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[Abstract] It is a challenge to produce a practical design of an electron storage ring 
with a theoretical minimum emittance (TME) lattice of ultra low emittance, e.g. down 
to a level of several pico-meters, due to the very strong focusing and the extremely 
large natural chromaticity associated with the lattice design. To help dealing with this 
challenge, it is customary to scale the parameters and look for a best solution guided 
by these scaling properties. In this paper, the parameter scaling is summarized, and it 
is argued that, with the lattice configuration with defocusing quadrupoles closer to the 
dipoles or simply with combined-function defocusing dipoles, one can reach a good 
balance of the low emittance and relatively small natural chromaticity, with phase 
advance per half cell below π/2. A 10 pm TME lattice for PEP-X is shown as 
demonstration of the design procedure.    
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1. Introduction 
Emittance is one of the most important parameters for electron storage rings. Ultra 
low emittance allows high luminosity in electron-positron colliders or high brightness 
in modern synchrotron light sources. During the past few decades, many efforts have 
been made to study the theoretical minimum emittance (TME) [1] and its concrete 
implementations (see, e.g. ref. [2]).  
 
A TME cell usually consists of one normal or combined-function dipole with length 
LB and bending angle θ and a few families of quadrupoles. The beta function βx0 and 
dispersion Dx0 are minimal in the middle of the dipole (for simplicity, the subscript x 
of the Courant-Snyder parameters is ignored in the following context).  
 
In Ref. [1], the TME condition for normal dipole is obtained as 
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where Cq = 3.83*10−13m; γL is the Lorenz factor; ρ = LB/θ is the bending radius of 
dipole; Jx is the horizontal damping partition number, which is very close to 1 for 
normal dipole with small bending angle; μx is the phase advance per half cell. An 
asterisked quantity means the quantity is evaluated when the exact TME condition is 
fulfilled. 
 
Normally, it is not difficult to realize the exact TME condition in a practical lattice 
design. However, in the case of designing a TME lattice with ultra low emittance, e.g. 
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down to a level of several pico-meters, it requires very strong focusing quadrupoles 
and in turn requires extremely strong sextupoles to correct the natural chromaticity. 
They lead to large geometric and chromatic nonlinear aberrations, causing the 
difficulty of dynamic aperture optimization. In order to maintain the natural 
chromaticity at a reasonable level, we prefer relatively weak focusing, phase advance 
smaller than μx

*, and reach emittance close to, rather than at the exact TME condition.  
 
Therefore it is essential to understand the variation behaviors of important parameters 
in the neighborhood of the exact TME conditon, such as the phase advance per half 
cell μx, relative emittance εr, relative beta function βr and dispersion Dr. In this paper, 
we call it “parameter scaling”, 

0 0 0
* * *

0 0 0

, ,x
r r r

x

DD
D

ε βε β
ε β

= = =              (2) 

 
The overall picture of the parameter scaling of a TME lattice discussed in a previous 
study [3] and maybe in intuition is that, as μx moves down from μx

*, the relative 
emittance εr will increase monotonically. Actually, it is not exactly correct. In Sec. 2, 
the parameter scaling of the TME cell with normal dipole is studied systematically. 
We find that a discontinuity emerges at μx = π/2 along with εr rapid increasing as μx 

decreases towards π/2. After crossing the discontinuity at μx = π/2, however, the εr 

exhibits a local minimum at μx around 80 degrees. The discontinuity is caused by the 
fact that the cases of μx above and below π/2 are physically related to two different 
lattice configurations, i.e. TME cell with horizontal focusing quadrupole (QF) or 
defocusing quadrupole (QD) closer to the dipole. The latter configuration (μx below 
π/2 and QD close to the dipole) can enable us to achieve relative low emittance as 
well as reasonable natural chromaticity. 
 
We then expand the analysis to TME lattice with combined-function defocusing 
dipoles in Sec. 3. It is found that, the TME cell with defocusing dipole allows of 
lower emittance than that with normal dipole, especially in the case of μx below π/2. 
In sec. 4, we discuss the principles in practical ultra-low emittance lattice design 
based on the parameter scaling study and present a compact TME lattice for PEP-X 
storage ring with emittance of 10 pm as demonstration. 
 
2. TME cell with normal dipole 
2.1 Relative emittance and phase advance per half cell 
The equilibrium emittance of TME cell with a normal dipole of small bending angle 
can be written as [1] 

2 3 2 3 2

0 3

2 3 5 2 2 3 2
0 0 0

4
0

3 960 80 ( )( )
960

q L q L
x dip

x x B

q L

x

C C
F H

J J L

C L D L L D
J L

γ θ γ θ ρε

γ θ ρ β ρ
β

= = < >

+ + −
= ⋅

        (3) 



 3

where <H>dip is the average of Courant-Snyder dispersion invariant over the dipole.  
Substituting the scaled parameters (Eq. (2)) into the above equation, one obtain the 
expression of εr in terms of Dr and βr [3], 
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In addition, the expression of μx in terms of βr and Dr was obtained in Ref. [4], 

2 3tan
35

r
x

rD
βμ =

−
                 (5) 

Eqs. (4) and (5) show that both εr and μx are related to βr and Dr. Yet, we can not view 
the variation behavior of εr with respect to μx unless we obtain the relationship 
between βr and Dr. In Ref. [3], a correlation between βr and Dr, dDr/dβr = 0, was used 
to obtain the parameter scaling equations, which, however, do not apply well in a 
compact TME lattice design with ultra-low emittance and especially with μx below 
π/2. 
 
In the following, we will derive approximate expressions of βr in terms of Dr for the 
cases with μx above and below π/2, which we will then use to reveal the typical 
parameter variation behavior in a TME lattice. 
 
2.2 Relationship between βr and Dr when μx > π/2 
 
Generally, a TME cell can be divided into (HD, Ptd, Ptd, HD), where HD is half of 
the dipole, and Ptd is the part outside the dipole including drifts and quadrupoles.  
 
It is convenient to introduce the 3-by-3 transfer matrix of the horizontal motion which 
includes the propagation of off-momentum rays [5]. In the case of small bending 
angle, the transfer matrices can be written as 
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where m11, m12, m21 are arbitrary values, while m22 is determined by the condition Det 
Mptd = 1 [6]. Multiplying the matrices in sequence, one can obtain the periodic 
transfer matrix Mpcd = Mhd.Mptd.Mptd.Mhd and the corresponding periodic transfer 
matrix MCSpcd of the Courant-Snyder parameters at the dipole center. 
 
The Courant-Snyder parameters are periodic in a standard TME cell, thus we have, 
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where the Courant-Snyder parameters at the dipole center are 
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For the exact TME condition, Dr = 1 and βr = 1. Eq. (8) results in 
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It shows that m12, m21, m22 all depends on m11, which is a very strong constraint on the 
transfer matrix Mptd. 
 
In a practical design, one usually determine and fix the dipole parameters first and 
then match the optics by tuning the transfer matrix outside the dipole, i.e. Mptd. 
Assuming the deviation of the transfer matrix from Eq. (9) is not large, we have 
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where d11, d12, d21 are arbitrary small values and d22 is determined by Det Mptd1 = 1. 
With Mptd1 and Mhd, we can calculate the new periodic transfer matrices Mpcd1 and 
MCSpcd1. 
 
Again, using the periodic condition (Eq. (8) with Mpcd1, MCSpcd1 and arbitrary Dr, βr) 
to obtain the expressions of Dr and βr in terms of d11, d12, d21 and m11, 
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With substitutions, t = d21*LB*m11, s = d11 / m11 and r = d12 / (m11*LB), we simplify the 
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above equation as 
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Note that there are three independent variables r, s and t in the above expressions. In 
order to obtain a simple relationship between Dr and βr, we note that comparing with 
the other two variables, s is much more closely related to the shift of the phase 
advance. Thus only keep s and let t, r→0, Eq. (12) becomes 

2

25 75
25(1 )

(1 5 )(25 75 )
25(1 )

r

r

sD
s

s s
s

β

−
≈

+

− +
≈

+

                 (13) 

Then we obtain the approximate expression of βr in terms of only Dr, 
21 3(3 ) 8(3 )

2r r rD Dβ ≈ − − + −             (14) 

Eq. (14) applies for the cases with parameter deviations not large from the exact TME 
condition.  
 
It is worth noting that, keep t or r and let other two variables tend to zero, one can 
obtain similar expressions of βr in terms of only Dr. 
 
In order to clarify the variation behavior of βr with respect to Dr predicted by Eq. (14), 
we design a lattice at the exact TME condition (Fig.1), vary the normalized gradients 
of quadrupoles randomly in a range of 0.4 m-2 and the drift lengths in a range of 0.2 m 
around the original values, and then plot the stable solutions in Fig. 2. It shows that 
the agreement between the analytical predictions and the numerical calculations is 
pretty well.  
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Fig. 1 One cell of the TME lattice with QF closer to the dipole. The cell length is 
12.5m, LB = 1.5m, θ = π/20 and εr = 1. 
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Fig. 2 Variations of βr obtained numerically and analytically with respect to Dr. 
 
2.3 Relationship between βr and Dr when μx < π/2 
 
When μx is below π/2, Eq. (14) will not work any longer because the transfer matrix 
Mptd already deviates from Eq. (9). Therefore we first discuss the constraints on the 
transfer matrix Mptd at μx = π/2, and then explore the relationship between βr and Dr 
by applying small perturbations to the transfer matrix.   
 
Eq. (5) shows that Dr = 3 when μx = π/2. Using the periodic condition (Eq. (8) with Dr 
= 3) and the symplectic condition, we obtain 
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In addition, the values of m11 and βr are related to each other. If m11 = 0, βr and m12 are 
arbitrary; if m11 ≠ 0, βr tends to 0 (as beta function can never vanish, this condition 
requires a beta function at the dipole center as small as possible) and m12/m11 = −LB/2. 
  
It should be mentioned here that, the first case with m11 = 0 is very hard to realize in a 
practical TME lattice design, in which, we are interested in not only low emittance but 
also small cell length as much as possible, namely, compact lattice layout. In such a 
compact TME cell, the drift lengths are usually set to available minimal values, with 
very limited adjustable range. Two or even one family of quadrupoles are used to 
match the optics. The primary goal of the optics matching is to squeeze the horizontal 
Courant-Snyder parameters at the dipole center, control the maximal beta functions 
(typically < 35m), and tune the phase advance to appropriate value to cancel the 
nonlinear geometric aberrations. There are usually not enough variables to realize the 
condition m11 = 0 while satisfying the goals listed above. On the other hand, no 
constraints are imposed on the element m11 in the second case, and the condition 
βr→0 as Dr = 3 is consistent with Eq. (14) (see also Fig. 2). Thus in what follows, we 
confine the derivation to the second case, i.e. m11 ≠ 0, βr→0 and m12/m11 = −LB/2. 
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Now we consider the case of μx slightly below π/2. In this case, the matrix Mptd can be 
written as 
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where the matrix components will tend to second case of above solutions when μx 
approaches π/2. 
 
Calculate the 2-by-2 transfer matrix of the half cell Mhc=Mptd.Mhd and write it in terms 
of Courant-Snyder parameters, 
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where “cb” indicate the cell boundary. The conditions of αx = 0 at the dipole center 
and the cell boundary are used to obtain the matrix on the R.H.S. of Eq. (17). 
 
From the one-to-one correspondence of the matrix components in Eq. (17), we have 
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Due to β0 is always positive, for μx < π/2, the L.H.S. of Eq. (18) is positive. Then the 
infimum of a is –LB/2. 
 
Use Eqs. (1), (2), (5) and (18) to cancel μx,  
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Then substitute above equation to Eq. (3) to cancel Dr, we obtain 
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It is clear that, no matter what the value of a is, the relative emittance εr will be large 
if βr is much smaller or larger than 1. If a is smaller than zero, or even close to –LB/2, 
εr will also be large. Only moderate βr and positive a allow relative small εr. 
 
The expression of βcb can be obtained by multiplying the MCShc derived from Mhc 
with the vector of Courant-Synder parameters at the dipole center, 
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For nonzero 11m′ , βcb will increase with a. To avoid large βcb, moderate a is required.  

Consider a varying from 1 to 50 m and LB = 2m, we calculate the εr with different βr, 
as shown in Table 1 and Fig. 3. The deviation of εr is small with a changing 
dramatically, especially for small βr. It is therefore possible to find a quasi- 
relationship between εr and βr. 
 

Table 1. εr versus βr, with a varying from 1 to 50 m and LB = 2m  
βr εr (max) εr (min) εr (mean) Δεr 
0.5 6.50 6.27 6.38 0.12 
1 4.02 3.53 3.77 0.25 
2 4.68 2.56 3.61 1.05 
3 6.35 2.83 4.59 1.75 
4 6.35 2.83 4.59 1.76 
5 8.73 3.20 5.96 2.76 
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Fig.3 Average εr and Δεr with βr, while a varying from 1 to 50 m and LB = 2m. 
 
Numerical simulations are undertaken to verify the analysis. With the TME lattice 
shown in Fig.4, we randomly vary the normalized quadrupole gradients in a range of 
4 m-2 around the original values and drift lengths in a range of 1m (but keep the total 
cell length smaller than 7.5 m), and then record all the stable solutions with εr smaller 
than 10 and plot the corresponding βr

2 versus (Dr − 3) in Fig. 5. Instead of uniformly 
distributed, most of the points locate around a straight line. The slope A is obtained by 
fitting the data. 
 
We simulate the cases with dipole length from 0.8 to 5m, and summarize the results in 
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Fig. 6. We find that, Eq. (19) with a = 1.5 m can well describe the variation of βr
2 with 

(Dr − 3), for a compact TME lattice with QD closer to the dipole, low εr and phase 
advance per half cell below π/2. 
 
With straightforward calculation, we obtain the expression of εr in terms of μx, 

3
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with B = 1 + 3 LB. 
 
The βr and Dr as function of μx can also be derived. They are omitted here due to 
lengthy expressions. 
 
Once the dipole length is determined, one can view the variation behaviors of the 
parameters, i.e. εr, μx, Dr and βr, regardless of the concrete setting of quardupole 
strengths and drift lengths outside the dipole.  
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Fig. 4 One cell of the TME lattice with QD closer to the dipole. The cell length is 
7.3m, LB = 3.5m, θ = π/99, Dr =4, βr =2.16, εr = 3.9 and μx=73.4 degrees. 

 

Fig. 5 Plot of βr
2 with respect to (Dr −3), LB = 3.5m. 
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Fig. 6 Plot of (A-2.5) with respect to 1/LB. 

2.4 Discussion 
 
We summarize the scaling of the parameters of εr, μx, Dr and βr for TME cell with 
normal dipole using Eqs. (4), (5), (14) and (19) with a = 1.5 m in Fig. 7 with LB = 
3.5m. It shows that, the εr decreases as μx moves down from the μx

* until μx = π/2, 
where a discontinuity occurs along with rapidly increasing εr.  For μx below π/2, the 
εr reaches a local minimum (~3) at μx around 80 degrees.  
 
The parameter variation behaviors are different in the cases of μx above and below π/2. 
It is caused by the fact that the two cases are physically related to two different lattice 
configurations, i.e. TME cell with QF or QD closer to the dipole (see Fig. 1 and 3). 
For the latter configuration, the horizontal focusing is relatively weak, the beta and 
dispersion functions are not much squeezed, and the phase advance per half cell μx is 
usually below π/2. As a rule of thumb, the smaller the phase advance is, the smaller 
the natural chromaticity will be. Now, we arrive at a TME lattice with more relaxed 
optics than that corresponding to the exact TME condition, relatively low emittance 
(εr ~ 3) and reasonable natural chromaticity.  
 
The scaling curves in Ref. [3] are also plotted for comparison. We can see that, it does 
not predict the discontinuity in the parameter scaling curves at μx = π/2 and it does not 
reveal the difference between the two lattice configurations. 
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Fig. 7 Variations of μx (upper) and Dr, βr (lower) with respect to εr for TME cell with 
normal dipole. The dashed lines indicate the parameter scaling curves obtained with 

dDr/dβr = 0 in Ref. [3].  
3. TME cell with combined-function defocusing dipole 
 
In this section, we will firstly show that, the TME cell with combined-function 
defocusing dipole (DD) can enable us to achieve lower minimal emttiance than that 
with normal dipole (ND). And then, we will present the parameter scaling in TME cell 
with combined-function defocusing dipole, and compare it with that in TME cell with 
normal dipole. 
 
3.1 Minimal emittance with combined-function defocusing dipole 
The transfer matrix of a combined-function defocusing dipole can be written as 
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The equilibrium emittance for a TME cell with combined-function defocusing dipole 
is 
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There are two factors to be considered, i.e. F(DD) and Jx(DD). The minimal value of 
F(DD) is reached at the condition 
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The corresponding minimal emittance is 
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On the limit K→0, Eqs. (27) - (29) are reduced to Eq. (1).  
 
Although the Fmin(DD) is larger than Fmin(ND), as shown in Fig. 8, the damping 
partition number Jx(DD) also increases with the increasing K1/2LB and can be larger 
than 1. To clarify the total effect of the combined-function defocusing dipole, we scale 
the εmin(DD) with εmin(ND), 
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where t = K1/2LB and θ is the bending angle. 
  
Fig. 9 shows the contour map of the εmin(DD)/εmin(ND) with respect to t and θ. We 
can see that, the scaling factor is nearly always smaller than 1, varying slowly with θ 
but quickly with t. In the case of t =1 and θ = π/99, εmin(DD)/εmin(ND) = 0.89. 
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Fig. 8 Fmin(DD)/Fmin(ND) variations with respect to t =K1/2L. 

 

 

Fig.9 Contour map of εmin(DD)/εmin(ND) with respect to t = K1/2LB and θ. 
 
3.2 Relative emittance and phase advance per half cell 
Again, we define three non-unit scaled parameters,  

0 0 0
* * *

0 0 0

( ) ( ) ( )( ) , ( ) , ( )
( ) ( ) ( )

x
r r r

x

DD D DD DDDD D DD DD
DD D DD DD

ε βε β
ε β

= = =       (31) 

At a slight risk of confusion, we simply denote as εr, Dr, and βr in what follows in Sec. 
3.  
 
We obtain the expression of εr in terms of Dr and βr by inserting the scaled parameters 
into Eq. (31), 

4 2 2 2 2 2

2

2 2 2 2 2 2 2 2 2 2 2 2 2

2 4 2 2 2 2 2

( 2 ( 4 ) ( 4 2 )cosh( ))
2 (4 4cosh( ) sinh( )))

4 8 4 3 4 2 4( 2 )cosh( ) 8( 1) sinh( / 2) sinh( ) sinh( )
(4 2 2 ( 2

r
r

r r r r r r r r r r r

r r r

t t t t
t t t t

D D t t D t D t D D t D t t t t t t
D t t D t D t

θ θ θε
β

β β β β
θ θ θ

− − − − + + − +
= ×

+ − +

+ − + + − + − + − − − + +
+ − − + − + 2 2)cosh( ) 2( 1) ( 2 )sinh( / 2)rt D t t tθ− − − +

                    (32) 
The phase advance per half cell is obtained as 

2sinh( ) (4 4cosh( ) sinh( ))2tan
(sinh( ) )[ ( 1 cosh( )) 2 sinh( )]

2 2

r

x

B r r

t
t t t t t

t t t tK L D D

β
μ + − +

= − ×
−− + −

(33) 

When μx = π/2, the Dr will be 
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(1 cosh( 2)( / 2)
2sinh( / 2)r x

t tD
t t

μ π −
= =

−
               (34) 

 
3.3 Relationship between βr and Dr  
 
We also derive the approximate analytical expression of βr with Dr. Since the 
derivation is similar as in Sec. 2, the detailed procedure is omitted here. 
  
In the case of μx above π/2, we have 

2

(2( 1) 2 cosh(2 ) sinh(2 ))( 4 sinh(4 ))
6 4 ( 1) cosh(2 ) 8 cosh(4 ) 2 cosh(8 ) sinh(4 )

( 2 4 2 4 2 cosh(2 ) 4 ( 1)cosh(4 ) 2 cosh(6 )) (3 ) sinh(2 ) sinh(6 )
1 4

r r
r

r r

r r r r r

D x x x D x x x
Cx B D x x Cx x Cx x BD x

B C BD CD C x C D x C x x C B D x CD x
x

β − + − − +
≈ ×

− − − + − +

− + + − − + − + + − −
+ cosh(4 ) sinh(4 )x x x− +

                       (35) 
where 

2

3 2 2

5 32 8cosh(4 ) 3cosh(8 ) 8 sinh(4 ) 4 sinh(8 ),
64 8 cosh(4 ) 8 cosh(8 ) (32 2)sinh(4 ) (8 1)sinh(8 ),

8 4 cosh(4 ) 3sinh(4 ),
/ 4

A x x x x x x x
B x x x x x x x x x
C x x x x
x t

= + − + − −

= − + − + − + +
= + −
=

 

 
And in the case of μx below π/2, we have 

2
2

(1 cosh( 2) ( / 2 sinh( / 2))( sinh( ))( )
2sinh( / 2) sinh( / 2)(4 4cosh( ) sinh( ))

2 cosh( / 2) 2 sinh( / 2)
cosh( / 2) sinh( / 2)

r r

B

B

t t t t t tD
t t t t t t t

Bt t L t
L t Bt t

β − − + − +
= − × ×

− + − +
+
+

          (36) 

where the coefficient B is about 1.5 m.  
 
On the limit t→0 and θ→0 if necessary, Eqs. (32), (33), (35), (36) are reduced to Eqs. 
(4), (5), (14) and (19). 
 
3.4 Discussion 
 
We summarize the scaling of the parameters of εr, μx, Dr and βr for TME cell with 
combined-function defocusing dipole using Eqs. (32), (33), (35) and (36) in Fig. 10, 
with LB = 3.5m and t = 1. The parameter scaling curves for the TME cell with normal 
dipole are also plotted for comparison. We can see that, with combined-function 
defocusing dipole, one can reach even lower εr in the case of μx below π/2. In addition, 
it is possible to use only one family of quadrupoles in a TME cell by adopting 
combined-function defocusing dipoles, which leads to a compact lattice layout, as will 
be shown in Sec. 4. 
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Fig .10 Variations of μx (upper) and Dr, βr (lower) with respect to εr for TME cell with 
defocusing dipole. The dashed lines represent that of TME cell with normal dipole.  
 
4. Practical design 
4.1 Design consideration 
 
As is shown above, to achieve low emittance, one should match the phase advance per 
half cell to be around 142 (exact TME condition) or 80 degrees (local minimal εr). On 
the other hand, to control the natural chromaticity, small phase advance, e.g. μx below 
π/2, is preferred, and it is best to set the phase advance to be nπ/N (n=1,2,3,…, N is 
the number of cells in one super-period) to cancel the geometric aberrations induced 
by the chromaticity correction sextupoles. Besides, one should reduce the length of 
TME cell as much as possible. As we know, the emittance is proportional to θ3. For 
fixed circumference of a storage ring, smaller cell length means more TME cells, 
more dipoles, smaller bending angle of each dipole and thus smaller emittance. 
 
4.2 Parameter selection 
 
The 4.5 GeV ultra-low emittance synchrotron light source named as “PEP-X” was 
proposed recently [7]. The storage ring is planned to be built in the 2.2 km long 
PEP-II tunnel, which has 1.5 km arc length. At least thirty straight sections of 5m are 
required for synchrotron radiation experiments. Thus the 1.5 km arc is divided to 30 
periods, and each period is 50 m. With rough estimation, the theoretical minimal 
emittance will be about 3 pm if the bending angle of each dipole θ = π/180. So we 
totally use 390 combined-function defocusing dipoles (including 60 half angle dipoles) 
and adopt 11 standard TME cells and two matching cells in each period. The average 
length of each cell is 3.5 m, which calls for a compact lattice design. 
 
4.3 Compact TME cell design 
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The sketch map of a standard TME cell is shown in Fig. 11. To save space, only one 
family of QF and a combined-function defocusing dipole are used to provide the 
transverse focusing. The length of quadrupole can be reduced to 0.15 m by using 
small aperture magnet [8]. The drift D1 is set to 0.25 m for focusing sextupoles (SF). 
The length of the drift between QF and dipole is 0.6 m, which is almost the minimal 
value for defocusing sextupoles (SD) and other devices. The defocusing dipole is 1.1 
m long. The total length of the standard TME cell is 3.1 m. 
 

 
Fig. 11 Layout of the compact TME cell design 

 
With the above parameter setting, we search for appropriate solution with the necktie 
diagram and contour plot of emittance and phase advance in the (Kf, Kd) space, as 
shown in Fig. 12. It shows that, the emittance of 10 pm can be approximately 
achieved at (μx, μy) = (5/11, 1/11) π. From the partial enlarged figure, we can see that 
the emittance does not reach a minimal value at μx = π/2 but around 5π/11. The final 
lattice has emittance of 9.9 pm with εr(DD) = 3.3 and natural chromaticity of (−1.5, 
−0.4) per cell. The Courant-Snyder paramerters in one period of the storage ring are 
shown in Fig. 13. 
 
5 Conclusions 
The parameter scaling in TME cell with normal and defocusing dipole are presented. 
The relationship between the relative emittance εr and phase advance per half cell μx 
in terms of relative beta function βr and relative dispersion Dr at the center of the 
dipole magnet are already known. To understand the scaling behaviors of the 
parameters, we should know the relationship between βr and Dr. Strictly speaking, 
there is not one-to-one correspondence between these two parameters. However, 
basing on the assumption of small perturbations on the transfer matrices, approximate 
expressions of βr in terms of only Dr for the cases of μx above and below π/2 are 
derived, which apply well when the lattice parameter deviations not large from the 
exact TME condition and the case with μx = π/2, respectively. 
 
The formulas enable us to view the parameter variations globally without carrying out 
numerous calculations. We find that emittance increase rapidly at μx = π/2 and a local 
minimal emittance locates at μx about 80 degrees.  
 
Throughout the paper, we highlight the TME cell with μx below π/2, which is 
physically related to the configuration with horizontal defocusing quadrupole closer to 
the dipole or simply with combined-function defocusing dipole. Due to the relative 
small phase advance and relaxed Courant-Snyder parameters, one can reach a good 
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balance of low emittance (εr ~ 3) and reasonable natural chromaticity. A 10 pm TME 
lattice for PEP-X is shown as demonstration. 
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Fig. 12 Necktie diagram and contour plot of emittance and phase advance with 
gradients of the defocusing dipole and QF. Green area represents stable region. Left 
figure: solid lines, from lower to upper, represent μx = (2/11, 3/11, 4/11, 5/11) π; 
dotted lines, from left to right, represent μy = (1/11, 2/11, 3/11) π; dashed lines, from 
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lower to upper, εx = (13, 12, 11, 10, 9) pm. Right partial enlarged figure: solid blue 
line represents μx = 5/11π; dotted black line represents μy = 1/11π; blue dashed line 
represents ε = 10pm and purple dashed line for ε = 9pm. 
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Fig. 13 Courant-Snyder parameters along one period of TME lattice for PEP-X 

storage ring 


