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Abstract

Two essential elements of a seeded FEL based on
the echo-enabled harmonic generation (EEHG) are the
undulator-modulators, in which a laser beam modulates the
beam energy. We study how the interaction of electrons in
these undulators changes the noise properties of the beam.
This paper is based on the method of noise analysis devel-
oped in Ref. [1] and extends it for the case of EEHG.

INTRODUCTION

The echo-enabled harmonic generation was proposed in
Refs. [2, 3]. The echo scheme has a remarkable up-
frequency conversion efficiency and allows for generation
of high harmonics with a relatively small energy modula-
tion of the beam.

As was pointed out in Ref. [4], all seeding methods intro-
duce additional noise to the beam. A specific mechanism of
noise propagation and amplification in HGHG was studied
in Ref. [5]. This mechanism takes into account interaction
of electrons in the undulator-modulator and the resulting
evolution of the bunching factor of the beam in the vicin-
ity of the HGHG harmonics. In Ref. [1], the analysis of
[5] was extended by explicitly considering the energy ex-
change of the electrons in the undulator-modulator caused
by the electron interaction via undulator radiation. In this
paper we apply the approach of [1] to the case or EEHG
seeding.

THE PROBLEM

The schematic of the EEHG FEL is shown in Fig. 1.
The EEHG FEL consists of two modulators, two disper-
sion sections and one radiator. Similar to the classic HGHG
scheme, a laser pulse of frequency ω1 is used to modulate
the beam energy in the first undulator with the relative en-
ergy amplitude ∆η1. The beam then passes through the
first dispersion sectionR(1)

56 . Then the beam energy is mod-
ulated with the laser of frequency ω2 in the second modu-
lator, with the amplitude ∆η2, and then passes through the
second dispersion section R(2)

56 .
In this paper we consider the case when the laser fre-

quencies in both modulators are the same, ω1 = ω2 = ω0

and use notation k0 = ω0/c = 2π/λ0. Following [1] we
assume helical undulator-modulators and characterize each
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Figure 1: Schematic of the EEHG FEL.

particle in the beam by its longitudinal coordinate z and rel-
ative energy deviation η. The values of these variables for
particle i at the entrance of the seeding system are zi and
ηi, their values after the first chicane are z(1)

i and η(1)
i , and

the values at the exit (after the second chicane) are ẑi and
η̂i. Assuming an rms (relative) energy spread of the beam
ση we introduce dimensionless variables [3] ζ = k0z,
p = η/ση , A1,2 = ∆η1,2/ση , B1,2 = k0R

(1,2)
56 ση . The

map from initial coordinates ζi, pi at the entrance to the
seeding system to the final ones ζ̂i, p̂i can be written in two
steps

p
(1)
i = pi +A1 sin ζi +

∑
j 6=i

H1(ζi − ζj) (1)

ζ
(1)
i = ζi +B1

[
pi +A1 sin ζi +

∑
j 6=i

H1(ζi − ζj)
]

p̂i = p
(1)
i +A2 sin ζ

(1)
i +

∑
j 6=i

H2(ζ
(1)
i − ζ

(1)
j )

ζ̂i = ζ
(1)
i +B2

[
p

(1)
i +A2 sin ζ

(1)
i +

∑
j 6=i

H2(ζ
(1)
i − ζ

(1)
j )

]

where the first two equations describe a phase-space trans-
formation from initial state to the position before the sec-
ond modulator, and the second pair transforms the variables
to the exit of the seeding system. In the equations above we
useH1,2 = h1,2/ση , where the functions h1,2 are responsi-
ble for the interaction of particle in the first and the second
undulators respectively. These functions are defined in [1]
(note that ζ in [1] is equal to ζ/k0 in this paper)

h1,2(ζ) = −a1,2

(
1− ζ

2πNu1,2

)
cos ζ (2)

for 2πNu1,2 > ζ > 0 and h(ζ) = 0 otherwise, with the in-
dexes 1 and 2 referring to the first and the second undulator,
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respectively. The parameters a1,2 are

a1,2 = 2π
e2K2

1,2Nu1,2λ
2
u1,2

S1,2γ3mc2λ0
, (3)

where Nu1,2 is the number of undulator periods, λ0 the un-
dulator radiation wavelength, K1,2 the undulator parame-
ters, S1,2 the transverse area of the beam in the undulators,
and λu1,2 the undulator periods (in what follows we will
either use the indexes 1 and 2 to indicate the first and the
second modulator, or do not use indexes when we refer to
both).

Our goal is to compute the noise amplification factor in
the final state, which we define as [1]

〈F (k)〉 =
1

N
〈
∑
j 6=l

eik(ẑj−ẑl)〉 ≈ N〈eiν(ζ̂1−ζ̂2)〉, (4)

with ν = k/k0. The averaging in this equation is per-
formed with an N -particle distribution function of the
beam at the entrance to the system

〈F (k)〉 =
N

(
√

2πk0L)N

∫ ζ0

−ζ0
dζ1dp1e

−p21/2 (5)∫ ζ0

−ζ0
dζ2dp2e

−p22/2 . . .

∫ ζ0

−ζ0
dζNdpNe

−p2N/2eiν(ζ̂1−ζ̂2),

where ζ0 = k0L/2. In this equation we assumed a Gaus-
sian energy distribution, and a uniform spacial distribution
over the bunch length L. We also assumed that there is
no correlation between the particles at the entrance, which
allows us to use the product of 1-particle distribution func-
tions for the N -particle distribution.

Note that dropping the terms with i = j in (4) we dis-
carded the shot noise in 〈F (k)〉. For an uncorrelated po-
sitions of the particles in the beam 〈F (k)〉 = 0; the in-
teraction of particles in undulators and dispersion in the
chicanes makes it nonzero.

Using (1), we express the final ζ̂i in terms of the initial
coordinates and momenta

ζ̂i = ζi + (B1 +B2)(pi +A1 sin ζi) +B2A2 (6)

× sin

ζi +B1

[
pi +A1 sin ζi +

∑
j 6=i

H1(ζi − ζj)
]

+ (B1 +B2)
∑
j 6=i

H1(ζi − ζj) +B2

∑
j 6=i

H2(ζ
(1)
i − ζ

(1)
j ).

In what follows we will neglect the interaction term in
the argument ofH2 using

ζ
(1)
i ≈ ζi +B1(pi +A1 sin ζi). (7)

As in [1], we use the the approximation of week interac-
tion

a1,2kR
(1,2)
56 � 1, (8)

and expand exponentials in (5) in Taylor series in powers of
H1 and H2. After several straightforward transformations,
we find from (5)

〈F (k)〉 =
N

(
√

2πk0L)2

∑
k,m,k′,m′

×
∫
dζ1dp1dζ2dp2e

−p21/2−p
2
2/2Gm,m′Rm,m′

× eip1[ν(B1+B2)+mB1]−ip2[ν(B1+B2)+m′B1]

× eiν(ζ1−ζ2)eikζ1−ik
′ζ2Jk (νA1 (B1 +B2))

× Jk′ (νA1 (B1 +B2)) Jm (νA2B2) Jm′ (νA2B2)

× eim(A1B1 sin ζ1+ζ1)−im′(A1B1 sin ζ2+ζ2), (9)

where Rm,m′ is obtained from the Taylor expansion and
contains terms liner inH:

Rm,m′ = 1 + i

[
ν(B1 +B2) [H1(ζ1 − ζ2)−H1(ζ2 − ζ1)]

+B1 [mH1(ζ1 − ζ2)−m′H1(ζ2 − ζ1)]

+ νB2

[
H2(ζ

(1)
1 − ζ(1)

2 )−H2(ζ
(1)
2 − ζ(1)

1 )
] ]
.

The function Gm,m′ is

Gm,m′ =

(∫ ζ0

−ζ0

dζdp√
2πk0L

e−p
2/2

× exp

[
iν(B1 +B2)[H1(ζ1 − ζ)−H1(ζ2 − ζ)]

+ iB1[mH1(ζ1 − ζ)−m′H1(ζ2 − ζ)]

+ iνB2[H2(ζ
(1)
1 − ζ(1))−H2(ζ

(1)
2 − ζ(1))]

])N−2

.

Calculation of (9) are straightforward but extremely
cumbersome. We study the limit when

n0k
2(R

(2)
56 )2a2

2Nu2λ0 � 1,

n0k
2(R

(1)
56 − nR

(2)
56 )2a2

1Nu1λ0 � 1, (10)

where n is the EEHG harmonic number, assuming n � 1.
The first of these two inequalities is analogous to the one
used [1]. In is interesting that the second one involves the
difference R(1)

56 − nR
(2)
56 ; while both quantities R(1)

56 and
nR

(2)
56 are large, their difference, for an EEHG scheme op-

timized for the nth harmonic, turns out to be of order of
R

(2)
56 [3]. Hence, when Nu1 ≈ Nu2 and a1 ≈ a2, both

inequalities in (10) are about the same.

THE RESULT
The final result of the calculations involves the Fourier

transformation of functionsH1,2:

Ĥ(u) =
1

2π

∫ ∞
−∞

eiuxH(x). (11)



In the limit Nu � 1, which we assume here, the function
Ĥ(u) has a narrow peak (of width ∼ 1/Nu) in the vicinity
of u = ±1. For what follows, we will need the imaginary
part of Ĥ and its absolute value in a small vicinity of unit
value of the argument, u = s + 1, with s ∼ N−1

u � 1.
They are given by

Im Ĥ(s+ 1) = Nuv(2πNus),

|Ĥ(s+ 1)|2 = N2
uw(2πNus), (12)

with

v(x) =
x− sinx

2x2
,

w(x) =
2 + x2 − 2 cos(x)− 2x sinx

4x4
. (13)

As was pointed out, we assume that the EEHG seeding is
optimized for the nth harmonic of the laser frequency (n�
1) and calculate the noise in the vicinity of the frequency
nω0 with ∆ν = ω/ω0 − n. We first define the coefficients

b = e−(∆νB1+νB2−B1)2J1+n (νA2B2)
2

× [J0 (νA1B2 − (1−∆ν)A1B1)
2

+ J2(νA1B2 − (1−∆ν)A1B1)2] (14)

and

c = e−(νB2−B1)2J1 (νA1B2 −B1A1)
2

× [Jn (νA2B2)
2

+ J2+n(νA2B2)2]. (15)

We then introduce the following quantities

F1 = 2n0λ0α1Nu1(∆νB1 + νB2 −B1)v(x1)

P1 = n2
0λ

2
0α

2
1N

2
u1(∆νB1 + νB2 −B1)2w(x1)

F2 = 2n0λ0α2Nu2νB2v(x2)

P2 = n2
0λ

2
0α

2
2N

2
u2ν

2B2
2w(x2) (16)

where x1,2 = 2πNu1,2∆ν and α1,2 = a1,2/ση . The noise
factor is equal to

〈F (k)〉 = b(F1 + P1) + c(F2 + P2), (17)

where the term b(F1 + P1) on the right-hand side is the
contribution of the first undulator, and the term c(F2 +P2)
the contribution from the second one.

It is important to emphasize here that a high-harmonic
EEHG requires B1 � 1 (a strong first chicane), however
optimization of the seeding at harmonic n � 1 leads to
the condition that the difference nB2 − B1 ∼ 1. It fol-
lows from this observation that the arguments in the above
expressions that involve the difference νB2 − B1 being a
difference of two large numbers remain of the order of one
in the vicinity of the resonant frequency ν = n.

NUMERICAL SIMULATIONS
To verify our analytical solution we carried out a se-

ries of numerical simulations of noise in EEHG. An
ensemble of particles with random coordinates zi uni-
formly distributed on the interval [0, L] and momenta pi
randomly chosen from a Gaussian distribution was sub-
jected to the coordinate transformation (1). The sum
N−1

∑
j 6=l e

ik(ẑj−ẑl) was calculated and averaged over
Nav repetitions each time with a new random seed. To sup-
press the edge effects near the ends of the beam, we used a
periodic boundary condition for zi treating zi and zi+lL as
identical, where l is an integer. Typical parameters for the
simulations were N ≈ 104, Nav ≈ 5000 and L = 100λ0.
Such simulations are too slow to be able to reproduce real
parameters of an experiment (which are characterized by
very small interaction strength and very large number of
particles per unit length of the beam, see next Section), but
they are useful as a test of the analytical expressions de-
rived in the previous section.

An example of one of such simulations is shown in
Fig. 2. In this simulation we used the following parameters
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Figure 2: Noise amplification factor 〈F (k)〉. The red dots
connected by red line are the results of computer simulation
and the black curve is the theory (17).

for the EEHG, optimized for generation of 24th harmonic:
A1 = 3.0, A2 = 1.0, B1 = 26.77, and B2 = 1.14. We
assumed 10 undulator periods in both undulators and the
same interaction strengths a1/ση = a2/ση = 1.2 · 10−3.
One can see a very good agreement between the theory and
the simulation.

PRACTICAL EXAMPLE
As a numerical example, let us consider the nominal pa-

rameters of the seeded FEL at the Fermi@Elettra project
[6]. The electron beam energy is 1.2 GeV, the slice energy
spread is 150 keV and the peak current is 800 A. We as-
sume the wavelength of the seed laser λ0 = 240 nm and
consider generation of the 24th harmonic (the wavelength
of 10 nm) using EEHG. One of the possible options for



the seeding system was worked out in Ref. [7]: A1 = 3.0,
A2 = 3.0, B1 = 8.6, and B2 = 0.38 which corresponds
to R

(1)
56 = 2.6 mm and R

(2)
56 = 0.12 mm. We choose

for the modulator-undulator parameters: λu1,2 = 15 cm,
Nu1,2 = 6. We remind the reader that we use a helical un-
dulator with the value of K, which can be inferred from
the above parameters, K = 1.84. We assume that the
transverse size of the beam in the modulator-undulator is
σx = σy = 100 µm and use for the parameter S in (3)
S = 2πσzσy .

First we estimate the parameters a1,2 in (3) to ob-
tain a1 = a2 = 6.3 × 10−11. We then find
a1kR

(1)
56 ≈ 1.0 × 10−4 and a2kR

(2)
56 ≈ 4.5 × 10−6,

which justifies our approximations (8). We also find that
n0λ0k

2(R
(2)
56 )2a2

2Nu2 = 7.5 × 10−4 and n0λ0k
2(R

(1)
56 −

nR
(2)
56 )2a2

1Nu1 = 1.4×10−3 which shows that inequalities
(10) are satisfied. The plot of the noise amplification fac-
tor calculated using (17) is shown in Fig. 3. Calculations
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Figure 3: Noise amplification factor 〈F (k)〉 for parameters
of FERMI.

show that the noise is dominated by the second undulator,
and moreover, the nonlinear term P2 in Eq. (17). Insensi-
tivity of the EEHG noise to the parameters of the first mod-
ulator was previously found in Ref. [8]. Remarkably, P2

scales as the fourth power of the undulator periods, N4
u2,

(because a2 ∝ Nu2), and hence can be controlled by the
choice of Nu2. Of course, decreasing Nu2 leads to increas-
ing the laser power for producing a given amplitude of en-
ergy modulation, however, one of the advantages of EEHG
is that it can be accomplish with relatively low amplitudes
(equal to 2-3 energy spread in the beam).
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