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Abstract

Two essential elements of a seeded FEL based on
the echo-enabled harmonic generation (EEHG) are the
undulator-modulators, in which a laser beam modulates the
beam energy. We study how the interaction of electrons in
these undulators changes the noise properties of the beam.
This paper is based on the method of noise analysis devel-
oped in Ref. [1] and extends it for the case of EEHG.

INTRODUCTION

The echo-enabled harmonic generation was proposed in
Refs. [2, 3]. The echo scheme has a remarkable up-
frequency conversion efficiency and allows for generation
of high harmonics with a relatively small energy modula-
tion of the beam.

As was pointed out in Ref. [4], all seeding methods intro-
duce additional noise to the beam. A specific mechanism of
noise propagation and amplification in HGHG was studied
in Ref. [5]. This mechanism takes into account interaction
of electrons in the undulator-modulator and the resulting
evolution of the bunching factor of the beam in the vicin-
ity of the HGHG harmonics. In Ref. [1], the analysis of
[5] was extended by explicitly considering the energy ex-
change of the electrons in the undulator-modulator caused
by the electron interaction via undulator radiation. In this
paper we apply the approach of [1] to the case or EEHG
seeding.

THE PROBLEM

The schematic of the EEHG FEL is shown in Fig. 1.
The EEHG FEL consists of two modulators, two disper-
sion sections and one radiator. Similar to the classic HGHG
scheme, a laser pulse of frequency w; is used to modulate
the beam energy in the first undulator with the relative en-
ergy amplitude An;. The beam then passes through the
first dispersion section Rglﬁ). Then the beam energy is mod-
ulated with the laser of frequency ws in the second modu-
lator, with the amplitude A7, and then passes through the
second dispersion section R?ﬁ).

In this paper we consider the case when the laser fre-
quencies in both modulators are the same, w; = wy = wy
and use notation kg = wp/c = 27/ \g. Following [1] we
assume helical undulator-modulators and characterize each
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Figure 1: Schematic of the EEHG FEL.

particle in the beam by its longitudinal coordinate z and rel-
ative energy deviation 7. The values of these variables for
particle ¢ at the entrance of the seeding system are z; and
7;, their values after the first chicane are z( and 77(1)

the values at the exit (after the second chlcane) are Z; and
7;. Assuming an rms (relative) energy spread of the beam
o, we introduce dimensionless variables [3] ¢ = koz,
p = 77/077, A1’2 = Anl,Q/Jnv BLQ = ]{Z()Rééz)gn. The
map from initial coordinates (;, p; at the entrance to the
seeding system to the final ones @, P; can be written in two
steps

pY =pi+ A sinG + Y Hi(G - G) (1
J7#i
¢V =G+ B {pz +AsinG + Y Ha(G cj)}
J#i
pi =i + Azsin¢ + 3 Ha (¢ - )
J#i
&=cY 4B, {pf-” + Apsin ¢V + 3" Ha (¢ - Q}l))]
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where the first two equations describe a phase-space trans-
formation from initial state to the position before the sec-
ond modulator, and the second pair transforms the variables
to the exit of the seeding system. In the equations above we
use Hio = hl,g/an, where the functions A, » are responsi-
ble for the interaction of particle in the first and the second
undulators respectively. These functions are defined in [1]
(note that ¢ in [1] is equal to {/kq in this paper)

h12(¢) = —a1,2 (1 — ¢

—>— ) cos 2
%NM’J cos¢ ()

for 2rNy1 2 > ¢ > 0 and h(¢) = 0 otherwise, with the in-
dexes 1 and 2 referring to the first and the second undulator,



respectively. The parameters a o are
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where IV, 2 is the number of undulator periods, Ag the un-
dulator radiation wavelength, K > the undulator parame-
ters, S 2 the transverse area of the beam in the undulators,
and )\, 2 the undulator periods (in what follows we will
either use the indexes 1 and 2 to indicate the first and the
second modulator, or do not use indexes when we refer to
both).

Our goal is to compute the noise amplification factor in
the final state, which we define as [1]

(P0) = 5 (3 H020) m N6, )
J#l

with v = k/ko. The averaging in this equation is per-
formed with an N-particle distribution function of the
beam at the entrance to the system

N co 2
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where (o = koL/2. In this equation we assumed a Gaus-
sian energy distribution, and a uniform spacial distribution
over the bunch length L. We also assumed that there is
no correlation between the particles at the entrance, which
allows us to use the product of 1-particle distribution func-
tions for the [N-particle distribution.

Note that dropping the terms with ¢ = j in (4) we dis-
carded the shot noise in (F'(k)). For an uncorrelated po-
sitions of the particles in the beam (F(k)) = 0; the in-
teraction of particles in undulators and dispersion in the
chicanes makes it nonzero.

Using (1), we express the final él in terms of the initial
coordinates and momenta

G =G+ (B1+ B2)(pi + A1 sin ;) + Bo Ay (6)

xsin | ¢ + By [pi +ArsinG + Y Hi(G— Cj):|

J#i
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In what follows we will neglect the interaction term in
the argument of Ho using

As in [1], we use the the approximation of week interac-
tion

a12kREY < 1, (®)

and expand exponentials in (5) in Taylor series in powers of
H1 and Ho. After several straightforward transformations,
we find from (5)

N
(F(k)) = m Z
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where R, s is obtained from the Taylor expansion and
contains terms liner in H:
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Calculation of (9) are straightforward but extremely
cumbersome. We study the limit when

nok?(R2)2a2Nysdo < 1,

nok? (RS — nREZ)2a2 Ny ho < 1, (10)

where n is the EEHG harmonic number, assuming n > 1.
The first of these two inequalities is analogous to the one
used [1]. In is interesting that the second one involves the
difference RSG) — nRézﬁ); while both quantities Réé) and
nRé? are large, their difference, for an EEHG scheme op-
timized for the nth harmonic, turns out to be of order of
Ré? [3]. Hence, when N,,; ~ N,2 and a1 = as, both
inequalities in (10) are about the same.

THE RESULT

The final result of the calculations involves the Fourier
transformation of functions #1 :

H(u) = % /OO e"TH(z).
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In the limit V,, > 1, which we assume here, the function
H(u) has a narrow peak (of width ~ 1/N,,) in the vicinity
of u = 1. For what follows, we will need the imaginary
part of # and its absolute value in a small vicinity of unit
value of the argument, u = s + 1, with s ~ N, ! < 1.
They are given by

ImH(s+ 1) = Nyv(27Nys),
[H(s +1)]* = N2w(2rNys), (12)
with
T —sinzx
v(r) = Togz
2+ 2% — 2cos(x) — 2z sinx
w(z) = 1 . (13)

As was pointed out, we assume that the EEHG seeding is
optimized for the nth harmonic of the laser frequency (n >
1) and calculate the noise in the vicinity of the frequency
nwo with Av = w/wy — n. We first define the coefficients

b— e—(AuBl+uB2—Bl)2J1+n (uAng)Q

x [Jo (vA1By — (1 — AZ/)AlBl)2

+ Jo(vA1By — (1 — Av)A; By)?) (14)
and
c= 6_(1/32_81)2]1 (VAlBQ — BlA1)2
X [Jn (I/AQBQ)2 + J2+n(l/AQBQ)2]. (15)
‘We then introduce the following quantities
F1 = 277,0)\00(1Nu1 (AZ/Bl + Z/BQ — Bl)v(xl)
Py = n2X202 N2, (AvB; + vBy — By)*w(x1)
FQ = 2710)\00[2Nu21/BQ’U(IC2)
= ngAjas Nov? Biw(xs) (16)

where z1 9 = 2nNy1 2Av and o 2 = a4 2/0,. The noise
factor is equal to

(F(k)) = b(Fy 4 Py) + c(F> + P2), a7
where the term b(F; + P;) on the right-hand side is the
contribution of the first undulator, and the term ¢(F» + Py)
the contribution from the second one.

It is important to emphasize here that a high-harmonic
EEHG requires B; > 1 (a strong first chicane), however
optimization of the seeding at harmonic n >> 1 leads to
the condition that the difference nBy — B1 ~ 1. It fol-
lows from this observation that the arguments in the above
expressions that involve the difference vBy — B; being a
difference of two large numbers remain of the order of one
in the vicinity of the resonant frequency v = n.

NUMERICAL SIMULATIONS

To verify our analytical solution we carried out a se-
ries of numerical simulations of noise in EEHG. An
ensemble of particles with random coordinates z; uni-
formly distributed on the interval [0, L] and momenta p;
randomly chosen from a Gaussian distribution was sub-
jected to the coordinate transformation (1). The sum
N=1Y. eME72) was calculated and averaged over
N, repetitions each time with a new random seed. To sup-
press the edge effects near the ends of the beam, we used a
periodic boundary condition for z; treating z; and z; +[L as
identical, where [ is an integer. Typical parameters for the
simulations were N ~ 10%, N,, =~ 5000 and L = 100),.
Such simulations are too slow to be able to reproduce real
parameters of an experiment (which are characterized by
very small interaction strength and very large number of
particles per unit length of the beam, see next Section), but
they are useful as a test of the analytical expressions de-
rived in the previous section.

An example of one of such simulations is shown in
Fig. 2. In this simulation we used the following parameters
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Figure 2: Noise amplification factor (F'(k)). The red dots
connected by red line are the results of computer simulation
and the black curve is the theory (17).

for the EEHG, optimized for generation of 24th harmonic:
Al = 30, A2 = 10, Bl = 2677, and BQ = 1.14. We
assumed 10 undulator periods in both undulators and the
same interaction strengths a1 /0, = az/o, = 1.2 - 1073,
One can see a very good agreement between the theory and
the simulation.

PRACTICAL EXAMPLE

As a numerical example, let us consider the nominal pa-
rameters of the seeded FEL at the Fermi @Elettra project
[6]. The electron beam energy is 1.2 GeV, the slice energy
spread is 150 keV and the peak current is 800 A. We as-
sume the wavelength of the seed laser \g = 240 nm and
consider generation of the 24th harmonic (the wavelength
of 10 nm) using EEHG. One of the possible options for



the seeding system was worked out in Ref. [7]: A; = 3.0,
Ay = 3.0, By = 8.6, and By = 0.38 which corresponds
to Rég = 2.6 mm and R?G) = 0.12 mm. We choose
for the modulator-undulator parameters: A,1,2 = 15 cm,
Ny1 2 = 6. We remind the reader that we use a helical un-
dulator with the value of K, which can be inferred from
the above parameters, K = 1.84. We assume that the
transverse size of the beam in the modulator-undulator is
0, = 0y = 100 pum and use for the parameter .S in (3)
S =2mo,0y.

First we estimate the parameters a; o in (3) to ob-
tain al) = a3 = 6.3 x 1071,  We then find
arkRY) ~ 1.0 x 1074 and a2kRZ) ~ 4.5 x 10,
which justifies our approximations (8). We also find that
ﬂ(])\()kg(RéQG))Qa%NUQ =7.5x 10"* and no)\()kQ(Réé) —
nR{¥)2a2N,; = 1.4x 10~ which shows that inequalities
(10) are satisfied. The plot of the noise amplification fac-
tor calculated using (17) is shown in Fig. 3. Calculations
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Figure 3: Noise amplification factor (F'(k)) for parameters
of FERMI.

show that the noise is dominated by the second undulator,
and moreover, the nonlinear term P in Eq. (17). Insensi-
tivity of the EEHG noise to the parameters of the first mod-
ulator was previously found in Ref. [8]. Remarkably, P»
scales as the fourth power of the undulator periods, N;lQ,
(because az o< Ny2), and hence can be controlled by the
choice of N,5. Of course, decreasing [V,,o leads to increas-
ing the laser power for producing a given amplitude of en-
ergy modulation, however, one of the advantages of EEHG
is that it can be accomplish with relatively low amplitudes
(equal to 2-3 energy spread in the beam).
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