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ABSTRACT

We present a new systematic way of setting up galactic gas disks based on the as-
sumption of detailed hydrodynamic equilibrium. To do this, we need to specify the
density distribution and the velocity field which supports the disk. We first show that
the required circular velocity has no dependence on the height above or below the
midplane so long as the gas pressure is a function of density only. The assumption
of disks being very thin enables us to decouple the vertical structure from the ra-
dial direction. Based on that, the equation of hydrostatic equilibrium together with
the reduced Poisson equation leads to two sets of second-order non-linear differential
equation, which are easily integrated to set-up a stable disk. We call one approach
‘density method’ and the other one ‘potential method’. Gas disks in detailed balance
are especially suitable for investigating the onset of the gravitational instability. We
revisit the question of global, axisymmetric instability using fully three-dimensional
disk simulations. The impact of disk thickness on the disk instability and the forma-
tion of spontaneously induced spirals is studied systematically with or without the
presence of the stellar potential. In our models, the numerical results show that the
threshold value for disk instability is shifted from unity to 0.69 for self-gravitating
thick disks and to 0.75 for combined stellar and gas thick disks. The simulations also
show that self-induced spirals occur in the correct regions and with the right numbers
as predicted by the analytic theory.
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merical

1 INTRODUCTION

The stability of gas disks plays an important role in govern-
ing the structure of disk galaxies and in regulating their star
formation rate. Although important insights can be obtained
using perturbation theory (Toomre 1964, Lin & Shu 1964,
Rafikov 2001), the onset of stability and its impact on the
star formation and evolution of gas disks is best studied us-
ing hydrodynamical simulations. These can follow the non-
linear behavior of the system, which cannot be addressed
by linear analysis. With the recent advances in computing
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power and the development of new numerical techniques,
we are now in a good position to treat a three-dimensional,
isolated galaxy self-consistently.

However, in order for a stability analysis to be mean-
ingful and reliable, it is of paramount importance that one
can specify equilibrium initial conditions. After all, if the
initial disk is not in equilibrium, its relaxation during the
first time-steps of the simulation may trigger instabilities
that are of little relevance for our understanding of the sta-
bility of disk galaxies. Unfortunately, no analytical solution
is known for the density, velocity field and temperature of a
three-dimensional gas disk in hydrostatic equilibrium in the
external potential of a dark matter halo and/or a stellar disk.
Consequently, previous hydrodynamical simulations have ei-
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ther started from non-equilibrium initial conditions, or have
resorted to iterative techniques to set-up the initial condi-
tions, at the cost of having little control over the resulting
equilibrium configuration. In this paper we present a new
method that allows one to compute the density and veloc-
ity structure of a realistic, isothermal, three-dimensional gas
disk in hydrostatic equilibrium in an abritrary external po-
tential.

Hydrostatic equilibrium implies a balance between
gravity and pressure. Gravity includes the self-gravity of
the disk plus that of external components (i.e. dark mat-
ter halo, bulge, stellar disk, etc), while the pressure is given
by an equation of state p = p(ρg, T ), with p being the gas
pressure, ρg the gas density and T the temperature. The
challenge is to find a ρg, T and the velocity field, "v, such
that the system is self-consistent (i.e., obeys the Poisson
equation) and in hydrostatic equilibrium.

In the case of an isothermal, axisymmetric, perfectly
self-gravitating disk (i.e., no external potential), the equi-
librium disk has a sech2 distribution (Spitzer 1942) in the
vertical direction, with a scale-height that is proportional to
√

c2s/ρg(R, z = 0), where cs is the sound speed. Here, cylin-
drical coordinates, (R,φ, z), are used to describe the den-
sity field. This immediately shows that since ρg(R, z = 0) is
typically a decreasing function of radius, one generally ex-
pects the scale-height to be a function of R. In particular,
in the case of a globally isothermal disk, the sound speed
c2s ∝ T is constant in space, giving rise to a flaring disk, i.e.,
the scale-height increases with increasing R (Narayan & Jog
2002, hereafter NJ02; Agertz et al. 2009). Alternatively, if
we want to initialize a disk with a constant scale-height, a
radial temperature gradient needs to be introduced. Tasker
& Bryan (2006) initialize their disks to be isothermal and to
have a constant scale-height. As indicated above, this can-
not be an equilibrium configuration. Consequently, the disk
is expected to experience an unavoidable relaxation process
which makes the initialization not well-controlled and might
potentially contaminate the physics, e.g., star formation, gas
dynamics etc., of interest. Agertz et al. (2009) set-up their
isothermal disks based on the local total surface density of
gas plus dark matter. Although the scale-height of their ini-
tial disk changes with radius, the local total surface density
is not defined in a mathematical way and therefore elusive.
In addition, their surface density does not follow an expo-
nential profile.

An important assumption underlying Spitzer’s analysis
is that the radial variation in the potential is negligible com-
pared to that in the vertical direction. This assumption is
supported by observation that disks typically have vertical
scale-heights that are an order of magnitude smaller than
their radial scale-length (van der Kruit & Searle 1981a,b).
A well studied example is the Milky Way, whose scale-height
is less than 200 pc for the cold gas (Jackson & Kellman 1974;
Lockman 1984; Sanders et al. 1984; Wouterloot et al. 1990;
see also Narayan & Jog 2002) and roughly 300 pc for the
stars in the Solar neighborhood (Binney & Tremaine 2008,
Kent, Dame & Fazio 1991), compared to a radial scale-length
of ∼ 3.5 kpc. Throughout this paper we therefore follow
Spitzer and consider disks to be ‘thin’, allowing us to treat
their radial and vertical structure separately. Hence, we cau-
tion that our method is not valid for thick disk structures.

However, since we are mainly concerned with cold gas disks
in this paper, this restriction is of little importance.

Springel, Matteo & Hernquist (2005) introduce a flexi-
ble solution for initializing a gas disk self-consistently. Basi-
cally, they solve Eq. (2), Eq. (3) and Eq. (24) (see Section
2) iteratively. First, they deploy a number of particles (say,
2048 × 64 × 64) on a distorted grid structure in the radial,
the azimuthal and the vertical directions. Unlike the live par-
ticles, these particles are simply used as markers for mass
distribution. Second, they compute the joint total potential
and the resulting force field numerically with a hierarchical
multipole expansion based on a tree code. Third, given the
potential just computed, integrating Eq. (2) for a given mid-
plane volume density, ρg(R, z = 0), gives the vertical struc-
ture of density. Fourth, adjust the midplane volume density
to fulfill Eq. (24). Repeat the procedure between the second
step and the fourth until the result converges.

Although this description is quite general and flexible,
for several reasons, this is not commonly used in the grid-
based codes which are featured with adaptive-mesh refine-
ment (AMR). The first and also the most fundamental one
is that the grid structure is normally unknown before we ac-
tually initialize the disk. Except the uniform-grid initializa-
tion, the grid structure is automatically generated based on
the criterion for refinement. Second, for a fully parallelized
code, the initial data is distributed over different processors
and memory storages. This means that the data exchange
between processors is necessary in order to fully compute
the joint total potential. The situation becomes even more
technically challenging when initializing with AMR. Third,
The vertical structure of the gas disk depends only on the
vertical potential difference (see Eq. (7) and Eq. (9) below).
A description of the equatorial potential is enough for speci-
fying the velocity field (See Eq. (13), Eq. (29) and the results
shown in Sec. 3). In general, given the density distribution
computed by the methods introduced in Section 2.2 together
with the conclusion in Section 2.1, we are allowed to acquire
the exact velocity field by Eq. (A.17) in Casertano (1983).
Fully solving the Poisson equation becomes not necessary.
Fourth, initializing a disk over distributed memories allow
us to deal with a larger data set which cannot be fully con-
tained in a single memory storage.

We propose a simple but very effective way of initializ-
ing a three-dimensional gas disk. This method can be easily
incorporated into any existing code based on either a La-
grangian or Eulerian approach. No data exchange between
processors is needed. Vertical density profile is obtained self-
consistently without solving the full Possion equation. We
implement these ideas with the adaptive mesh refinement
magnetohydrodynamics code RAMSES (Teyssier 2002) and
apply our concepts to probe the onset of the disk instability.
We modify the dispersion relation for the infinitesimally thin
disk (Lin & Shu 1964) to be able to treat thick disks (Gol-
dreich & Lynden-Bell 1965; Kim & Ostriker 2002a, 2006;
Shetty & Ostriker 2006; Lisker & Fuchs 2009). The thresh-
old value Qth is then obtained semi-analytically. Previous
studies on this subject are either focused on a small patch
of a galaxy (2D/3D: Kim & Ostriker 2002a) or are globally
two-dimensional but with the reduction of gravity included
in the governing equations (Shetty & Ostriker 2006). In this
paper, we revisit the subject as a test of our fully three-
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dimensional isolated galaxy models. Models with or without
stellar potential are investigated.

Galactic disks are comprised of stars and gas. Both com-
ponents are coupled to each other via the Poisson equation.
Since the stellar disk dominates the mass budget within the
luminous disk, its presence has great impact on the scale-
height of the gas disk as described in NJ02. A balanced
initial condition depends not only on the correct vertical
structure but also on the correct rotation velocity. To spec-
ify the rotation velocity needed, the mass enclosed within a
certain radius must be under control. Although it is com-
mon practice to specify the functional form of the volume
densities of 3D disks, we show that because of the flaring
disk this typically results in a surface density profile that
contains a central ‘hole’ (Agertz et al. 2009). This problem
can be trivially avoided by specifying the desired surface
density profile instead. We show that the corresponding vol-
ume density can easily be obtained using a simple iterative
scheme. The surface density of the total gas (HI+H2) from
observation (Leroy et al. 2008) typically follows an expo-
tential profile in disk galaxies. This profile gives an analytic
description of the total mass enclosed within a radius as well
as a reasonable approximation for velocity field as shown by
Eq. (29) below (Binney & Tremaine 2008).

Describing the stellar disk with a fixed background po-
tential is at best an approximation to reality. The interaction
between live stellar disk and gas can potentially destabilize
the system (Rafikov 2001; Li, Mac Low & Klessen 2005a,
2005b, 2006; Kim & Ostriker 2007). After all, the gas is cold
compared to the stellar disk and has highly non-linear re-
sponse to the asymmetric stellar potential. The gravitational
interplay between the collisionless stars and dissipative gas
is important for a number of key questions in galactic dy-
namics. For example, what is the physical origin of grand de-
sign spirals? Or what initiates and regulates the formation
of stars? Having access to well-controlled initial and envi-
ronmental conditions is a prerequisite to discovering their
causes.

This paper is organized as follows. The ideas of initial-
izing a gas disk are outlined in Section 2. Details of the sim-
ulation parameters and test runs are described in Section 3.
Axisymmetric instability of the disk is revisited in Section
4. The self-induced spirals due to swing amplification will
be discussed in Section 5. A brief summary and the possible
extension of this work is put in Section 6.

2 FORMULATION OF EQUATIONS

In this Section, we develop the required relations and equa-
tions to immerse a 3D gas disk in a preexisting static poten-
tial. Assuming that the gas disk and the preexisting poten-
tial share the same symmetry axis, cylindrical coordinates,
(R,φ, z), are adopted to formulate the dynamics of the sys-
tem. Axial-symmetry enables us to discard the terms de-
scribing the variation in azimuthal direction, i.e., ∂/∂φ = 0.
A gas disk which is in detailed balance should fulfill the
following equations:

1
ρg

∂p
∂R

+
∂Φ
∂R

=
V 2
rot

R
, (1)

1
ρg

∂p
∂z

+
∂Φ
∂z

= 0, (2)

with ρg, p, Vrot and Φ being the volume density of the gas,
the gas pressure, the azimuthal rotation velocity (“rotation
velocity” in short) and the joint total potential. Equation
(1) describes that the gravitational pull in radial direction
is counterbalanced by the centrifugal force and the pressure
gradient. Equation (2) states that hydrostatic equilibrium
along the symmetry axis, the z-direction, is achieved by the
balance between vertical pull of the gravity and the pressure
gradient in z.

To make the system self-consistent, the Poisson equa-
tion must be involved:

∇2Φ = 4πG(ρg + ρDM + ρs), (3)

with G, ρDM and ρs being the gravitational constant, and the
volume density of dark matter and stars. The total potential
is comprised of the contributions from the dark matter halo,
the stellar disk and the self-gravity of the gas, i.e., Φ =
ΦDM + Φs + Φg. In addition, the ideal gas law provides the
link between the gas density, the gas temperature and the
gas pressure:

p = ρg(γ − 1)e(T ), (4)

where γ represents the ratio of the heat capacities (adiabatic
index), e the specific internal energy and T the gas temper-
ature. In the case of an ideal gas, the specific internal energy
depends only on temperature, and is given by

e =
1

γ − 1
kBT
µmp

, (5)

with kB being the Boltzmann’s constant, µ the atomic
weight and mp the mass of a proton. However, to close the
set of equations, we should either invoke the energy equation
or an equation of state (EoS), which will be used to evolve
the system.

A disk which is in hydrodynamic equilibrium should
stay in its original state if we evolve the disk with the same
equation of state which is used to set-up the disk. The
numerical results throughout this paper are based on the
isothermal equation of state, i.e.,

p = c2sρg, (6)

with cs being the sound speed, a temporal and spatial con-
stant. Equations (1) to (6) then form the basis of our discus-
sion. In this paper, all the disks are in detailed equilibrium
with the isothermal EoS. If those disks are adopted to evolve
with a cooling function or a polytropic EoS, we can make
sure any change in temperature or dynamics is purely caused
by a cooling or a heating source.

For a polytropic gas, p = KρΓ
g . with Γ and K being

constant, integrating Eq. (2) gives:

ρg(R, z) = ρg(R, z = 0)

[

1− Γ− 1
c2s (R, z = 0)

Φz(R, z)

] 1

Γ−1

, (7)

where Φz(R, z) = Φ(R, z) − Φ(R, z = 0) defines the verti-
cal potential difference. We have used the fact that c2s ≡
∂p/∂ρg = KΓρΓ−1

g when approaching Eq. (7). Note that
given Γ '= 1, the internal energy has the following relation:

e(T ) =
KρΓ−1

g

γ − 1
. (8)

Combining Eq. (5) and Eq. (8) gives the temperature field
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as a function of position if the gas disk is initialized with a
non-isothermal EoS. As a special case, when Γ→ 1, Eq. (7)
then converges to a form for the isothermal gas:

ρg(R, z) = ρg(R, z = 0) exp

(

−Φz(R, z)

c2s

)

. (9)

As we can see from Eq. (7) and Eq. (9), the vertical structure
of gas disk depends on the gas properties in the midplane
and the vertical potential difference.

To fully characterize a gas disk which is in detailed bal-
ance, we need to specify the velocity, the density and the
temperature at every location in the beginning of the sim-
ulation. In the following sub-sections we study the general
properties of the velocity and density field, which allows us
to devise a simple, but effective method to initialize a 3D
gas disk in hydrostatic equilibrium.

2.1 Azimuthal Rotation Velocity

In this sub-section, we treat the azimuthal rotation velocity
as generally as possible. To make the notation concise, we
drop the subscript of gas density, ρg, and restore the sub-
script after this sub-section. Without further assumption,
integrating Eq. (2) from 0 to z gives:
∫ z

0

1
ρ

∂p
∂z

dz = −Φz(R, z). (10)

By integrating Eq. (10) in parts, we have:

p(R, z)

ρ(R, z)
=

p(R)

ρ(R)

∣

∣

∣

∣

z=0

−
∫ z

0

p
ρ2

∂ρ
∂z

dz − Φz(R, z). (11)

Inserting Eq.(11) into (1), we get (see Appendix A for fur-
ther details):

V 2
rot(R, z)

R
=

1
ρ

∂p
∂R

+
∂Φ(R, z)

∂R

=
1
ρ

∂p
∂R

∣

∣

∣

∣

z=0

+
∂Φ(R)

∂R

∣

∣

∣

∣

z=0

−
∫ z

0

{

(

∂ρ
∂z

)

∂
∂R

(

p
ρ2

)

−
(

∂ρ
∂R

)

∂
∂z

(

p
ρ2

)}

dz. (12)

Equation (12) shows that the rotation velocity is indepen-
dent of height above or below the midplane so long as the
integral vanishes. It is evident that gas with a barotropic
equation of state, i.e., p(ρg), fulfills this requirement. In ad-
dition, for an initially constant temperature (T is everywhere
the same in the beginning) disk, the initial pressure is a
function of volume density only and therefore the integral
becomes zero. In this case, equation (12) can be simplified
further:

V 2
rot(R, z) = R

∂Φ
∂R

∣

∣

∣

z=0
+ (γ − 1)e

∂ ln ρ
∂ lnR

∣

∣

∣

z=0
. (13)

Equation (13) states that the process of specifying the initial
velocity in 3D comes down to knowing the rotation velocity
in the equatorial midplane.

2.2 Density Distribution

From now on, to avoid confusion, we restore the subscript for
the gas density. To proceed further, we consider the gas layer

to be a very thin structure embedded in a static potential
contributed by the background spherical dark matter and
the stellar disk. Because the gas disk is observationally thin
we neglect the radial variation compared to the vertical one
(i.e., |(∂/∂R(R∂Φg/∂R))/R| ) |∂2Φg/∂z2|). In Appendix E
we show that this is a valid assumption for realistic gas disks.
For an axisymmetric thin disk, the Poisson equation then
reduces to (Binney & Tremaine 2008):

d2Φg

dz2
= 4πGρg. (14)

with Φg being the potentials contributed by the gas. In the
following, we focus only on disks with initially constant tem-
perature, i.e., the rotation velocity required for equilibrium
has no dependence on the height above or below the mid-
plane.

2.2.1 Density Method

Differentiation Eq. (2) with respect to z and inserting
Eq. (14) leads to a second-order non-linear differential equa-
tion:

d2p
dz2

− 1
ρg

dρg

dz
dp
dz

+ ρg(4πGρg +
d2Φs

dz2
+

d2ΦDM

dz2
) = 0, (15)

with Φs and ΦDM being the potentials contributed by the
stellar disk and the dark matter, respectively. So far, Eq.
(15) is still general with respect to any kind of equation of
state. However, a single equation with two unknowns p and
ρg is not solvable. To continue with Eq. (15), in this sub-
section, we assume that the gas is barotropic, i.e., p(ρg).
Given density distributions of stars, the dark matter and
the boundary conditions in the midplane:

ρg(R, 0) = ρ0(R) and
dρg

dz
= 0, (16)

equation (15) can be solved by numerical integration, e.g.,
using the Runge-Kutta method. For a single-component,
self-gravitating, locally isothermal disk (cs(R) can be a func-
tion of radius), Eq. (15) has an exact solution:

ρg(R, z) = ρ0(R)sech2(z/h), (17)

with ρ0(R) being the gas volume density in the midplane,

h =
√

c2s/2πGρ0 the scale-height and cs the local isothermal
sound speed. According to Eq. (17) and since the midplane
volume density, ρ0(R), generally decreases with radius, to
keep the scale-height a constant, the sound speed and there-
fore the temperature must be a function of radius.

Equation (15) is the simplified version of the formula
derived by NJ02 (see also Kim et al. 2002a), where they in-
vestigated the vertical structure in a gravitationally coupled,
multi-component galactic disk. It is important to notice
that all calculations can be done locally without the need
of exchanging information between processors and therefore
greatly reduces the complexity of coding.

In principle Eq. (15) allows one to compute the den-
sity of the gas such that the disk initially is in hydrostatic
equilibrium. The actual implementation using Eq. (15) does
not guarantee the positivity of the density. In particular,
at large radii ρg(R, z) is typically close to zero, and small
errors due to the numerical integration often yield negative
densities. This problem is especially relevant when using the
adaptive-mesh refinement techniques.
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Initializing a gas disk with AMR usually starts with the
coarsest grid. A natural selection of the integration step is
the cell size. Then a problem immediately rises when solving
Eq. (15) to specify the volume density. Supposing that the
cell size is much larger than the scale-height of the gas disk,
the errors introduced by the coarse integration may lead to
negative densities on the outskirt of the computation do-
main. One might think the integration can be done by using
either adaptive integration intervals or simply a fixed inte-
gration interval which is much smaller than the cell size.
However, the improvements only guarantee the convergence
of the solution not the positivity. Nevertheless, because of
the generality of Eq. (15), density method is still valuable
for semi-analytic research.

2.2.2 Potential Method

In this sub-section, we develop another route for specifying
the density distribution. We stress that the following deriva-
tion is only applicable to initially isothermal disks. With this
constraint, integrating Eq. (2) gives:

ρg(R, z) = ρ0(R) exp

(

−Φz(R, z)
(γ − 1)e

)

. (18)

Combining Eq. (14) and Eq. (18), a second-order non-linear
equation for the vertical potential difference of gas is ob-
tained:

d2Φg,z

dz2
= 4πGρ0(R) exp

(

−Φz(R, z)
(γ − 1)e

)

. (19)

Given the analytic forms of ΦDM and Φs the only unknown is
the potential difference of gas, Φg,z = Φg(R, z)−Φg(R, z =
0). Similar to the density method, given the boundary condi-
tions ρ0(R), Φ(R, z = 0) and dΦ(R, z = 0)/dz = 0, numeri-
cal integration can be applied to solve Eq. (19). By inserting
Φz obtained by integrating Eq. (19) into Eq. (18), the den-
sity distribution is acquired. Notice that what really matters
to us is the potential difference, not the absolute value. This
means the value of Φg(R, z = 0) can be an arbitrary con-
stant, although we do know the values of ΦDM(R, z = 0)
and Φs(R, z = 0).

The merit of this formulation is evident, the occurrence
of negative density is avoided by Eq. (18). Tiny errors in the
potential difference will not do any harm to the positivity
of the gas density. Numerical experiments show that in nor-
mal cases in which both the density method and potential
method work, the solutions are consistent.

At a given radius, R, solving Eq. (19) only provides us
with information about the potential difference, Φz(R, z).
However, a useful byproduct of the potential method is that
it is possible to acquire a good approximation of the total
potential by:

Φg(R, z) = Φg(R, z = 0) + Φg,z(R, z), (20)

as long as we know the potential in the midplane, Φg(R, z =
0). Equation (20) is an approximation because the use of
Eq. (19) is based on the reduced Poisson equation Eq. (14)
in which the variation in radial direction is ignored. The
gradient of the potential Φg(R, z = 0) determines the ve-
locity field required while the vertical potential difference
Φg,z(R, z) gives the vertical structure of the disk. In princi-
ple, the radial force, which is associated with Φg(R, z = 0),

in the equatorial plane for an axially symmetric density dis-
tribution can be evaluated precisely by the equation (A.17)
in Casertano (1983). This allows us to obtain the total po-
tential without fully solving the Poisson equation. In prac-
tice, if the initialization is performed with multi-node clus-
ters, each node only keeps part of the information about the
density distribution, data exchange with AMR itself is tech-
nically challenging. In Section 3, for an exponential disk, the
numerical results will show that the use of Eq. (29) is a good
approximation for most of our interests. The corresponding
Φg(R, z = 0) associated with Eq. (29) can be found in the
book by Binney & Tremaine (2008), Eq. (1.164a).

Equation (20) is useful, because involving the total po-
tential into the formulation is an important step for self-
consistently building up the combined disks comprised of
a live stellar disk and a gas disk. Extension to the work
of Shu (1969), Kuijken & Dubinski (1995, hereafter, KD95)
develop a self-consistent disk-bulge-halo model for galaxies.
The distribution function built by Eq. (6) in KD95 involves
the potential differences Φz and Φ(R, 0)−Φ(Rc, 0), with Rc

the radius of the guiding center. The potential method pre-
sented here can be naturally incorporated into the frame-
work of KD95. Therefore, in this paper, all the disks are
initialized by the potential method.

2.2.3 Exponential Disk

Some studies have assumed that the midplane density of a
3D gas disk has an exponential form (Tasker 2006, Agertz
2009). However, as we now demonstrate, in general this re-
sults in a surface density distribution that peaks at a specific
non-zero radius, giving rise to a ring-like feature. We assume
a gas disk with the popular sech2 vertical profile:

ρg(R, z) = ρc exp(−R/Rd)sech
2

(

z
h(R)

)

, (21)

with ρc being the central volume density, Rd the disk scale-
length and h(R) the scale-height as a function of radius. The
surface density then reads:

Σ(R) =

∫ ∞

−∞

ρg(R, z)dz = 2ρc exp(−R/Rd)h(R). (22)

Based on Eq. (22), we measure the scale-height of a disk
at certain radius by h(R) = Σ(R)/(2ρ0(R)). The extrema of
the surface density can be evaluated by taking the derivative
to Eq. (22):

dΣ(R)

dR
= 2ρc exp(−R/Rd)

(

dh(R)

dR
− h(R)

Rd

)

= 0. (23)

We Suppose that the disk is linearly flaring, i.e., h(R) = h0+
R/Rh, with h0 being the minimum scale-height of the disk
and Rh a factor controlling the degree of flaring. The peak
of the surface density then locates at Rpeak = Rd − h0Rh.
Whenever the Rpeak is positive, we get a ring in surface
density. However, a ring in the surface gas density is not
commonly seen in a real disk galaxy. An exponential pro-
file in the total gas is prevalent in disk galaxies (Leroy et
al. 2008).

In order to avoid this feature, it is advantageous to spec-
ify the actual surface density of the disk, rather than its
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Table 1. Models’ Parameters.

Run T (K) Ms(M#) Figure

Gas0 4× 104 - (1),(2),(3)
Gas1 2× 104 - (4),(5)
Gas2 1× 104 - (4),(5),(8)
Gas3 9× 103 - (4),(5)
Gas4 8× 103 - (4),(5)

GasStar1 7× 103 4× 1010 (6),(7),(8)
GasStar2 6× 103 4× 1010 (6),(7)
GasStar3 5× 103 4× 1010 (6),(7)
GasStar4 4× 103 4× 1010 (6),(7)

*All disks have a gas mass of 1010M#.

midplane density. In the case of the exponential profile, the
surface density reads:

Σ(R) = Σ0 exp (−R/Rd) =

∫ ∞

−∞

ρg(R, z)dz, (24)

with Σ0 being the surface density in the galactic centre.
Combining Eq. (24) and Eq. (18), the volume density in the
midplane can be expressed as:

ρ0(R) =
Σ0 exp (−R/Rd)

∫∞

−∞
exp (−Φz/[(γ − 1)e])dz

. (25)

It shows that the correct volume density in the midplane
for the desired surface density profile can be obtained iter-
atively. Given a initial guess for ρ0(R), Φz is evaluated via
Eq. (19) and also the integral appears in Eq. (25). One needs
to iterate between Eq. (19) and Eq. (25). However, depend-
ing on the quality of the initial guess, convergence can be
reached very fast. For instance, with the initial guess being
ρ0(R) = Σ0 exp(−R/Rd), a six-time iteration already gives
us a reasonable exponential disk.

We pursue the exponential disk for several reasons. One
is simply because it is commonly seen in disk galaxies. An-
other is that we have a better control of the total mass. As
we can see, if we specify the midplane volume density instead
of the surface density, we do not exactly know the total mass
until we finish the integration. Without knowing the total
mass in advance, evaluating the circular velocity contributed
by the self-gravity will not be a trivial task. Nevertheless, in
principle, any profile of the surface density can be achieved
simply by the process introduced in this sub-section.

3 IMPLEMENTATION AND TESTS

3.1 Simulation Parameters

In this Section, we test the ideas outlined in the previous Sec-
tion. We implement the method in the AMR-code RAMSES
(Teyssier 2002). RAMSES uses grid-based Riemann-solvers
for the magneto-hydrodynamics (MHD) and particle-mesh
(PM) technique for the collisionless physics. It has a fully
parallelized Poisson solver with periodic boundary condi-
tions, which we use for this paper. Gas disks which are ini-
tialized isothermally with an exponential surface density of
a scale-length of 3.5 kpc and a total mass of 1010M# are
embedded in a static potential. An isothermal equation of
state is used to evolve the disks throughout this paper.

The tests are mainly divided into two groups, one group

is evolved with a static stellar potential (models with the
prefix GasStar), the other without (models with the prefix
Gas). Gas1 to Gas4 are M33-like gas-rich galaxies, while
GasStar1 to GasStar4 are more similar to the Milky-Way.
The main parameters of the models are listed in Table 1.
The size of the computational domain is 250 kpc on a side.
Up to 12 levels of refinement are used for those runs without
stellar potential, and 13 levels for the other group, i.e., the
corresponding highest spatial resolutions are about 60 pc
and 30 pc, respectively.

The volume density of the halo is described by the NFW
profile (Navarro, Frenk & White 1997):

ρDM(r) =
M200

4πf(c)r200

cx
r2(1 + x)2

, (26)

with the Virial mass M200 = 1012M#, x = rc/r200, concen-
tration parameter c = 12, distance r =

√
R2 + z2, Virial

radius r200 = 213 kpc and f(c) = ln(1 + c)− c/(1 + c). The
Virial radius (r200) is a radius within which the averaged
matter density is 200 times the critical density.

The density distribution of the stellar disk reads
(Miyamoto & Nagai 1975, Binney & Tremaine 2008):

ρs(r) =

(

b2Ms

4π

)

aR2 + (a+ 3
√
z2 + b2)(a+

√
z2 + b2)2

[

R2 + (a+
√
z2 + b2)2

]5/2
(z2 + b2)3/2

,(27)

with Ms = 4 × 1010M# being the mass of the stellar disk,
a = 3.5 kpc and b = 0.2 kpc the shape parameters.

In light of the result drawn from Section 2.1, for an ini-
tially constant temperature setup, we only need to know the
circular velocity in the midplane for initializing the velocity
field. The rotation velocity, Vrot, is decomposed into four
components:

V 2
rot = V 2

DM + V 2
s + V 2

g + V 2
p , (28)

where VDM, Vs, Vg are the circular velocities corresponding
to the dark matter halo, the stellar disk and the gas disk, and
Vp denotes the contribution due to the pressure gradient.

In this paper, we have the analytic form for VDM and Vs.
For the contribution from the gas disk and pressure gradient,
we take the approximation for an infinitesimally thin disk
with exponential surface density as described in Eq. (24).
We set:

V 2
g (R) = 4πGΣ0Rdy

2[I0(y)K0(y)− I1(y)K1(y)] (29)

V 2
p (R) = (γ − 1)e

∂ ln ρ
∂ lnR

∣

∣

∣

z=0
, (30)

with y = R/(2Rd), I0, K0, I1 and K1 being the modified
Bessel functions of the first and second kinds of zeroth/first-
order, respectively. Equation (30) derives from the second
term of Eq. (13). However, contribution from pressure gra-
dient in the midplane can only be evaluated after the gas
disk is set up. Note that for an exponential disk, surface
and volume densities decrease with radius and hence V 2

p is
negative.

3.2 A Stable Disk

To demonstrate that the disk built by the potential method
described in Section 2 is in detailed equilibrium, we start
with a stable equilibrium disk in model Gas0. In this test, the
stellar disk is deliberately removed. Without the dynamical
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Figure 1. Model Gas0: (a) The total rotation velocity (solid) and contributions from dark matter halo (dashed), gas (dotted) and gas
pressure (dash-dotted). Note that we plot the absolute value of the pressure gradient to have positive values for the direct comparison. It
should be in opposite sense to the gravity. In this model contributions from the gas self-gravity and the pressure gradient is not negligible.
(b) The Q value of model Gas0 as a function of radius as defined by Eq. (32). The Q is well above the threshold value Qth = 1, thus the
disk is expected to be stable. No structure should develop with time.
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Figure 2. Model Gas0: The evolution of 1.6 Gyrs of a stable disk. (a) The evolution of the surface density (upper panel) and the
rotation curve (lower panel) at t = 0 Gyr (solid) and t = 1.6 Gyr (diamond). Overall, the surface density and rotation curve are kept
very well over 4 orbital periods. (b) The evolution of the scale-height at t = 0 Gyr (solid) and t = 1.6 Gyr (dotted). The small change in
scale-height indicates that the required circular velocity is overestimated probably due to the approximation of Eq. (14) and Eq. (30). In
all, the disk still stays well in the initial condition. The step-wise character of the scale-height reflects our discretization and the change
of spatial resolution due to the AMR.

support from the stellar disk, the self-gravity of the gas plays
the dominant role in determining the vertical structure of
the disk and provides a not negligible contribution to the
rotation velocity.

Figure 1a decomposes the rotation curve into the dif-
ferent contributions by the halo, the gas and the pressure
gradient. Note that the forces of the self-gravity and the
pressure gradient are in opposite sense, the self-gravity pulls
matter inwards while the pressure gradient pushes outwards.
In this figure, Vp is shown in its absolute value. If we ignore
the pressure gradient, the disk would rotate too fast and
gradually drift outward. Figure 1b shows the conventional
Toomre’s Q defined by:

Q =
csκ

πGΣg
. (31)

with κ being the epicyclic frequency. It shows that the Q is
well above Qth = 1, the threshold value for stability, at all

radii. The disk is hot enough to keep the disk stable and no
structure should develop with time.

We let the disk evolve for 1.6 Gyrs (four orbits for the
gas at 10 kpc) and check how well the disk properties are
kept. Figure 2a presents the evolution of the surface den-
sity and the rotation curve. The solid lines represent the
initial states and the diamond symbols are the status after
an evolution of 1.6 Gyrs. The surface density is obtained
by projecting along the symmetry axis and the rotation
curve is evaluated by the mass-weighted circular velocity,
v̄rot(R) =

∫

ρg(R, z)vrot(R, z)dz/Σg(R). Although a small
amount of mass accretes onto the very central part of the
disk, overall the surface density and the rotation curve are
kept very well. Mass accretion into the center seems unavoid-
able for a Cartesian-grid code mainly because too small a
number of cubic cells is used to mimic the circular motion
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 

Figure 3. Model Gas0: The size of the images is 20 kpc × 20 kpc. The evolution of the surface density at (a) t = 0 Gyr and (b) at
t = 1.6 Gyr. This figure shows that no structure is developing over secular time-scale.

in the centre. This accretion will be eventually halted by the
pressure gradient built by the accumulating material.

Figure 2b shows the evolution of the scale-height. The
solid line represents the initial state and the dotted line
the evolution after 1.6 Gyrs. Upon closer inspection we
find that the disk undergoes a very small amount of mass-
redistribution in the radial direction, which we believe to
be a consequence of our two approximations when initializ-
ing the disk. One is from the reduced Poisson equation, Eq.
(14), and the other is from the use of Eq. (29). Equation
(29) overestimates the circular velocity needed to support
the disk. The thickness of the disk reduces the potential in
the midplane by a few percent (see appendix B). Figure 3
shows the snapshots of the face-on surface density at t = 0
(Fig. 3a) and at t = 1.6 Gyr (Fig. 3b). No structure is de-
veloping during the course of the simulation.

To sum up, figures 1 to 3 indicate that without external
perturbation the disk is quiet over secular time-scales. The
shape of such a disk is naturally flaring, i.e., the scale-height
increases with radius. The ideas described in Section 2 are
able to treat the initial condition self-consistently. A well-
balanced disk is especially useful to probe the onset of disk
instability as described in the next Section.

4 AXISYMMETRIC INSTABILITY

The question of disk stability has been investigated for more
than four decades since the pioneering works by Toomre
(1964) for collisionless stars and Goldreich & Lynden-Bell
(1965) for gas sheets. Understanding the origin and evolu-
tion of disk structure is challenging. If the disk is stable
like our model Gas0, no structures can form. On the other
hand, if the disk is highly unstable, the surface density will
quickly fragment and develop a clumpy and chaotic-looking
appearance. There will be no well-organized structures. The
striking spiral appearance of many nearby disk galaxies in-
dicates that those disks are marginally stable.

For an infinitesimally thin disk, the instability thresh-
old is at Qth = 1 (Toomre 1964). The first theoretical work
to include the finite thickness of a self-gravitating gas disk is

that by Goldreich & Lynden-Bell (1965). Some authors have
investigated the stability of finite thickness gas disks in nu-
merical simulations (both in 2D and 3D) using local patches
within a shearing box (Kim & Ostriker 2006, 2002a; Gam-
mie 2001). This technique, in 2D, has also been used by Kim
& Ostriker (2007) to investigate the interaction between the
gas disk and a live stellar disk. Shetty & Ostriker (2006) used
global 2D simulations in which they incorporated the effect
of finite disk thickness by diluting the gravitational force.
For 3D global disk calculations, see Li, Mac Low & Klessen
(2005a, 2005b, 2006), who investigate the relation between
disk instability and star formation rate. These studies all
agree that although the inclusion of the thickness does not
have a qualitative impact on the disk instability, it does shift
the threshold value of instability quantitatively. In addition,
accounting for disk thickness may have a large impact on
the evolution of a disk, such as the development of spurs or
the wiggle instability (Kim & Ostriker 2002b, 2006).

In this paper, armed with a well-balanced gas disk, we
revisit the axisymmetric instability of disks in 3D global
fashion. We first derive the reduction factor F which re-
flects the reduction of the gravity due to the finite thickness
of the disk. Then the corresponding instability threshold
Qth(R, T ) derived from a semi-analytic calculation is com-
pared with the numerical results. In the final sub-section,
we also explore the impact of the presence of a static stellar
potential on the axisymmetric instability.

4.1 The impact of thickness on disk stability

The Fourier component of the perturbed gravitational po-
tential, Φk, of an infinitesimally thin disk is given by:

Φk = −2πGΣk

|k|
eikx−k|z|, (32)

where k represents the wave number of the Fourier compo-
nents and x = R −R0 being the radial deviation for an ax-
isymmetric perturbation. Supposing that a 3D disk is piled
up by a stack of infinitesimally thin gas layers, we approx-
imate the effect of the disk thickness by superimposing the
contribution from every razor-thin layer:
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Φk(z) = −2πGΣke
ikx

|k|

∫ ∞

−∞

e−k|z−h| sech
2(h/hz)

2hz
dh, (33)

with hz being the scale-height of the disk. In Eq. (33), we
model the vertical structure of the gas disk by a sech2 func-
tion. This is valid especially for the inner part of disks
where the vertical structure is mainly determined by the
self-gravity of the gas. See also the Fig. D1 in Appendix D.
Equation (33) leads to the Fourier potential in the midplane:

Φk(z = 0) = −2πGΣke
ikx

|k|
F (k, hz), (34)

with F (k, hz) being the reduction factor described by (see
Appendix C):

F (k, hz) = 1− 1
2
khz

[

H
(

khz

4

)

−H
(

khz

4
− 1

2

)]

, (35)

with H being the harmonic number defined by:

H(α) =

∫ 1

0

1− yα

1− y
dy. (36)

The Lin-Shu (1964) dispersion relation for the axisymmetric
perturbation is then modified to:

ω2 = κ2 − 2πGΣ0|k|F (k, hz) + c2sk
2. (37)

The dispersion relation states that on small scales (k → ∞)
the disk is stabilized by gas pressure, i.e., the term c2sk

2.
Large scales (k → 0) are regulated by global shear, i.e., the
κ2 term. The instability however happens at intermediate
wavelengths, much smaller than the disk size but still larger
than the thickness of the disk. In this region, neither global
shear nor gas pressure can resist the gravitational collapse.
The reduction factor, 0 < F ≤ 1, softens the effect of self-
gravity and makes the disk more stable.

Given a certain radius R and temperature T , we ob-
tain the threshold value Qth(T,R) by probing the maximum
value along the neutral curve defined by setting ω2 = 0 in
Eq. (37) and calculating the epicyclic frequency, κ, from
the rotation curve. Similar to the conventional Toomre cri-
terion for the stability of an infinitesimally thin disk, Qth

is a threshold curve for thick disks. Above Qth the disk is
stable and otherwise unstable. Since the Qth is a function
of both temperature and radius, it is convenient to define
the critical value Qcrit, which is the value of Qth for which
Qth(T, R)/Q(R) = 1, and the corresponding critical tem-
perature Tcrit.

The solid lines shown in Fig. 4 represent the threshold
value Qth as a function of radius. Each plot corresponds to a
disk of different temperature. The dash-dotted lines are the
actual Q values defined by Eq. (31) of the different models.
From these figures, the most unstable radius is around R = 2
kpc. The corresponding surface densities after an evolution
of 750 Myrs are shown in Fig. 5. The gas at the most unsta-
ble region has revolved for more than four orbital periods
around the disk center.

These figures shows that the prediction of Qcrit and the
numerical results match quite well. The Q value of Gas1
is well above the solid line and shows a featureless surface
density. As shown in Gas2 and Gas3, with the decrease in
temperature, the Qth curves shift up and the disks’ Q curves
come down. As a consequence, the disk starts to develop
multi-armed structure, which is very likely caused by swing

amplification, as discussed in Section 5. And finally in Gas4,
the curves Q and Qth intersect. The disk fragments and
starts to behave chaotically. A more detail calculation shows
that the two curves just touch each other at a temperature
Tcrit = 8.5 × 103K with the maximum threshold Qcrit =
0.693, which is close to Qcrit = 0.676 of Goldreich & Lynden-
Bell’s (1965) analysis but away from the numerical result,
Qcrit = 0.647, of Kim et al. (2002a). However, the actual
value of Qcrit is model dependent. Different models of the
dark matter, the stellar disk and even the EoS will all affect
the resulting value of Qcrit.

4.2 The inclusion of stellar potentials

The inclusion of a static stellar disk alters two important
factors which influence the stability of the disk. One is the
rotation curve and the other is the thickness of the gas
disk. By changing the rotation curve, the epicyclic frequency,
κ, changes accordingly. Supposing a flat rotation curve de-
scribed by Ω = V0/R, the epicyclic frequency κ then reads:

κ2 = 2Ω2 = 2
V 2
0

R2
, (38)

with V0 being the rotation velocity. The presence of a stel-
lar disk tends to stabilize the gas disk via increasing V0.
However, by increasing the gravitational pull in the vertical
direction, the gas disk becomes thinner and therefore more
susceptible to gravitational collapse. In Section 4.1, we have
already seen that the scale-height, which is governed by the
temperature of the disk, is a very sensitive factor for the
disk stability. GasStar1 to GasStar4 are designed to explore
the competition between the two opponents.

From Fig. 6, we first notice that, compared to Fig. 4, the
threshold value, Qcrit, is boosted from 0.693 to 0.75 due to
the decrease in scale-height. This makes the disk more prone
to gravitational instability. On the other hand, the change
of the rotation curve drastically shifts the dash-dotted curve
upwards. Instability only sets in once the temperature of the
gas disk drops below Tcrit ∼ 6000 K. Overall, the presence
of the static stellar disk tends to stabilize the disks.

Figure 7 shows the surface density after an evolution of
250 Myr. During this period, the gas in the most unstable
region has finished 2.5 orbits. All the gas disks are devel-
oping multi-armed spiral structures within the region where
the disk is the most vulnerable to instability according to
Fig. 6. At this moment, the most unstable disk, GasStar4, is
experiencing fragmentation. High density filaments are evi-
dent from the image. While GasStar2 is still in its early stage
of instability, GasStar3 is just about to enter the fragmenta-
tion phase. GasStar1, on the other hand, does not fragments
at all during the course of simulation.

The trend is clear. The cooler the disk, the faster it frag-
ments. The spiral structure seen in these images are due to
swing amplification (Toomre 1981; Goldreich & Lynden-Bell
1965), a mechanism that is capable of amplifying the per-
turbation by swinging the leading waves to trailing. Swing
amplification is effective as the disk Q (dash-dotted line)
is approaching the threshold Qth (the solid line). The spi-
rals are sheared, become tighter and tighter and enhanced.
Once the density reaches the supercritical point, instability
sets in.
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Figure 4. Plots (a) to (d) correspond to models from Gas1 to Gas4, respectively. In each plot, curves of the disk Q (dash-dotted) and
the threshold value Qth (solid) are put together to probe the onset of axisymmetric instability. Qth(R) is a obtained by probing the
maximum value along the neutral curve for a given radius. Information of the disk thickness has been encapsulated in the reduction
factor defined by Eq. (36). When the two curves meet, we expect the disk fragments very fast. This figure shows that the most unstable
region is about the radius R = 2 kpc. The fact that the Qth curves are well below unity shows the impact of the disk thickness on the
disk stability.

5 SPONTANEOUSLY INDUCED SPIRAL

STRUCTURE

An interesting feature which is hard to ignore in Fig. 5
and Fig. 7 is that the marginally stable disks are sponta-
neously developing multi-arm spiral structures. We have al-
ready seen in Section 3 and 4 that the effect of the disk
thickness is to shift the range of the marginally stable re-
gion downwards and therefore to stabilize the disk. As we
systematically lower the temperature to probe the onset of
instability, runs with as well as without stellar potential are
experiencing swing amplification.

Hohl (1971) found that disks which are marginally sta-
ble to axisymmetric perturbation are prone to develop a
large-scale bar structure. This finding initiated both numer-
ical (Zang & Hohl 1978; Sellwood 1981, 1985; Fuchs & von
Linden 1998; Sellwood & Moore 1999) and theoretical stud-
ies (Kalnajs 1978; Sawamura 1988; Vauterin & Dejonghe
1996; Pichon & Cannon 1997; Evans & Read 1998; Fuchs
2001) of marginally stable disks. Goldreich & Lynden-Bell
(1965) and Toomre (1981) pointed out that self-gravitating,
differentially rotating disks are able to amplify spiral waves
by shearing a leading wave into a trailing one. Three key in-

gredients, self-gravity, shearing and epicyclic motions work
harmonically to make the phenomenon now coined with the
name ‘swing amplification’ happen.

Three necessary conditions need to be fulfilled in order
to facilitate the swing amplification (Toomre 1981; Fuchs
2001; Fuchs & von Linden 1998; Binney & Tremaine 2008).
First, the disk must be marginally stable, i.e., for an in-
finitesimally thin disk, 1 < Q < 2, as defined by Eq. (31).
Second, the parameter X = kcritR/m = kcrit/ky (Toomre
1981; Binney & Tremaine 2008), with m being the num-
ber of arms and kcrit = κ2/(2πGΣg) the critical wave num-
ber, has to be of order unity, i.e., somewhere between 1 and
3 (Goldreich & Lynden-Bell 1965; Julian & Toomre 1966;
Toomre 1981). Third, there must be a mechanism that is
able to induce leading arms in the system either explicitly
by hand (Toomre 1981) or implicitly by random fluctuation
induced by numerical noise (Toomre 1990; Sellwood & Carl-
berg 1984; Fuchs 2001). We notice that most of these works
mentioned above are for live stellar disks not directly for the
gas disk. But since the amplification principles are the same,
the results are still applicable to pure gas disks.

As shown in Fig. 8a and 8b, GasStar1 gets more arms
than Gas2 does. To be more quantitatively, Fig. 8c and
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Figure 5. Images (a) to (d) correspond to models Gas1 to Gas4, respectively. They show the face-on surface density at t = 750 Myr.
The size of the images are 20 kpc × 20 kpc. The gas at the most unstable radius has orbited around the center for more than four
times. (a) Since the disk Q is well above the threshold value Qth, the disk is featureless. In models Gas2(b) and Gas3(c) the disk Q is
approaching Qth around R = 2 kpc, both disks are developing self-induced spirals due to swing amplification. (d) The disk fragments
very fast once Q and Qth intersect.

8d show the Fourier components as a function of radius.
They are obtained by doing Fourier transform to (Σg(R,φ)−
Σg(R))/Σg(R), where Σg(R) is the averaged surface density
of a given radius. Note that the dominating modes tends
to be multiples of m = 4. This is a consequence of using
a Cartesian grid, for which m = 4 is the natural mode.
However, the dominating mode is determined by physics.
The dominating mode of Gas2 is m = 8 while in GasStar1
m = 12.

As is apparent from Eq. (38), including a stellar disk
causes an increase in kcrit. Consequently, a larger value of m
is required in order to satisfy 1 < X < 3. From the image
shown in Fig. 8a and the relation, kcrit ∝ κ2, to keep X
a constant, the number of spiral arms in GasStar1 can be
crudely estimated as m - 15. More precisely, the number of
spiral arms, m, is predicted by (Toomre 1981; Athanassoula,
Bosma & Papaioannou 1987; Fuchs 2001, 2008):

m =
2πR
λmax

, (39)

with λmax being defined by:

λmax =
λcrit

χ(A/Ω)
, (40)

where λcrit = 2π/kcrit. The coefficient χ is a function of
rotation curve (Fuchs 2001), as measured by Oort’s constant
A.

We employ Eq. (39) to analytically estimate the number
of arms and compare the predictions with the images shown
in Fig. 8. For Gas2, spirals appear between 2 kpc and 5
kpc. Within this radial range, the most unstable wavelength
ranges from 2.0 to 3.6 kpc. The corresponding prediction
for m ranges from 6 to 9, while the simulation reveals a
spiral pattern with 8-fold symmetry. For GasStar1, spirals
are prominent between 3 and 4 kpc, while the corresponding
most unstable wavelength ranges from 1.4 to 2.0 kpc. The
twelve arms developing in GasStar1 should be compared to a
predicted m ranging from 13 to 14. Hence, overall the trends
in the simulations are in reasonable agreement with our pre-
dictions. Note that the spatial resolution in both simulations
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Figure 6. Plots (a) to (d) correspond to models GasStar1 to GasStar4, respectively.: The Q (dash-dotted) and Qth (solid) curves of
the gas disks of different temperatures. The presence the stellar potential stabilizes the disks through changing the rotation curve and
destabilizing the disk by increasing local gravitational force. The effect of disk thickness is included via the reduction factor Eq. (36).
We need to lower the temperature down to T= 7× 103 K in order to probe the onset of axisymmetric instability. Overall, the presence
of the stellar potential stabilizes the disk.

ranges from 60 pc to 120 pc, indicating that the most un-
stable wavelengths are well-resolved.

The observed small deviations can be explained as fol-
lows. First, the formulation used to predict the number
of arms is precise only for stellar disks. However, Toomre
(1981) has shown the strikingly similar behavior of gaseous
disks (Goldreich & Lynden-Bell 1965) and stellar disks (Ju-
lian & Toomre 1966). Therefore, we have confidence that
Eq. (39) is still applicable to gaseous disks. Second, the
number of arms has to be an integer, a number of fraction
given by Eq. (39) has no physical meaning. Third, the usage
of a Cartesian grid introduces the multiples of the natural
m = 4 mode, which manifests itself in the Fourier transform
of the surface density. Fourth, swing amplification picks up
the dominating mode. It takes some time to fully develop
the dominating mode. All these factors combined determine
the number of spiral seen in our simulations. It is impor-
tant to realize that the most unstable radius according to
the axisymmetric instability criterion might not be the most
effective site for swing amplification, since the shear plays
an important role in this process.

Without any external pumping source, spiral waves pro-
duced by swing amplification should be a transient phe-

nomenon. Similar to material spirals, swing amplified spi-
ral waves will experience azimuthal shearing which reduces
their pitch angle until they become too tightly wound to be
identified. As an example, in the Gas2 simulation, the spiral
arm that appears around R = 2 kpc initially has a pitch
angle of 90◦ and should be sheared to less than 1◦ within
2.2 Gyr. On the contrary, we find that the spontaneously in-
duced spirals seen in Gas2 can last for more than 3 Gyr and
still keep the pitch angle relatively open. This result sug-
gests at least one mechanism keeps replenishing noise into
the disk, leaving the physics to pick up the dominating mode
and sustain the waves. This noise can be caused by numerics
or preexisting waves.

6 SUMMARY

In this paper we have developed a simple and effective
method to compute the three-dimensional density and ve-
locity structure of an isothermal gas disk in hydrodynamic
equilibrium in the presence of an arbitrary external potential
(i.e., dark matter halo and/or stellar disk). This is ideally
suited to set-up the initial conditions of a three-dimensional
gas disk in equilibrium in hydrodynamical simulations. We
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Figure 7. Images (a) to (d) correspond to models GasStar1 to GasStar4. They show the face-on surface density at t = 250 Myr. The
size of the images are 20 kpc × 20 kpc. The gas at the most unstable radius has orbited around the center about two and half times.
Spirals seen in model GasStar2(b) and GasStar3(c) are due to swing amplification. In (d) the disk fragments very fast mainly due to
both the axisymmetric instability and swing amplification.

first notice that as long as the gas is barotropic or has con-
stant temperature at t = 0, the circular velocity needed to
support the self-consistent disk is independent of the height
above or below the midplane. This feature greatly simpli-
fies the process of specifying the initial velocity field. All we
need to know is the rotation velocity in the midplane.

To specify the density distribution self-consistently, the
hydrostatic equation coupled with the reduced Poisson equa-
tion is adopted to develop the vertical structure of the gas.
Two sets of second-order non-linear differential equations
are found. One is directly associated with the gas density
called the density method, the other associated with the gas
potential called the potential method. In a simulation in-
volving a huge dynamic range (using AMR techniques), the
potential method is shown to be numerically more stable.
A simple local iteration can be performed to gain a better
control on the shape and the mass of disks. These ideas are
simple enough to be incorporated into any existing code,
and most importantly they are very effective.

With gas disks that are in detailed balance, we are able
to systematically investigate the axisymmetric stability of a

fully three-dimensional disk for the first time. We probe the
onset of instability both semi-analytically and numerically.
Simulations without stellar disk show that the thickness of
the gas disk, which is governed by the temperature of the
disk, has a huge impact on the disk stability. The reduc-
tion of the gravity decreases the threshold value by around
30 percent in our models. As we gradually lower the gas
temperature, the threshold Qth shifts up, the disk Q shifts
down, and the system starts to develop multi-arm structure
via swing amplification. The onset of the instability in simu-
lations matches the theoretical prediction very well as shown
in Fig. 4 and Fig. 5. The disk fragments as the two curves,
Q and Qth, come very close to each other.

The influence of the stellar disk is less obvious. Its pres-
ence has a stabilizing effect on the gas disk through changing
the rotation curve and a destabilizing one through the in-
crease of the local gravitational force. The simulation results
show that overall the presence of the stellar disk tends to sta-
bilize the gas disk. But this conclusion comes with a caveat.
The interaction between live stars and gas might be impor-
tant. A live stellar disk itself can be unstable or marginally
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Figure 8. The image size in (a) and (b) is 20 kpc × 20 kpc. (a) The surface density of Gas2 at t = 750 Myr. (b) The surface density of
GasStar1 at t = 500 Myr. In both cases, the inner parts of the gas disks, which have been evolved for about four orbital times, developing
spiral structure. Contour plots (c) and (d) are the Fourier maps of (a) and (d), respectively. In (c) and (d), the horizontal axis represents
radius, the vertical axis is the number of arms, m, obtained by Fourier analysis. The color represents the intensity of each Fourier mode,
the redder the stronger.

stable. Perturbations from the interstellar medium can trig-
ger instabilities in the stellar disk. Since stars dominate the
mass budget in Milky-Way type galaxies (more than 90 per-
cent), and because gas is highly responsive and dissipative,
the interplay between both components is one of the most
interesting subjects in galactic dynamics. Tackling this prob-
lem needs elaborate initial conditions for the live stellar disk
or the combined disk. We stress that the potential method
developed in this paper is compatible with the formulation
in KD95. This makes the self-consistent combined disk a
natural direction for future work.

Marginally stable disks are susceptible to the process
of swing amplification, a prevalent mechanism that triggers
self-induced spirals. Simulations Gas2 and GasStar1 show
the spirals are prominent in the regions in which the gas
can respond to swing amplification. Semi-analytic result re-
lates the most vulnerable wavelength in azimuthal direction,
λmax, to the number of arms. Numerically, The natural
mode of a Cartesian grid together with the swing amplifica-
tion determine the dominating mode of the spiral structure.
Our numerical results with or without stellar disk shows the
correct characteristics of the swing amplification. It happens
in marginally stable disks and the number of arm fits reason-
ably well to the analytic prediction. In the run of GasStar2,

swing amplification eventually leads to disk fragmentation
once the density becomes supercritical to the gravitational
instability. However, in a sub-critical case like Gas2, the spi-
ral structure can survive more than 3 Gyrs without frag-
menting the disk, suggesting at least one mechansim is sus-
taining the waves. The number of arms suggests a charac-
teristic wavelength relating to the upper limit of the mass
of giant molecular clouds (Escala 2008).
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APPENDIX A: THE DERIVATION OF

ROTATION VELOCITY

Equation (11) can be re-written as

p(R, z) = ρ(R, z)
p(R)
ρ(R)

∣

∣

∣

∣

z=0

− ρ(R, z)

∫ z

0

p
ρ2

∂ρ
∂z

dz

− ρ(R, z)[Φ(R, z)− Φ(R, z = 0)], (A1)

where we have replaced Φz = Φ(R, z)−Φ(R, z = 0). Insert-
ing Eq. (A1) in Eq. (1) involves a partial derivative to the
integral, let us prepare it first:

∂
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With Eq. (A2), the first term of Eq. (1) then becomes:

1
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(A3)

Equation (11) says that the term in the big brace should
vanish. And therefore, Eq. (1) reduces to

1
ρ
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+
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=
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For the barotropic gas, i.e., p(ρ), the integrand of the integral
vanishes:
(
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For the cases of initially constant temperature, the specific
internal energy, e, is a constant and therefore the pressure
is a function of density only, the integrand vanishes.

APPENDIX B: THE EFFECT OF THE DISK

THICKNESS ON THE MIDPLANE POTENTIAL

For an axisymmetrically and infinitesimally thin disk, the
potential can be evaluated by the following relation (Binney
& Tremaine, 2008):

Φ(R, z) =

∫ ∞

0

dkS0(k)J0(kR)e−k|z|, (B1)

where J0 is the Bessel function of the first kind of order zero
and S0 is the Hankel transform of −2πGΣ0 defined by:

S0(k) = −2πG

∫ ∞

0

dR′R′J0(kR
′)Σ0(R

′) (B2)

With Eq. (B1) and Eq. (B2), we can superimpose the poten-
tial contributed by each gas layer. For the sake of simplicity,
we assume that the volume density has the double exponen-
tial profile:

ρ0(R, z) = Σ0e
−R/Rd

e−z/hz

2hz
, (B3)

with hz being the scale-height of the gaseous disk, Eq. (B2)
then becomes (Gradshteyn & Ryzhik 1965, hereafter GR65,
6.623-2):

S0(k, z) =
−2πGΣ0e

−z/hz

2hz
∆z

∫ ∞

0

dR′R′J0(kR
′)e−R′/Rd

=
−2πGΣ0e

−z/hz

2hz
∆z

ξ

(ξ2 + k2)3/2
, (B4)

with ξ = 1/Rd. ∆z represents the infinitesimal thickness in-
troduced to keep the dimension correct. The potential which
takes into account the thickness of the disk then reads:

Φ(R, z) = −2πGΣ0

∫ ∞

0

dk
ξ

(ξ2 + k2)3/2
J0(kR)

×
∫ ∞

−∞

e−k|z−h| e
−h/hz

2hz
dh. (B5)

Evaluating the potential at the midplane, z = 0, yields:

Φ(R, z = 0) = −2πGΣ0

∫ ∞

0

dk
ξ

(ξ2 + k2)3/2
J0(kR)

1
1 + khz

.(B6)

Given the finite scale-height, the integral can be eval-
uated numerically and compared with the result of the in-
finitesimally thin disk.
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Figure D1. The force ratio Fz,DM/Fz,gas at R=2, 5 and 8 kpc.
It shows that the vertical structure of the inner disk is determined
mostly by the self-gravity of gas.

APPENDIX C: THE DERIVATION OF THE

REDUCTION FACTOR

To derive the reduction factor F defined by Eq. (35) we need
to evaluate the integral of the form:
∫ ∞

−∞

e−k|h|sech2(ah)dh = 2

∫ ∞

0

e−khsech2(ah)dh

=
2
a

{

1− k
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[

H
(

k
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)

−H
(

k
4a

− 1
2

)]}

. (C1)

The last line can be reached by looking up the formulae
3.541, 8.370, 8.361-7 listed in the integral table (GR65) and
the definition Eq. (36). In the last line, we have employed
the recursive relation (8.365-1 GR65):

H(α) = H(α − 1) +
1
α
. (C2)

The asymptotic behavior of the harmonic number reads
(8.367-2, 8.367-13 GR65):

H(α) = lnα+ γ +
1
2

α−1 − 1
12

α−2 +
1

120
α−4 +O(α−6),(C3)

with γ = 0.5772156649 (8.367-1 GR65) being the Euler-
Mascheroni constant. Note that Eq. (C3) is only reliable
when α ≥ 1. We employ the recursive relation (C2) to eval-
uate H(α) for −1 < α < 1.

APPENDIX D: THE VERTICAL FORCE RATIO

The vertical force ratio measures the impact of the halo force
on the vertical structure. The simplified Poisson equation for
isothermally self-gravitating gas disk reads:

∂2Φg

∂z2
= 4πGρ0(R)sech2

(

z
hz

)

, (D1)

where hz being a measure of the scale-height. Parameter hz

can be related to the volume density in the midplane, ρ0(R)
by:

hz =

√

c2s
2πGρ0

. (D2)
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Figure E1. Contour map of ε. The black lines represent the
scale-height of the gas disk.

The corresponding vertical force for the gas then becomes:

Fz,gas = −∂Φ
∂z

= −4πGhzρ0(R)tanh(z/hz). (D3)

For a NFW halo, the vertical force can be written down
directly:

Fz,DM =
GM200

f(c)

(

c
r200

)2 x/(1 + x)− ln(1 + x)
x2

z√
R2 + z2

,(D4)

with x = c
√
R2 + z2/r200. Figure D1 then shows the force

ratio Fz,DM/Fz,gas as a function of vertical height |z| at dif-
ferent radii. Comparing to the rotation curve shown in the
left panel of Fig. 1, although the dynamics is still dictated
by the potential of the dark halo, the vertical structure of
the gaseous disk is mainly determined by the self-gravity
of the gas component. However, it raises another issue, the
presence of the stellar disk will dominate both the dynam-
ics and the vertical structure of the gas and will affect the
stability of the gas component via changing the thickness of
the gaseous disk and the rotation curve.

APPENDIX E: VALIDITY CHECK OF THE

REDUCED POISSON EQUATION FOR THE

GAS DISK

Throughout this paper we have assumed that the radial po-
tential gradients of the disk are negligible compared to the
vertical gradients, such that the Poisson equation reduces
to Eq. (14). We now test this assumption by computing the
ratio

ε ≡ | 1
R

∂
∂R

(R
∂Φg

∂R
)/

∂2Φg

∂z2
|, (E1)

with Φg the gravitational potential of the gas disk. For a
realistic, analytical disk model, our assumption will be valid
as long as ε ) 1.

Consider the Miyamoto & Nagai (1975) potential:

Φg(R, z) = − GMg
√

R2 + (a+
√

z2 + b2(R))2
. (E2)

Here a is a constant that controls the scale-length of the
disk and b(R), which we take to be a function of radius,
modulates the scale-height of the disk. In the limit b → 0
this model reduces to the infinitesimal Kuzmin disk (e.g.,
Binney & Tremaine 2008). In an attempt to model the gas
disk in our simulation ‘Gas0’, we adopt a = 3.5 kpc. In
order to mimic the flaring of the Gas0 disk (see Fig. 2b), we
consider

b(R) = −1.58 × 10−5R4 + 1.21 × 10−2R2 + 0.20. (E3)

Using the Poisson equation to solve (numerically) for
the corresponding density distribution yields the radial-
dependent scale-height shown as the solid black lines in
Fig. E1, and which is comparable to that of the Gas0 disk.
The contours in Fig. E1 are defined by constant values of ε.
These show that our assumption that ε ) 1 is well-justified
in the inner part of the disk, out to ∼ 3 scale-lengths, which
encloses most of the disk mass. The assumption that ε ) 1
deteriorates at larger radii and at higher altitude away from
the midplane. This might be in part responsible for the very
slight outward drifting of the disk seen in Fig. 2b. In cases
that include a stellar potential and/or cooler gas, the gas
disk is even thinner than the case considered here, result-
ing in values for ε that are even smaller. Based on these
results, and based on the absence of significant disk thick-
ening in our simulations, we are confident that Eq. (14) is
sufficiently accurate for all realistic gas disks.


