 1.15 in front of σS comes from calculating the confidence
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interval by averaging over the probability density function of the systematic [72].

The number of events in the signal region is 8 events as displayed in Figure 8.4.

With a mean of 6 events, the Poisson consistency of 8 events or more being consistent

with background is 0.15. From Table 8.3, which shows 90% confidence intervals given by

Ref. [56], one can see that the upper limit of the number of signal events is 7.99. The upper

limit on the branching fraction given by Eq. 8.1 is 9.4 × 10−7. In Fig. 8.4, the density of

points seems to be significantly less in the upper right half of the plane. To see whether this

is a statistical effect, the ∆E slope parameter is determined for 5.21 < mES < 5.25 GeV/c2

and 5.25 < mES < 5.29 GeV/c2 separately. The slope parameters agree at a little over 2σ,

which makes it marginally a statistical effect.

Table 8.3: Confidence intervals for an expected background of 6 events

Number of Confidence
observed events Interval
0 [0.00, 0.97]
1 [0.00, 1.14]
2 [0.00, 1.57]
3 [0.00, 2.14]
4 [0.00, 2.83]
5 [0.00, 4.07]
6 [0.00, 5.47]
7 [0.00, 6.53]
8 [0.00, 7.99]
9 [0.00, 9.30]
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Figure 8.4: The 2D ∆E vs. mES plane of the fitting region using real data. The box
indicates the boundaries of the signal region, where 8 events lie.



Chapter 9

Conclusions

The results of B → K∗γ analysis are shown in Table 9.1, while the results of the

B → (ρ/ω)γ analysis are displayed in Table 9.3. Also shown in these tables are previous

results from CLEO and Belle. Tables 9.2 and 9.4 show the theoretical predictions. These

tables are identical to Tables 4.2 through 4.5, except that the current measurements

have superseded the previous BABAR measurements. As mentioned in Section 4.4.1, the

theoretical predictions for the B → φγ branching fraction are ∼ 10−11 [35, 36]. The result

from this thesis is B(B → φγ) < 9.4 × 10−7 [74].

Table 9.1: Previous measurements of the branching ratios and asymmetries for B → K∗γ,
as well as the measurements of this thesis

CLEOII [29] Belle[31] BABAR [73]
9.2 fb−1 78 fb−1 347 fb−1

B0 → K∗0γ 4.55+0.72
−0.68 ± 0.34 4.01 ± 0.21 ± 0.17 4.47 ± 0.10 ± 0.16

(×10−5)

B+ → K∗+γ 3.76+0.89
−0.83 ± 0.28 4.25 ± 0.31 ± 0.24 4.22 ± 0.14 ± 0.16

(×10−5)

ACP +0.08 ± 0.13 ± 0.03 −0.015 ± 0.044 ± 0.012 −0.003 ± 0.017 ± 0.007

Isospin N/A +0.012 ± 0.044 ± 0.026 0.066 ± 0.021 ± 0.022
asymmetry (measured parameter: ∆0+) (measured parameter: ∆0−)

9.1 B → K∗γ

The B → K∗γ measurements described in this thesis represent an improvement in the

uncertainty of ∼ 50% over the previous BABAR measurements [30]. These improvements

163
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Table 9.2: Current theoretical calculations of the B → K∗γ branching fraction

B(B → K∗γ) (NLO) Reference
(7.25 ± 2.6) × 10−5 Ali and Parkhomenko [24]

(7.9+3.5
−3.0) × 10−5 Beneke, Feldmann and Seidel [25]

(7.09+2.47
−2.27) × 10−5 Bosch and Buchalla [26]

(5.8 ± 2.9) × 10−5 (B0 → K∗0γ) Matsumori, Sanda,
(6.0 ± 3.0) × 10−5 (B+ → K∗+γ) and Keum [27]
(4.3 ± 1.4) × 10−5 (B0 → K∗0γ) Ali, Pecjak,
(4.6 ± 1.4) × 10−5 (B+ → K∗+γ) and Greub [28]

Table 9.3: Previous measurements of the branching ratios for B → ργ and B → ωγ,
where the limits are given by the 90% confidence level, as well the measurements of this
thesis. The errors on the Belle measurements are statistical and systematic, respectively,
while the entry in paranthesis refers to the significance of the measurement.

CLEOII [29] Belle[34] BABAR [75]

9.2 fb−1 350 fb−1 316 fb−1

B+ → ρ+γ(×10−6) < 13 0.55+0.42+0.36
−0.36−0.08 (1.6σ) 1.10+0.37

−0.33 ± 0.09

B0 → ρ0γ(×10−6) < 17 1.25+0.37+0.07
−0.33−0.06 (5.2σ) 0.79+0.22

−0.20 ± 0.06

B → ωγ(×10−6) < 92 0.56+0.34+0.05
−0.27−0.10 (2.3σ) 0.40+0.24

−0.20 ± 0.05

B → (ρ/ω)γ(×10−6) 1.32+0.34+0.10
−0.31−0.09 (5.1σ) 1.25+0.25

−0.24 ± 0.09

arise not only from an increase in statistics, but also an improvement of the of systematic

uncertainty. The branching fractions from the three experiments are compatible with

each other. In addition, in all three cases, direct CP violation is not observed. The

theoretically predicted branching fractions are shown in Table 9.2, and the trend in these

predictions is discussed in Section 4.4.1.

The most interesting observable arises from the isospin asymmetry. The previous

measurements have not been precise enough to constrain this observable to a definite

sign. However, this measurement has constrained this observable to be positive, and have

a value of 0.017 < ∆0− < 0.116 at the 90% C.L. This in ageement with the standard

model predictions in Table 9.5. The reason this constraint is interesting is because of

possible new physics contributions to the isospin asymmetry. According to Ref. [42], the

contribution of the operator Q6 to the isospin asymmetry is ∼ 9%, so that the isospin

asymmetry is mainly sensitive to the magnitude and sign of the ratio C6/C7 of Wilson
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Table 9.4: Theoretical predictions of the branching fractions for B → ργ and B → ωγ.

Mode Branching fraction ( ×10−6 )

Ref. [32] Ref. [26] Ref. [23]

B+ → ρ+γ 1.37 ± 0.28 1.58+0.53
−0.46 1.16 ± 0.26

B0 → ρ0γ 0.65 ± 0.12 0.55 ± 0.13

B → ωγ 0.53 ± 0.12 0.44 ± 0.10

coefficients. When considering the minimal supersymmetric standard model for low tanβ,

where tan β is the ratio of Higgs vacuum expectation values, Re(C7) is negative as in the

standard model. However, the large tanβ, Re(C7) can be positive, thus flipping the sign of

the isospin asymmetry to be negative. Therefore, this measurement excludes that portion

of parameter space.

Table 9.5: Current theoretical calculations of isospin violation in B → K∗γ decays within
the SM. FB→V (q2 = 0) is the B → K∗ form factor whose estimates range from 0.23 ±
0.06 [27] to 0.38 ± 0.06 [76].

Isospin violation Reference
(+8.0+2.1

−3.2)% × 0.3/TB→K∗

1 (∆0−) Kagan and Neubert [42]
(+2.7 ± 0.8)% (∆0+) Matsumori, Sanda, and Keum [27]

9.2 B → (ρ/ω)γ

The measurement described in this thesis found evidence for the decays of B0 → ρ0γ

and B+ → ρ+γ. For B+ → ρ+γ, this is the first such observation. As can be seen

in Table 9.3, the BABAR measurement is consistent with isospin symmetry (described

in Section 4.4.3.2), which requires that B(B+ → ρ+γ) be twice the value of B(B0 →
ρ0γ). However, the central values of the Belle measurement are not consistent with this

symmetry. Both measurements of the branching ratios described in this thesis are also

consistent with theoretical predictions, which are described in Table 9.5. For the B → ωγ

mode, only an upper limit was obtained.

By dividing the B(B → (ρ/ω)γ) by B(B → K∗γ), the magnitude of |Vtd/Vts| can be

obtained. We calculate |Vts/Vts| = 0.200+0.021
−0.020 ±0.015. This can be compared to the value
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Figure 9.1: The measurement of B(B → (ρ/ω)γ), when combined with B(B → K∗γ),
provides a measurement of the magnitude of one length of the unitary triangle Rt (de-
scribed in Section 4.4.4). This is outlined in green, and extends from the inner green circle
to the outer green area. The measurement of Bd/Bs mixing also gives a measurement of
Rt, and extends across the yellow shaded region.

found from Bd/Bs mixing, which is considerably more precise. This method of extraction

yields |Vtd/Vts| = 0.2060 ± 0.0007(∆ms)
+0.0081
−0.0060(∆md + theor.) (∆md and ∆ms denote

the Bd and Bs mixing frequencies respectively, while “theor.” stands for the theoretical

uncertainty.). Fig 9.1 gives a graphical representation of the results in the ρ̄ − η̄ plane

defined in Section 4.4.4. While the Bd/Bs mixing result defines the length of the triangle,

the B → (ρ/ω)γ result provides a consistency check.

9.3 B → φγ

Because of the rarity of this decay, only an upper limit of B(B → φγ) < 9.4×10−7 was

set. This is consistent with the theoretical prediction of ∼ 10−11, but is still not sensitive

enough to provide a measurement of the branching fraction.
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9.4 Future Prospects

The dataset for the B → K∗γ analysis is 347 fb−1. An updated analysis would use

the entire dataset, which is ∼ 20% more data (423 fb−1). This corresponds to ∼ 10%

improvement in statistical precision. The systematic uncertainty is limited by the photon

isolation study of data/MC differences. This study was performed in Ref. [66], which

was done eight years before this analysis was completed. An updated study is desirable.

However, even so, it is not clear the total uncertainty on the branching fractions can be

reduced to levels that will warrant the extra effort. The branching fractions are already

well measured, and the theoretical predictions are greater than the experimental uncer-

tainties. However, the isospin and CP asymmetries could still contain new physics effects.

The leading systematic uncertainty for the isospin asymmetry is the fitting systematic,

which can be reduced by having a more well understood fitting procedure. The leading

systematic uncertainty for the CP asymmetry is the charge-asymmetry of the hadronic

interactions of the kaons with the detector material. In this thesis, the systematic un-

certainty is 0.7%. A reduction in this uncertainty would most likely involve developing a

kaon control sample.

Table 9.6: The measurements of the branching ratios for B → ργ and B → ωγ which
were performed after the measurements described in this thesis. They are descrbed in
Ref. [77]. The entry in paranthesis refers to the significance of the measurement.

BABAR [77]

423 fb−1

B+ → ρ+γ(×10−6) 1.20+0.42
−0.37 ± 0.20 (3.2σ)

B0 → ρ0γ(×10−6) 0.97+0.24
−0.22 ± 0.06 (5.4σ)

B → ωγ(×10−6) 0.50+0.27
−0.23 ± 0.09 (2.2σ)

B → (ρ/ω)γ(×10−6) 1.73+0.34
−0.32 ± 0.17 (6.0σ)

The B → (ρ/ω)γ analysis described in this thesis has already been updated to the

full dataset (Ref. [77]). The results are in Table 9.6. The 90% C.L. for B(B → ωγ) <

0.9 × 10−6, while |Vtd/Vts| = 0.233+0.025+0.022
−0.024−0.021. These results are all consistent with the

results of this thesis. The goal of the analysis described in Ref. [77] was to discover

the B → ωγ mode by using the full dataset, along with new background suppression

techniques. Since the main limitation of this analysis is statistics, a different more robust

classifier, the bootstrap-aggregated decision tree [78], was used. Even though only an
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upper limit was set, it is possible the new analysis techniques that were developed can be

carried over into a future analysis.

Finally, theB → φγ analysis suffers severe statistical limitations. The full BABAR dataset

is sensitive to branching fractions ∼ 10−8, so that it is unlikely that using the full dataset

will help without significant improvement in analysis techniques. At the very least, a

tighter upper limit can be achieved.

In all likelihood, these three analyses will only be attempted again at another exper-

iment, such as SuperB or LHCb. At SuperB, there is projected to be an improvement

in calorimeter energy resolution as compared to BABAR. A large portion of the contin-

uum background originates from π0’s and η’s, in which one of the photons fake the high

energy gamma. Having a smaller energy resolution will mean that the π/η veto will be

more effective. In addition, a smaller ∆E resolution will offer a stronger discrimination

between signal and background. However, the major difference is that the instantaneous

luminosity will be at least 100 times that of BABAR. The huge increase in statistics will

make the measurements systematics limited. At the LHCB, there will be ∼ 2fb−1 of data

taken every year. Within the first year, a measurement of B → ωγ is expected, along with

a measurement of the CP asymmetry of B → K∗γ with a statistical error of < 1% [79].

The future prospects of these decays have a bright outlook.



Appendix A

OffPeak Data-Monte Carlo

agreement

A.1 K∗0 → K+π− mode

Figures A.1 through A.3 show the comparison between offpeak data and continuum

Monte Carlo for the neural net inputs, while figure A.4 shows the comparison for the cuts

that are optimized.
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Figure A.1: Thrust angle, cosθB, and Legendre moments for offpeak data(black dots) and
continuum Monte Carlo (red line). The mode shown is K∗0 → K+π− and all cuts are
applied except for the Neural Net cut. The Monte Carlo is scaled to the data.
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Figure A.2: R′
2, ∆z significance, and subtagger output for offpeak data(black dots) and

continuum Monte Carlo (red line). The mode shown is K∗0 → K+π− and all cuts are
applied except for the Neural Net cut. The Monte Carlo is scaled to the data.
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mode shown is K∗0 → K+π− and all cuts are applied except for the Neural Net cut. The
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Figure A.4: A comparison of offpeak data(black dots) and continuum Monte Carlo (red
line) for all variables that were optimized. The mode shown is K∗0 → K+π− and all cuts
are applied to each plot except for the variable shown. The Monte Carlo is scaled to the
data.



Appendix B

Correlation of Fit Observables

B.1 K∗0 → K+π− mode

Figures B.1 through B.3 show how the fit observables are correlated with each other

for the K∗0 → K+π− mode.
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Figure B.1: The left column shows the 2 dimensional scatter plots of the observables for
signal Monte Carlo, while the next 2 columns show the profile plots of both axes of the
scatter plot.
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Figure B.2: The left column shows the 2 dimensional scatter plots of the observables for
continuum Monte Carlo, while the next 2 columns show the profile plots of both axes of
the scatter plot.
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Figure B.3: The left column shows the 2 dimensional scatter plots of the observables for
BB Monte Carlo, while the next 2 columns show the profile plots of both axes of the
scatter plot.



Appendix C

Neural Network Overview

C.1 Neural Network Introduction

The neural network combines the input variables (described in Section 5.4.1) into a

single variable which is used to separate background from signal events. In short, a neural

network has a topological structure which is determined by three main elements: input

nodes, hidden layers each with an arbitrary number of nodes, and output nodes. The

input nodes are fixed and correspond to the input variables in the problem. Both the

output nodes and the nodes in the hidden layers receive a linear combination of inputs.

The output of the jth node is determined as follows:

Oj = F (
N
∑

i=1

wjixi)

where xi are the inputs to the node, wji is the weight of unit i to unit j, N is the number

of nodes that have an output to the jth node, and F is a function which determines

the shape of the overall output of the node. If this output corresponds to a node in a

particular hidden layer, then it is used as an input to another node.

C.1.1 Determination of Free Parameters

The free parameters of the problem are the weights wji. In order to fix these quan-

tities, we introduce a set of “training” events in which their is a quantity Tp( ~xq) that is

associated with them and serves as the desired output for the pth output node in the qth

event ( ~xq is the input vector). In the present set of analyses, we use only one output node;
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T1( ~xq) is 0 for continuum background and 1 for signal events. Then, an optimization cri-

terion is chosen. A typical one minimizes the sum squared error (SSE):

SSE(wji) =
∑

p

∑

q

[Op(wji, ~xq) − Tp( ~xq)]
2

where Op(wji, ~xq) is the actual output. Note that the SSE can only apply to output

nodes, since these nodes are the only ones that have desired outputs (Tp( ~xq)) available.

The errors of the hidden nodes are determined by summing over the errors of the previous

layer multiplied by the corresponding weights as follows:

δj =
∑

k

δkwkj

where δj is the error of the jth hidden node and δk is the error of the kth node of the

previous layer. In this manner, the errors are propagated backward through the network.

The procedure in which the weights are determined is by an algorithm, typically the

“backpropagation” algorithm. For further detail on neural networks, one can refer to [80].

C.1.2 Implementation of Neural Network

In order to make the above abstraction more concrete, a specific example can be given

which the B → K∗γ analysis utilizes. All of the event quality cuts to the data sets are

applied before they are put into the neural net. The structure used is 13 input nodes, 1

hidden layer with 26 nodes, and 1 output node. We use the standard backpropagation

algorithm as the procedure for optimizing the weights. The total data set is divided into

two, one that provides a set of training events and the other for validating the neural net-

work. The division is such that the ratio of the number of training events to the number

of events in the validation sample is 1:1. The data sets used in training and validation

are continuum (uds, cc̄, and τ+τ− ) and signal Monte Carlo. In training the network,

the relevant quantity is the mean squared error (MSE):

MSE =
SSE

Number of Events

The MSE is evaluated after each cycle (one cycle corresponds to one update of the weights)

for the training and validation data sets. The training is stopped when the MSE has
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reached its minimum value for the validation data set.



Appendix D

Signal Embedded Toy Studies

This section describes understanding the biases of the signal embedded toys observed

in section 6.4.1.2. Figure D.1 shows themES distribution for all four modes formES < 5.27.

For all four modes, the PDF underestimates the actual distribution of events. However,

for the K∗0 → K+π− and K∗+ → KSπ
+ modes, the PDF drops dramatically to zero,

while for the other two modes there is a more gradual decrease. This is because the

π0 tails tend to broaden out the PDF. For this reason, we treat the K∗0 → K+π− and

K∗+ → KSπ
+ modes separately from the K∗0 → KSπ

0, K∗+ → K+π0 modes.

D.1 K∗0 → K+π−, K∗+ → KSπ
+ modes

For these modes, the signal mES line shape does not represent the data in the mES

sideband. Therefore, it is speculated that the cause of the signal bias is due to incorrect

PDF modeling in this region. To show this, we eliminate the signal MC in the region

mES < 5.27 and perform the signal embedded toy studies. The results are shown in

Table D.1. One can see that the bias has been removed.

Table D.1: The pulls of the yields for each component for fits in which the signal MC has
been eliminated for mES < 5.27 . All fits are signal embedded.

Yield Pull K∗0 → K+π− K∗0 → KSπ
0

Sig. Pull −0.105±0.11 0.099±0.096
Cont. Pull −0.048±0.11 −0.111±0.098

BB 0.102±0.090 0.205±0.096

To understand the origin of events in the region mES < 5.27 for the K∗0 → K+π−
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(a) K∗0 → K+π− mode
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(b) K∗0 → KSπ
0 mode
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(c) K∗+ → K+π0 mode
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(d) K∗+ → KSπ
+ mode

Figure D.1: Signal MC sidebands for the mES distribution for all 4 modes.
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Figure D.2: a) K∗0 → K+π− pion lab momentum and b) cos(θH) distributions for truth-
matched, mES > 5.27 (black) and untruthmatched, mES < 5.27 (red)

mode, we perform a study in order to categorize these events. The large majority of

events were due to untruth-matched events. Furthermore, approximately 80% of these

untruth-matched events were due to the pion in the decay coming from the rest of the

event. To attempt to eliminate these events, two variables were considered, the pion lab

momentum and the helicity angle. Figure D.2 shows these distributions for truth-matched

events with mES > 5.27 and untruth-matched events with mES < 5.27. Since the pion lab

momentum did not yield a clear discrimination of the two types of events, placing a cut

of cos(θH) < 0.6 was attempted. This did not significantly reduce the bias. Therefore, it

was decided to simply correct for the signal bias.

D.2 K∗0 → KSπ
0, K∗+ → K+π0 modes

D.2.0.1 K∗0 → KSπ
0

We use a Crystal Ball function to represent the mES distribution, but another choice

to represent the data would be a Cruijff function. This is shown in Figure D.3. The bias

for the Cruijff is displayed in Table D.2. One can see that there is almost no bias for the

Cruijff function. Thus, since the mES distribution above 5.27 is well represented by both

the Crystal Ball and Cruijff functions, one is led to the conclusion that the bias is due to

the discrepancy between the two functions below 5.27. We choose to represent the data

by a Crystal Ball function because it leads to a lower overall fitting systematic. When

the fixed parameters are varied (as shown in Section 6.5.11.2), the variation with respect
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Figure D.3: Signal MC data and PDF fits for the (a) Cruijff and (b) Crystal Ball functions
for the K∗0 → KSπ

0 mode. The left-hand side shows mES < 5.27 , while the right-hand
side shows mES > 5.27. We separate out the two regions for clarity.

to the nominal signal yield is less for the Crystal Ball than for the Cruijff.

D.2.0.2 K∗+ → K+π0

Figure D.4 shows the PDF fit to the signal MC data using the Cruijff and Crystal Ball

functions. Even though it shows the same characteristics as the K∗0 → KSπ
0 mode, the

differences between the two PDFs cannot account for full bias. This is show in Table D.3.

According to the linear correlations coefficients in Table 6.4, mES and ∆E are cor-

related in the signal MC for the K∗+ → K+π0 mode (and to a lesser degree mES and

cos(θH)). Therefore, we perform one and two dimensional signal embedded toy studies

according to Table D.3. The two dimensional toy study with mES and ∆E gives nearly

the same bias as the nominal bias, leading to the conclusion that the majority of the bias
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Table D.2: The pulls of the yields for Crystal Ball and Cruijff functions for the K∗0 →
KSπ

0 mode. All fits are signal embedded.

Signal Continuum BB
Nominal Pull −0.630±0.062 0.092±0.058 0.206±0.061
Cruijff −0.258±0.062 −0.133±0.067 0.207±0.061

is due to correlations between them.

Table D.3: The pulls of the yields for each component fits of less than 3 dimensions for the
K∗+ → K+π0 mode, with the exception of line labeled “Cruijff”, which is in 3 dimensions.
This line displays pulls of the yields for the Cruijff function. All fits are signal embedded.

Signal Continuum BB
Nominal Pull −0.751±0.15 0.12±0.12 0.22±0.12
Cruijff −0.583±0.15 0.01±0.14 0.36±0.14
1d (mES) −0.238±0.11 −0.027±0.10 0.173±0.079
1d (∆E) −0.264±0.15 0.14±0.13 −0.089±0.12
2d (mES and ∆E) −0.814±0.14 0.08±0.15 0.35±0.15
2d (mES and cos(θH)) −0.524±0.15 −0.181±0.11 0.37±0.12
2d (∆E and cos(θH)) 0.18±0.12 −0.448±0.11 0.57±0.13
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Figure D.4: Signal MC data and PDF fits for the (a) Cruijff and (b) Crystal Ball functions
for the K∗+ → K+π0 mode. The left-hand side shows mES < 5.27 , while the right-hand
side shows mES > 5.27. We separate out the two regions for clarity.



Appendix E

Parameter Comparison

Tables E.1 and E.2 compare the parameters obtained the fit to onpeak data to those

obtained from the full fit to Monte Carlo simulation.

Modes K∗0 → K+π− K∗+ → KSπ+

Component Parameter Data MC Data MC

Signal Yield 2394.2 ±55.1 2313 759.1 ±33.3 754
< mES > 5.2808 ±.0000616 5.2808 ±.0000632 5.2801 ±.000119 5.2804 ±.000115
σLmES

.00248 ±.0000495 .00246 ±.0000506 .00240 ±.0001 .00240 ±.00009
< ∆E > −.00171 ± .00310 −.00499 ± .00283 −.00908 ± .00605 .00528 ±.00593

σL∆E .04831 ±.00262 .05590 ±.00265 .05965 ±.00559 .05322 ±.00502
σR∆E .03841 ±.00204 .02572 ±.00176 .03543 ±.00406 .02676 ±.00323

P1cos(θH) −.06877 ± .03625 .01799 ±.03516 −.05773 ± .07238 −.05471 ± .06806

P2cos(θH) −1.0569 ± .07514 −1.1689 ± .07056 −.87457 ± .16117 −1.0573 ± .13903

Continuum Yield 3077.7 ±87.3 2877 1716.5 ±67.0 1510
ξmES

−18.532 ± 3.721 −21.699 ± 3.7675 −20.571 ± 5.025 −20.546 ± 5.2459
P1∆E −.01018 ± .14900 −.15908 ± .15908 −.37366 ± .19264 −.07417 ± .22232

P1cos(θH) .29817 ±.04491 .07565 ±.04862 −.27718 ± .05925 −.20366 ± .06702

B Bkg. Yield 562.0 ±70.6 606 141.1 ±51.6 286

Table E.1: A comparison of the results from the fit to OnPeak data with the full fit to
Monte Carlo for the K∗0 → K+π− and K∗+ → KSπ

+ modes.
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Modes K∗0 → KSπ0 K∗+ → K+π0

Component Parameter Data MC Data MC

Signal Yield 256.0 ±20.2 253 872.7 ± 37.1 842
< mES > 5.2804 ±.00023 5.2807 ±.000248 5.2800 ±.00012 5.2804 ±.00014

σmES
.00272 ±.00021 .00286 ±.00022 .00315 ±.00013 .00297 ±.00013

< ∆E > .00225 ±.01242 .00214 ±.00995 −.01988 ± .00708 −.00908 ± .00647
σL∆E .06217 ±.01073 .06523 ±.01129 .04680 ±.00546 .06145 ±.00604
σR∆E .04463 ±.00839 .03023 ±.00567 .04692 ±.00457 .03868 ±.00427

P1cos(θH) −.08808 ± .09853 .00938 ±.11718 −.10895 ± .05929 −.05634 ± .05661

P2cos(θH) −1.4142 ± .18083 −1.1413 ± .24121 −1.3275 ± .11861 −.97412 ± .18141

Continuum Yield 603.1 ±42.0 502 1538.3 ±77.2 1484
ξmES

−.92765 ± 8.8597 6.5404 ±9.6490 −19.211 ± 5.7281 −14.026 ± 6.0888
P1∆E .07388 ±.32869 .16871 ±.38249 .07501 ±.24155 .14711 ±.25184

P1cos(θH) .69227 ±.09105 .27527 ±.11800 .84025 ±.08499 .55245 ±.07789

P2cos(θH) N/A N/A .54804 ±.21334 −.09741 ± .18141

B Bkg. Yield 42.9 ± 32.5 107 298.0 ±67.7 377

Table E.2: A comparison of the results from the fit to OnPeak data with the full fit to
Monte Carlo for the K∗0 → KSπ

0 and K∗+ → K+π0 modes.
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