
Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

1

Collaborative Visualization for Large-Scale

Accelerator Electromagnetic Modeling

Principal Investigator Dr. William J. Schroeder

Kitware, Inc. 28 Corporate Drive Clifton Park, NY 12065

http://www.kitware.com

518-371-3971

SLAC National Accelerator Laboratory, Menlo Park, CA 94025

SLAC-PUB-14198

2

Collaborative Visualization for Large-Scale Accelerator
Electromagnetic Modeling

CRADA SLAC-331
Greg Schussman

This document contains the information requested for Project P-331, "Collaborative

Visualization for Large-Scale Accelerator Electromagnetic Modeling", from the

CRADA SLAC-331 agreement.

To be more specific, SLAC helped identify key features needed for synchronous

and asynchronous collaborative accelerator environments. Readers were

implemented allowing ParaView to read (in serial and in parallel) SLAC specific

mesh files, field files, and particle files. Figure 1 shows SLAC mesh, field, and

particle data read with these readers and rendered in ParaView. Key accelerator

visualization procedures were streamlined into buttons on a SLAC toolbar for

ParaView. These include visualization pipeline construction and adjustment,

field selection, automated pseudo-color related scaling, mesh rendering styles,

and line plots. SLAC participated in testing and debugging.

Figure 1: This image shows part of a multipacting simulation in the coupler

region of an accelerator structure. The mesh file, field file, and particle files (all

in the SLAC format) are read by ParaView using readers developed for Phase I of

this SBIR. Particles are colored by momentum. Particle trails are shown in

white. Electric field magnitude is indicated by pastel colors. This is one frame of

an animation rendered in ParaView.

3

Phase I: Demonstration of Technical Feasibility

In the Phase I SBIR we proposed a ParaView-based solution to provide an environment for

individuals to actively collaborate in the visualization process. The technical objectives of

Phase I were:

• to determine the set of features required for an effect collaborative system;

• to implement a two-person collaborative prototype; and

• to implement key collaborative features such as control locking and annotation.

Accordingly, we implemented a ParaView-based collaboration prototype with support for

collaborating with up to four simultaneous clients. We also implemented collaborative features

such as control locking, chatting, annotation etc. Due to in part of the flexibility provided by the

ParaView framework and the design features implemented in the prototype, we were able to

support collaboration with multiple views, instead of a simple give as initially proposed in Phase

I.

In this section we will summarize the results we obtained during the Phase I project.

ParaView is complex, scalable, client-server application framework built on top of the VTK

visualization engine. During the implementation of the Phase I prototype, we realized that the

ParaView framework naturally supports collaboration technology; hence we were able to go

beyond the proposed Phase I prototype in several ways. For example, we were able to support

for multiple views, enable server-as well as client-side rendering, and manage up to four

heterogeneous clients. The success we achieved with Phase I clearly demonstrated the technical

feasibility of the ParaView based collaborative framework we are proposing in the Phase II effort.

We also investigated using the web browser as one of the means of participating in a

collaborative session. This would enable non-visualization experts to participate in the

collaboration process without being intimidated by a complex application such as ParaView.

Hence we also developed a prototype web visualization applet that makes it possible for

interactive visualization over the web.

Collaborative Visualization with ParaView

In the Phase I proposal, we proposed the development of a prototype focusing on the

base capabilities in preparation for a full implementation in Phase II. The goal of this

prototype was to demonstrate the feasibility of a collaboration using ParaView as well as

define the whole user experience and the set of features one would like in a collaborative

visualization tool.

ParaView is client-server based architecture for parallel visualization. The user connects to a

server, typically a remote cluster with high compute power, using the ParaView client. Once

connected to the server, the user then controls the visualization with the client while all the data

processing, and optionally rendering, is done on the server side on the cluster. In the Phase I

effort we extended this paradigm for a collaborative setup. All users that need to collaborate

simply connect to the same server. The server instead of simply being driven by a single client

serves multiple clients. Multiple clients bring in a new set of complications: which client has the

control; how to communicate messages set from one client to the other; managing potentially

duplicate data processing pipelines in each client, and so on. These and other issues are covered

4

in detail in the following subsections.

Leader and Participants

When multiple users are working on the same task, there must be a control resolution

mechanism to ensure that only one user is modifying the visualization at any given time. This is

achieved by categorizing the connected users into two types: one and only one Leader and

several (if any) Participants. The Leader is the user who has the control over the visualization

session. The Leader is the participant who drives the visualization; for example creating readers

to read data, applying filters to process the data and controlling how the data is visualized. In

other words, the Leader is the one who has the access to the full functionality of a standard

ParaView client. The Participants, on the other hand, are the observers for the actions of the

Leader. They cannot change the state of the visualization; they can merely observe what the

leader sets up. However they have access to the introspection capabilities of the ParaView client

i.e. they can open a panel showing the information about all the datasets being processed, or

inspect the visualization pipeline that the Leader is controlling. There can only be one Leader at

any given time, while there can be zero or more Participants.

In the Phase I prototype, the first client that connects to the server is assigned the Leader role

by default. We also implemented a control locking and transfer mechanism in the prototype

allowing the leadership to be fluid i.e. it can be passed around among the participating users. The

next subsection describes how to pass the leadership using the Collaboration Manager.

A collaborative session does not have to wait for all participants to connect. A participant can

join in on an existing session. In that case, we ensure that the newly connected participant is in

the same state as the existing clients. Similarly, participants can leave in the middle of a session.

There must always be one Leader in the session. If a Leader leaves a session, then a participant

is randomly chosen as the new Leader. The server exits when the last client disconnects

effectively terminating the collaborative session.

Visualization

The clients begin participating in the visualization process as soon as they connect to the

server. Based on the leadership permissions described earlier, the leader is the only client that

can control the visualization pipeline. The Leader has access to all the features provided by

ParaView which includes opening files to read data, apply filters to process the data, using 3D

widgets to change filter parameters, put annotation text for labeling, create animations etc. As the

Leader goes about doing these tasks, all the other participating clients are updated

simultaneously to reflect the resulting changes. For example when the Leader opens a file, all

clients see that a file has been opened and a reader has been created. They can even inspect

the values for the parameters the leader has set for the reader. In other words, all the

participating clients behave as if the action was done locally.

The Leader can create views to show the data. As soon as these views are created, the other

participants also reflect the action. When the data is rendered in the view, all the participants see

the visualization as well. In the prototype we synchronized the viewpoint with the Leader, hence

all the participants see the data exactly as the leader is seeing it. In the Phase I proposal, we had

5

proposed that we’ll only be able to support single view for collaboration, even though ParaView

supports multi-view configurations. However, by using the abstraction provided by the ParaView

framework to our advantage and other architectural enhancements, we were able to support

multi-view configurations including views such as x-y line plot view, bar chart view and

spreadsheet view.

At any point in the visualization process the leadership can be transferred to any other

participant using the Collaboration Manager panel. This makes it possible for the collaborators to

actively participate in the visualization process. The prototype Collaboration Manager panel is

Collaboration Manager panel. shown in the figure to the right.

6

Rendering

The final stage of any visualization pipeline is generally rendering: mapping the data to the

display. ParaView supports two rendering modes:

• Server-side rendering where the rendering is performed on the server and the images are
shipped to and then displayed on the client. This mode has the advantage that size of the data
delivered to the client is independent of the data being rendered. It depends only on the
resolution of the rendered image. This is advantageous in large data visualizations where the
rendered geometry can be huge. Also, since the server can be run in parallel on a cluster, it can
employ parallel rendering techniques to improve rendering performance by distributing the effort.
However since the server does the rendering, the client needs to fetch new images from the
server on every interaction. This can result in jittery interaction over low bandwidth connections.
Note that to alleviate interaction issues, ParaView provides a means to subsample the images
delivered during interaction.

• Client-side rendering where the geometry to be rendered is shipped to the client and then
the client renders the geometry locally. Since the client receives the entire geometry, it does not
require the server unless the geometry changes. Thus, all rendering resulting from interactions
with the camera can be handled locally. Also, the geometry size must be small enough to fit on
the client.

Both these modes have benefits in different configurations: remote-rendering is preferred for

large geometry setups, while client-side rendering is used when connections are slow and the

geometry is small enough to fit on the client.

In the Phase I proposal, we indicated that we would implement remote-rendering support

alone. However, with the help of several improvements to the way the data/image delivery

components work, we are now able to support both local as well as remote rendering on a per

client basis; i.e. each user can choose for itself whether to use remote-rendering or

local-rendering based on parameters such as connection speed, local rendering capabilities, and

so on. This is a huge advantage since it breaks the dependency of the client on the rendering

process. Since each client can control the rendering process independently, each client can

render at a resolution optimal for its display. Thus, clients can support varying screen resolutions

and data sizes and can still work together without any one having to sacrifice on visualization

quality. Hence, we are proposing support for heterogeneous clients including tiled displays for

Phase II.

Implementation Details

This section covers the design details of the Phase I prototype. Before we delve into the

details, we give a brief summary of the ParaView application framework. The crux of this

framework is the ParaView ServerManager. The server manager is an abstraction layer that

hides the complexities of client-server communication from the application layer, proving a unified

façade irrespective of the underlying configuration.

ParaView ServerManager

ParaView is a parallel visualization application. It is designed to do all the data processing

and/or rendering in parallel with several processors running over a cluster. We use MPI (Message

Passing Interface) for communication between these processes. ParaView can also be used in

7

client-server configuration where the data processing is done on the server that may be running

in parallel, while the client serves as the driver as well as the viewer for the visualization results.

As briefly described previously, there are additional configuration options that control if the

rendering must be done in parallel on the server-side or deliver the geometry to the client and

render on the client side. The former is used for large geometry setups while the latter provides

better interactive frame rates when the geometry sizes are small enough for the single client to

handle.

To isolate the application layer from the intricacies of running is parallel and in client-server

configurations, an abstraction layer called the ServerManager was created. The ServerManager

provides proxies for every filter, source or mapper etc. created for processing/rendering the data

on the server side (and sometimes on the client side as well). The application always uses the

API provided by proxies to create pipelines and change parameter values. The proxies ensure

that the based on the configuration those operations are sent to the right process to affect the

actual source/filter objects. The ServerManager is an xml-configurable, xml-serializable layer.

That makes it possible to provide a plethora of interesting features such as plug-ins, undo-redo,

and state save-restore with ease.

With most of the client-server logic encapsulated in the ServerManager abstraction layer, the

GUI layer can be thought of as a mere observer for the changes to the ServerManager state

while providing mechanisms for affecting the same via panels, menus etc. This has made it

possible to provide different clients for Paraview; e.g. the standard ParaView application Qt GUI,

or a python client, while still reusing the core.

Implementation

The ServerManager is the abstraction layer that encapsulates the client-server

communication. To create a filter on the server side, the application creates a proxy for the filter

on the client side. This results in creation on the actual filter on the server side and setting up an

association between the server-side filter and the proxy on the client. The proxy provides

properties that are used to change the parameters on the filter on the server side. As mentioned

earlier, these proxies and properties are XML serializable. Hence, it is possible to restore the

state for a pipeline by recreating all the proxies and restoring their property values. This principal

forms the basis of our design.

As the Leader sets up the visualization pipeline creating new proxies and changing their

property values, we serialize these changes as XML and ship them to all other connected

participants. When a participant joins a session already in progress, we simply ship the state for

the entire visualization pipeline (instead of just the changes) to the newly connected participant.

Once the participants receive the XML, they load that XML to create new proxies or change

properties on existing proxies etc. These XML changes can include complex changes to the

camera, or instantiating new view windows.

The ParaView GUI layer is designed using a model-view paradigm, where the

ServerManager serves as the model for the visualization pipeline while the GUI acts as the view.

As and when new proxies are created in the ServerManager or when their property values are

changed, the GUI updates itself to reflect the changes. Hence when the XMLs are loaded on the

participants, their GUIs reflect these changes as if it were done locally. Thus the participating

8

clients remain in sync with the Leader.

The communication of XML packets from the Leader to the Participants happens via the

server process. Every atomic change on the Leader is sent to the server that then broadcasts it to

all other connected clients. For the prototype we decided to route all the inter-client

communication via the server. This has the advantage that the clients don’t have to be aware of

one another. However this also implies that the server has to do the additional work of providing a

communication channel. For Phase II, we would like to experiment with support for direct

client-to-client communication using peer-topeer technologies widely used by applications such

Skype™and Google Talk™.

Sharing Data Pipelines

As mentioned earlier, a proxy on the client represents a filter (or a processing unit) on the

server side. When a new proxy is created a new server-side filter is also instantiated and

there’s logic in the ServerManager to keep the two associated with each other.

When collaborating with multiple clients, all clients are connected to same backend data

processing and rendering server. Since all pipeline objects are on the server side, we can very

easily share these objects with all connected participants. Thus all participants will have their

client-side proxies referring to the same server side pipeline objects. Thus not only keeps the

server side memory overhead for each client minimal but also gains from shared data processing

for all participants.

At the same time, we can still support creating of non-shared pipeline objects i.e.

participants can create proxies (with associated server-side pipeline objects) that are not

accessible to others. This will enable us to provide support for local exploration for Phase II, as

described later in the Phase II project description.

Web Visualization: Collaborating over the Internet

In recent years the web has been gaining popularity as a medium for communicating

information and collaborating. Internet applications are becoming more popular and new ones

are developed for as diverse domains a financial bookkeeping to photo editing to gaming. The

visualization community already uses the Internet extensively for sharing data as well as

information using Web 2.0 based frameworks such as MediaWiki. A natural evolution is to

support visualization collaborations via the standard web browser. Hence, for Phase I, we also

investigated approaches for supporting a web browser as a participant in a collaborative

visualization session.

The core of the support for collaboration in ParaView is implemented in the ServerManager

layer. That makes is possible for heterogeneous clients to participate in the collaboration session,

as long as all the clients are based on top of the ServerManager layer.

We investigated a couple of different approaches. The goal was to provide a web component

that web site developers could plug into their website to add support for interactive visualization.

The web-service based solution also made it possible to use the browser as a scripting

environment for ParaView, enabling website developers to create and configure visualization

9

pipelines. The Flash™ based solution focused on improving interactivity by using server side

technologies for better streaming for rendered images to the client. For Phase II, we plan to

implement a solution encompassing both these features, allowing configurability without

sacrificing interactive performance. In the following subsections we discuss the different

approaches for web visualization.

SOAP-based Web Service with Javascript Client

A web service can be thought of as a server-side component that provides a defined service

to the connecting clients –in our case, the service is data visualization. SOAP is a protocol

specification for exchanging data for web services. Using a standard protocol for the web

service makes it possible for different clients to connect and use the web service. Also several

client as well server side libraries are currently available that make it relatively easy to develop

client/server components.

In our implementation, we used Zolera as the server-side SOAP infrastructure for developing

and deploying our web service. One determining factor for using Zolera was the fact that it is

Python based. Since ParaView already has a Python scripting interface, which is nothing but a

Python-based client over the ServerManager layer, it was relatively easy to expose the

functionality provided by ParaView’s scripting API as a web-service.

On the client side code, we started with a simply Javascript-based browser component to

show rendered images. Since SOAP is an XML-based format, the messages can be large and

cumbersome to process on the browser. Since web browsers are optimized to parse

JavaScript, a format called JSON (JavaScript Object Notation) has been gaining popularity with

AJAX-based websites.

Hence, we wrote a simple Python-cgi script that acted as a JSON-to-SOAP bridge. This

bridge accepts JSON messages from the web browser, translates them to corresponding

SOAP requests and then forwards them to the ParaView Web service. It then translates the

SOAP response to either a JSON reply or an image fetch response (when rendering images).
System Architecture for Web Visualization using a SOAP-based Web Service.

Since ParaView’s Python scripting API can be exposed via the web service, we wrote a

module that makes is possible to write JavaScript scripts, similar to the Python scripts for creating

the visualization pipeline. The following is an example script for visualizing a dataset:

// Create the reader. var exodusReader =
paraview.ExodusIIReader({FileName=”can.ex2”}); paraview.Show() // Show the rendered

image. paraview.RenderImage($(“renderWindow”));

// Apply a Shrink filter to the reader. var shink = paraview.Shrink({Input=exodusReader})
paraview.Show() // Show the rendered image.

paraview.RenderImage($(“renderWindow”));

10

We implemented a JavaScript Ajax-based library that provides the API demonstrated above.

This makes it possible to use the web browser as simply another scripting environment for the

ParaView engine. Also, this scripting API is very similar to the Python scripting API that ParaView

already supports.

Although the SOAP-based web service provides for a powerful web visualization solution, we

discovered that the parsing of SOAP XML resulted in considerable overhead. That adversely

affected the frame rates and we were not able to realize frame rates better than 5 fps for simple

visualizations. Also since all communication was over HTTP via an Apache web server, there

were no persistent connections over which the

communication was taking place. The HTTP

connect-request-response protocol also added to the

overhead of each communication message sent by

the client.

SOAP Web Service with Adobe® Flash™ Client

One of the critical characteristics of the web

client is its interactive rendering speed. Since the

frame rates we achieved with the pure

JavaScript/HTML based solution described earlier

was less than 5 fps, we decided to use Adobe

Flash™ technology for developing the client side

plug-in. Another advantage of using Flash is the

encapsulation of the client side code into a single

applet which can be plugged into any website.

Adobe Flash™ provides remoting components

that make it easy to communicate with web services

based on standard protocols such as SOAP. We

implemented a flash applet to act as a SOAP client

that directly connects to the SOAP web service (see

figure to the right). Although this communication

bypassed the Apache web server, it was still

implemented over HTTP (since Zolera supports

servicing HTTP requests as well). Using Flash for the browser plug-in made it easy to support

interaction with the visualization. However, we still weren’t able to get frame rates better than 6-7

fps. Since rendering the image was taking under 0.05 seconds, we concluded that the

non-persistent HTTP connections and the overhead due to SOAP resulted in low frame rates.

Since we believe that for any commercially viable solution frame rates of 15 fps or better are

absolutely critical, we decided to try other alternatives.

Adobe® BlazeDS™ Web Application with Adobe Flash Client

11

Adobe® recently released BlazeDS™ which is a server-based remoting and web messaging

technology that enables Flash™ clients to connect to various backends for real-time binary data

communication. It also provides JavaScript/AJAX library to enable JavaScript based clients to

communicate with the BlazeDS server-side components. BlazeDS is an attractive architecture for

our web visualization prototype. It provides persistent binary communication channels with the

server thus supporting streaming of data efficiently. It’s easy to deploy a BlazeDS based

application on any Java-based Web Server such as Tomcat. It supports real time message and

streams and yet, is over HTTP thus not requiring any additional ports to be opened on the server

side. Since BlaseDS supports raw binary data communication, it avoids the need to use base64

or any other encoding to convert binary data to strings. Finally, communication with BlazeDS web

application using Adobe Flash clients is fairly straight forward since the Flash remoting API

provides components that simplify setting up communication streams, calling remote methods,

and so on.

The results we obtained using BlazeDS™ are very promising. We were able to achieve a

frame rate up to 12 fps. We intend to explore this option further in Phase II.

Challenges and Limitations

In Phase I we set out to develop a prototype based on the ParaView framework for

collaborative visualization. We were successful in demonstrating that ParaView’s client-server

paradigm can be extended to support a collaborative environment where multiple users

collaborate in the visualization processes. This section summarizes some of the major

challenges we faced and highlights some of the limitations of the prototype. We will address

these limitations in the Phase II implementation.

• One of the first issues we face in deploying the proposed prototype in organizations is with
firewalls. Organizations typically have firewalls blocking incoming connections. This makes it
difficult for collaborator to connect to the server if the server is behind a firewall. As described
later, we plan to explore technologies used by VOIP applications such as NAT traversal to
overcome issues related to firewalls eliminating any need for any firewall holes for collaboration.

• As described in the implementation, in our prototype the server process acts a
communication hub for all communications between the collaborators. This implies that the server
has to spend time relaying the messages when it could be processing data or rendering it. There
are a couple of possible solutions for this: we can use a multithreaded server thus delegating the
relaying to a separate thread; or we can use the peer-to-peer technologies similar to those
employed by applications such as Google Talk ™ and Skype ™ to directly establish
communication channels between the clients.

• In the prototype the rendering can be done on the server or the client. When rendering on
the server, the server renders separately for each connected client. This certainly has the
advantage of being able to provide optimal resolution images for all the connected clients;
however, it may overload the server affecting response times during interaction, since many
clients could be requesting renders at the same time. For Phase II, we propose to investigate a
solution based on reusing rendered images where ever possible to avoid repeated renders, thus
allowing us to support more number of collaborating participants.

• A limitation of the prototype is that it does not support configurations where one of the
connected clients could be running a tiled-display. Supporting heterogeneous participants is one
of the distinguishing factors of our design and hence we plan to implement it for Phase II.

• The web visualization component developed in Phase I does not support connecting to a

12

collaboration server. It also requires that the visualization server is same machine as the
web-server. This is huge restriction in real world scenarios since generally the visualization server
will be on a high performance cluster. We will overcome these limitations as a part of Phase II.

• Another important issue is authentication and encryption. The prototype is a free-for-all
setup. Participants can join on to a collaborative session by simply connecting to the same
server. We need authentication to ensure that only authorized participants join in and encryption
to ensure that the data being communicated is secure.

These and other issues will be addressed in the Phase II effort. In summary, we were

encouraged by the progress that we made in the Phase I effort, going well beyond our initial

objectives. Based on these initial results, we are confident that we can develop a solid

implementation in the Phase II project.

FINAL REPORT

for

Project entitled:
Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling

Partner:
Kitware, Inc.

DOE Laboratory:
SLAC National Accelerator Laboratory

This work was supported under its U.S. Department of Energy Contract,
No. DE-AC03-76SF00515

SLAC Project Manager:
Greg Schussman

This final report is being submitted to meet the requirements in the CRADA agreement
CRADA SLAC- 331

As stated in the following paragraph.

ARTICLE XI: REPORTS AND ABSTRACTS

The Parties agree to produce the following deliverables: an initial abstract suitable for public release;
and a final report to include a list of Subject Inventions. It is understood that the Contractor has the
responsibility to provide this information at the time of its completion to the Contracting Officer and
the DOE Office of Scientific and Technical Information.

Date submitted: 2010 JUN 07
Submitted by: James E. Simpson

