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Electron in a transverse harmonic cavity
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We employ Hamiltonian light-front quantum field theory in a basis function approach to solve
the non-perturbative problem of an electron in a strong scalar transverse confining potential. We
evaluate both the invariant mass spectra and the anomalous magnetic moment of the lowest state
for this two-scale system. The weak external field limit of the anomalous magnetic moment agrees
with the result of QED perturbation theory within the anticipated accuracy.
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Physical systems with two or more distinct scales
present a major computational challenge. Recent inter-
est in strong field QED [1] has brought new emphasis on
the need for robust methods for solving these problems.
We address the problem of an electron in a transverse
harmonic cavity and solve for its mass spectra and other
observables as a function of the external field strength.
To accomplish this, we evaluate the QED Hamiltonian
on the light-front in a convenient basis with the Fock
space consisting of electron states and an electron plus
photon states. Our goal is to achieve results valid to
leading order in QED for the electron’s mass spectra and
anomalous magnetic moment, δµ, in a strong external
scalar field treated non-perturbatively. The nonpertur-
bative analysis presented in this paper could be applica-
ble to measurements of the (gyromagnetic) ratio of the
spin precession to Larmor frequencies of a trapped elec-
tron in strong external electromagnetic fields or intense
time-dependent laser fields. This research also serves as a
test case for using HO basis states for Hamiltonian light-
front quantum field theories at strong coupling, such as
the light-front QCD Hamiltonian in the nonperturbative
domain. In this case the HO Fock state basis is supported
by successful AdS/QCD models [2].

Adopting recently introduced methods [3], we quantize
QED on the light-front using the light-front gauge. We
add the harmonic oscillator potential in the transverse
direction to confine the system in those directions. We
define our light-front coordinates as x± = x0 ± x3, x⊥ =
(x1, x2), where the variable x+ is light-front time and x−

is the longitudinal coordinate. We adopt x+ = 0, the
“null plane”, for our quantization surface.

As in Ref. [3], our basis states consist of 2-D har-
monic oscillator (HO) states, which are combined with
discretized longitudinal modes, plane waves satisfying se-
lected boundary conditions. The HO states are charac-
terized by a principal quantum number n, orbital quan-
tum number m and HO energy Ω. Working in mo-
mentum space, it is convenient to write the 2-D oscil-
lator as a function of the dimensionless variable ρ =

|p⊥|/
√
M0Ω, and M0 has units of mass. The orthonor-

malized HO wavefunctions in polar coordinates (ρ, ϕ) are
then given in terms of the Generalized Laguerre Polyno-

mials, L
|m|
n (ρ2), by

Φnm(ρ, ϕ) = 〈ρϕ|nm〉

=

√

2π

M0Ω

√

2n!

(|m|+ n)!
eimϕρ|m|e−ρ2/2L|m|

n (ρ2), (1)

with eigenvalues En,m = (2n+ |m|+1)Ω. The HO wave-
functions have the same analytic structure in both coor-
dinate and momentum space, a feature reminiscent of a
plane-wave basis.
The longitudinal modes, ψk, in our basis are defined

for −L ≤ x− ≤ L with periodic boundary conditions
(PBC) for the photon and antiperiodic boundary condi-
tions (APBC) for the electron:

ψk(x
−) =

1√
2L

ei
π

L
k x−

, (2)

where k = 1, 2, 3, ... for PBC (we neglect the zero mode)
and k = 1

2
, 3
2
, 5
2
, ... for APBC. The full 3-D single-particle

basis state is defined by the product form

Ψk,n,m(x−, ρ, ϕ) = ψk(x
−)Φn,m(ρ, ϕ). (3)

Following Ref.[4] we introduce the total invariant mass-
squared M2 for the low-lying physical states in terms of
a Hamiltonian H times a dimensionless integer for the
total light-front momentum K

M2 + P⊥P⊥ →M2 + const = P+P− = KH (4)

where we absorb the constant into M2. For simplicity,
the transverse functions for both the fermion and the
boson are taken as eigenmodes of the trap. The non-
interacting Hamiltonian H0 for this system is then de-
fined by the sum of the occupied modes i in each many-
parton state:

H0 = 2M0P
−
c

=
2M0Ω

K

∑

i

2ni + |mi|+ 1 + m̄2
i /(2M0Ω)

xi
, (5)
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where m̄i is the mass of the parton i. The photon mass
is set to zero throughout this work and the electron mass
m̄e is set at the physical mass 0.511 MeV in our non-
renormalized calculations. We also set M0 = m̄e.
The light-front QED Hamiltonian interaction terms we

need are the fermion to fermion-boson vertex, given as

Ve→eγ = g

∫

dx+d
2x⊥Ψ(x)γµΨ(x)Aµ(x)

∣

∣

∣

∣

x+=0

, (6)

and the instantaneous fermion-boson interaction,

Veγ→eγ =
g2

2

∫

dx+d
2x⊥ ΨγµAµ

γ+

i∂+
(γνAνΨ)

∣

∣

∣

∣

x+=0

,

(7)
where the coupling constant g2 = 4πα, and α is the fine
structure constant taken to be α = 1

137.036 in this work.
The non-spinflip vertex terms of Eq.(6) are ∝ gM0Ω,
whereas spinflip terms are ∝ g

√
M0Ωme. Selecting the

initial state fermion helicity in the single fermion sector
always as “up” the process e → eγ is nonzero for 3 out
of 8 helicity combinations, and the process eγ → eγ is
nonzero only with all 4 spin projections aligned (2 out of
16 combinations). The resulting Hamiltonian matrix is
thus sparse.
We implement a symmetry constraint for the basis

by fixing the total angular momentum projection Jz =
M + S = 1

2
, where M =

∑

imi is the total azimuthal
quantum number, and S =

∑

i si the total spin projec-
tion along the x− direction. For cutoffs, we select the
total light-front momentum, K, and the maximum to-
tal quanta allowed in the transverse mode of each one or
two-parton state, Nmax, such that

∑

i

xi = 1 =
1

K

∑

i

ki, (8)

∑

i

2ni + |mi|+ 1 ≤ Nmax, (9)

where, for example, ki defines the longitudinal modes
of Eq.(2) for the ith parton. Eq.(8) signifies total light-
front momentum conservation written in terms of boost-
invariant momentum fractions, xi. Since we employ a
mix of boundary conditions and all states have half-
integer total K, we will quote K-values rounded down-
wards for convenience, except when the precise value is
required.
In Fig.1 we show the eigenvalues (multiplied by K) for

a non-renormalized light-front QEDHamiltonian given in
Eqs.(5,6,7), with fixed Ω = 0.05 MeV and simultaneously
increasing K and Nmax. The resulting dimension of the
Hamiltonian matrix increases rapidly. For Nmax = K =
2, 10, 20, the dimensions of the corresponding symmetric
d× d matrices are d = 2, 1670, 26990, respectively.
The number of the single fermion basis states, consid-

ering all the symmetries, increases slowly with increas-
ing Nmax = K cutoff. For Nmax = K = 2, 10, 20 the
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FIG. 1: Eigenvalues (multiplied by K) for a non-renormalized
light-front QED Hamiltonian which includes the fermion-
boson vertex and the instantaneous fermion-boson interac-
tion without counterterms. The basis is limited to fermion
and fermion-boson states satisfying the symmetries. The cut-
offs for the basis space dimensions are selected such that K
increases simultaneously with the Nmax.

number of single fermion basis states is 1, 5, 10, respec-
tively. Our lowest-lying eigenvalue corresponds to a so-
lution dominated by the electron with n = m = 0. The
ordering of excited states, due to significant interaction
mixing, does not always follow the highly degenerate un-
perturbed spectrum of Eq.(5). States dominated by spin-
flipped electron-photon components are evident in the
solutions. Nevertheless, the lowest-lying eigenvalues ap-
pear with nearly harmonic separations in Fig.1 as would
be expected at the coupling of QED. The multiplicity of
the higher eigenstates increases rapidly with increasing
Nmax = K and the states exhibit stronger mixing with
other states than the lowest-lying states. In principle
the fermion-boson basis states interact directly with each
other in leading order through the instantaneous fermion-
boson interaction, but numerically the effect of this in-
teraction is very weak, and thus does not contribute sig-
nificantly to the mixing. Even though we work within a
Fock space approach, our numerical results should thus
approximate equal the lowest order perturbative QED
results for sufficiently weak external field.

In Fig.2 we show the results for the square root of the
electron anomalous magnetic moment (scaled),

√

δµ/g2,
as a function of Ω obtained from the lowest mass eigen-
state. That is, we plot the magnitude of the probability
amplitude that electron has its spin flipped relative to
the single electron Fock-space component in the range
where the results are converged. Since our system is in
an external field, the lowest physical mass eigenstate (not
known experimentally) can deviate from the free electron
mass. Therefore, before renormalization, we only con-
sider cases where the mass eigenvalue falls within 25%
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FIG. 2: (Color online) Square root of the (scaled) electron
anomalous magnetic moment as a function of the transverse
external field for a sequence of increasing basis spaces indi-
cated in the legend. These are non-renormalized results where
the mass eigenvalue falls within 25% of the free electron mass.
The Schwinger result, appropriate to Ω = 0 MeV, is indicated.
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FIG. 3: (Color online) Fit to the results of Fig.2 for Nmax =
K = 12, . . . 20. Extrapolation to zero external field yields
0.1121, compared with the theoretical 1-loop QED prediction
(”Schwinger”) of 0.1125.

of the free electron mass. At zero external field we may
compare this result with the square root of the ratio of the
Schwinger result α

2π to the coupling constant g2 = 4πα.
For even Nmax = K the results converge rapidly for
Nmax = K ≥ 14. The results for odd cutoffs (not shown)
track even cutoff results as Nmax = K increases. Below
Ω<∼ 0.05 MeV, in the weak external field region, all the
interactions are quenched at fixed Nmax = K, and not
converged, due in part to our requirement that the HO
basis states track the external field.

Fig.3 shows an extrapolation of the above results for
Nmax = K = 12, . . . , 20 to the zero external field limit
Ω = 0 Mev. We have only included the points that have
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FIG. 4: (Color online) Individual fits to the renormalized re-
sults for square root of the (scaled) electron anomalous mag-
netic moment for Nmax = K = 10, . . . , 20. The inset shows
the continuum limit extrapolation of the zero external field
results in the main panel as a function of 1/K.

Ω>∼ 0.05 MeV, above the peak shown in Fig.2 where we
have reasonable convergence. An excellent agreement
with the results is obtained by a fit function f(Ω) =
a(1+bΩ2+cΩ4) exp(−dΩ), with a = 0.1121. This is< 1%
deviation from the Schwinger result of 0.1125, which is
reasonable in light of our numerical accuracy and extrap-
olation uncertainties. If we perform individual extrapo-
lations for all the Nmax = K = 12, . . . , 20 results with
0.1 ≤ Ω ≤ 1.4 MeV, a range spanning the electron mass
scale, we obtain excellent fits with 0.1109 ≤ a ≤ 0.1134,
i.e. remaining within 1.5% of the Schwinger result.

In Ref.[3] we discussed possible divergences present in
our framework, and anticipated a straightforward man-
agement of the identified divergences. Here we renor-
malize our results by applying a sector-dependent nor-
malization scheme from Ref.[6]. In our present limited
Fock space, we need only the mass counterterm δme.
This δme is added to the mass term in the diagonal one-
electron part of the Hamiltonian Eq.(5). In the absence
of a known experimental mass for renormalization due
to the external field, we adjust δme such that the lowest
eigenstate remains at KE0 = m2

e +M0Ω. That is, we
simply adopt the free electron mass for the renormalized
mass.

In Fig.4 we present
√

δµ/g2 for Nmax = K =
10, . . . , 20 from the renormalized QED Hamiltonian of
Eq.(5), with δme, and Eqs.(6,7). To eliminate possi-
ble effects from the peak at Ω ∼ 0.05 MeV in Fig.2,
we only include results with the external field Ω ≥ 0.2
MeV. Again, individual fits of the form f(Ω) = a(1 +
bΩ2 + cΩ4) exp(−dΩ) are an excellent representation of
our results. The range of the extrapolated values is
0.1077 ≤ a ≤ 0.1216.

The convergence with an increasing cutoff is now less
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FIG. 5: (Color online) Individual fits to the renormalized re-
sults for square root of the (scaled) electron anomalous mag-
netic moment for Nmax = 20, K = 10, . . . 50. The inset shows
the continuum limit extrapolation of the zero external field
results in the main panel as a function of 1/K.

rapid than in the non-renormalized case shown Fig.2. In
order to approach the continuum limit Nmax = K → ∞,
we perform further extrapolation to the zero-Ω results
of Fig.4. The inset of Fig.4 shows linear extrapolation
of the results of the main figure in 1/K to the contin-
uum limit Nmax = K → ∞. To verify the stability
of the results, an extrapolation based on the Ω ≥ 0.1
MeV fits (not shown) is also given. The extrapolated
continuum values are 0.1362 (0.1383) for Ω ≥ 0.2 (0.1),
respectively, and thus about 20% above the Schwinger
result 0.1125. An enhancement of this magnitude was
also observed in related works, Ref.[5] and Refs.[8, 9],
where one-photon truncated light-front Hamiltonian was
regulated with Pauli-Villars (PV) regularization scheme.
With PV regularization as well as in our renormalized re-
sults, interpreted from a perturbation theory perspective,
the intermediate state propogators are developed from a
dynamical (non-perturbative) electron mass rather than
using the unperturbed mass needed for direct comparison
with perturbation theory.
In our approach the HO parameters Ω,M0, the fermion

massme and the total longitudinal momentum K appear
as prefactors for the matrix elements appearing in the
Hamiltonian. Therefore we can rather straightforwardly
vary the size of the Hamiltonian matrix by keeping Nmax

fixed, and changing K alone. In Fig.5 we study the con-
tinuum limit of

√

δµ/g2 by setting Nmax = 20 and in-
creasing K in units of 10, from K = 10 to K = 50.
The dimension of the Hamiltonian matrix then increases

from d = 11790 to d = 69590. The extrapolated results
in the main figure range between 0.1148 ≤ a ≤ 0.1259,
and show a good convergence pattern. The inset of Fig.5
shows linear extrapolation of the results of the main fig-
ure to the continuum limit K → ∞. With Ω ≥ 0.2 (0.1)
MeV the extrapolated values are 0.1288 (0.1290), ∼ 15%
above the Schwinger value.

In summary, we have evaluated properties of an elec-
tron in a non-perturbative external harmonic oscillator
potential. We have taken the weak external field limit of
the electron anomalous magnetic moment, and obtained
results compatible with QED perturbation theory with
reasonable accuracy. Our framework can be extended by
incorporating higher Fock-space sectors and adopting ex-
ternal strong fields relevant to future high-intensity laser
facilities. Applications to QCD will proceed with the
adoption of recently-developed color-singlet basis enu-
meration techniques [3].
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