Search for B^{+}meson decay to $a_{1}^{+}(1260) K^{* 0}(892)$

P. del Amo Sanchez, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ E. Prencipe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ M. Martinelli ${ }^{a b},{ }^{3}$ A. Palano ${ }^{a b},{ }^{3}$ M. Pappagallo ${ }^{a b},{ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ B. Hooberman, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Lynch, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ T. Tanabe, ${ }^{5}$ C. M. Hawkes, ${ }^{6}$
A. T. Watson, ${ }^{6}$ H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$ D. J. Asgeirsson, ${ }^{8}$ C. Hearty, ${ }^{8}$ T. S. Mattison, ${ }^{8}$ J. A. McKenna, ${ }^{8}$
A. Khan,,9 A. Randle-Conde, ${ }^{9}$ V. E. Blinov, ${ }^{10}$ A. R. Buzykaev, ${ }^{10}$ V. P. Druzhinin, ${ }^{10}$ V. B. Golubev, ${ }^{10}$ A. P. Onuchin, ${ }^{10}$ S. I. Serednyakov, ${ }^{10}$ Yu. I. Skovpen, ${ }^{10}$ E. P. Solodov, ${ }^{10}$ K. Yu. Todyshev, ${ }^{10}$ A. N. Yushkov, ${ }^{10}$ M. Bondioli, ${ }^{11}$ S. Curry, ${ }^{11}$ D. Kirkby, ${ }^{11}$ A. J. Lankford, ${ }^{11}$ M. Mandelkern, ${ }^{11}$ E. C. Martin, ${ }^{11}$ D. P. Stoker, ${ }^{11}$ H. Atmacan, ${ }^{12}$ J. W. Gary, ${ }^{12}$ F. Liu, ${ }^{12}$ O. Long, ${ }^{12}$ G. M. Vitug, ${ }^{12}$ C. Campagnari, ${ }^{13}$ T. M. Hong, ${ }^{13}$ D. Kovalskyi, ${ }^{13}$ J. D. Richman, ${ }^{13}$ A. M. Eisner, ${ }^{14}$ C. A. Heusch, ${ }^{14}$ J. Kroseberg, ${ }^{14}$ W. S. Lockman, ${ }^{14}$ A. J. Martinez, ${ }^{14}$ T. Schalk, ${ }^{14}$ B. A. Schumm, ${ }^{14}$ A. Seiden,,${ }^{14}$ L. O. Winstrom, ${ }^{14}$ C. H. Cheng, ${ }^{15}$ D. A. Doll, ${ }^{15}$ B. Echenard, ${ }^{15}$ D. G. Hitlin, ${ }^{15}$ P. Ongmongkolkul, ${ }^{15}$ F. C. Porter, ${ }^{15}$ A. Y. Rakitin, ${ }^{15}$ R. Andreassen, ${ }^{16}$ M. S. Dubrovin, ${ }^{16}$ G. Mancinelli, ${ }^{16}$ B. T. Meadows, ${ }^{16}$ M. D. Sokoloff, ${ }^{16}$ P. C. Bloom, ${ }^{17}$ W. T. Ford,,${ }^{17}$ A. Gaz, ${ }^{17}$ M. Nagel,,${ }^{17}$ U. Nauenberg, ${ }^{17}$ J. G. Smith, ${ }^{17}$ S. R. Wagner, ${ }^{17}$ R. Ayad,,${ }^{18, *}$ W. H. Toki, ${ }^{18}$ H. Jasper, ${ }^{19}$ T. M. Karbach, ${ }^{19}$ J. Merkel, ${ }^{19}$ A. Petzold, ${ }^{19}$ B. Spaan, ${ }^{19}$ K. Wacker, ${ }^{19}$ M. J. Kobel, ${ }^{20}$ K. R. Schubert, ${ }^{20}$ R. Schwierz, ${ }^{20}$ D. Bernard, ${ }^{21}$ M. Verderi, ${ }^{21}$ P. J. Clark, ${ }^{22}$ S. Playfer, ${ }^{22}$ J. E. Watson, ${ }^{22}$ M. Andreotti ${ }^{a b},{ }^{23}$ D. Bettoni ${ }^{a},{ }^{23}$ C. Bozzi ${ }^{a},{ }^{23}$ R. Calabrese ${ }^{a b},{ }^{23}$ A. Cecchi ${ }^{a b},{ }^{23}$ G. Cibinetto ${ }^{a b},{ }^{23}$ E. Fioravanti ${ }^{a b},{ }^{23}$ P. Franchini ${ }^{a b},{ }^{23}$ E. Luppi ${ }^{a b},{ }^{23}$ M. Munerato ${ }^{a b},{ }^{23}$ M. Negrini ${ }^{a b},{ }^{23}$ A. Petrella ${ }^{a b},{ }^{23}$ L. Piemontese ${ }^{a},{ }^{23}$ R. Baldini-Ferroli, ${ }^{24}$ A. Calcaterra, ${ }^{24}$ R. de Sangro, ${ }^{24}$ G. Finocchiaro, ${ }^{24}$ M. Nicolaci, ${ }^{24}$ S. Pacetti,,${ }^{24}$ P. Patteri, ${ }^{24}$ I. M. Peruzzi, ${ }^{24,}$, M. Piccolo,,${ }^{24}$ M. Rama, ${ }^{24}$ A. Zallo, ${ }^{24}$ R. Contri ${ }^{a b},{ }^{25}$ E. Guido ${ }^{a b},{ }^{25}$ M. Lo Vetere ${ }^{a b},{ }^{25}$ M. R. Monge ${ }^{a b},{ }^{25}$ S. Passaggio ${ }^{a},{ }^{25}$ C. Patrignani ${ }^{a b},{ }^{25}$ E. Robutti ${ }^{a},{ }^{25}$ S. Tosi ${ }^{a b},{ }^{25}$ B. Bhuyan, ${ }^{26}$ V. Prasad, ${ }^{26}$ C. L. Lee, ${ }^{27}$ M. Morii, ${ }^{27}$ A. Adametz, ${ }^{28}$ J. Marks, ${ }^{28}$ U. Uwer, ${ }^{28}$ F. U. Bernlochner, ${ }^{29}$ M. Ebert, ${ }^{29}$ H. M. Lacker, ${ }^{29}$ T. Lueck, ${ }^{29}$ A. Volk, ${ }^{29}$ P. D. Dauncey, ${ }^{30}$ M. Tibbetts, ${ }^{30}$ P. K. Behera, ${ }^{31}$ U. Mallik, ${ }^{31}$ C. Chen, ${ }^{32}$ J. Cochran, ${ }^{32}$ H. B. Crawley, ${ }^{32}$ L. Dong, ${ }^{32}$ W. T. Meyer, ${ }^{32}$ S. Prell, ${ }^{32}$ E. I. Rosenberg, ${ }^{32}$ A. E. Rubin, ${ }^{32}$ A. V. Gritsan, ${ }^{33}$ Z. J. Guo, ${ }^{33}$ N. Arnaud, ${ }^{34}$ M. Davier, ${ }^{34}$ D. Derkach, ${ }^{34}$ J. Firmino da Costa, ${ }^{34}$ G. Grosdidier, ${ }^{34}$ F. Le Diberder, ${ }^{34}$ A. M. Lutz, ${ }^{34}$ B. Malaescu, ${ }^{34}$ A. Perez, ${ }^{34}$ P. Roudeau, ${ }^{34}$ M. H. Schune, ${ }^{34}$ J. Serrano, ${ }^{34}$ V. Sordini, ${ }^{34,}{ }^{+}$A. Stocchi, ${ }^{34}$ L. Wang, ${ }^{34}$ G. Wormser, ${ }^{34}$ D. J. Lange, ${ }^{35}$ D. M. Wright, ${ }^{35}$ I. Bingham, ${ }^{36}$ C. A. Chavez, ${ }^{36}$ J. P. Coleman, ${ }^{36}$ J. R. Fry, ${ }^{36}$ E. Gabathuler, ${ }^{36}$ R. Gamet, ${ }^{36}$ D. E. Hutchcroft, ${ }^{36}$ D. J. Payne, ${ }^{36}$ C. Touramanis, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ F. Di Lodovico, ${ }^{37}$ R. Sacco, ${ }^{37}$ M. Sigamani, ${ }^{37}$ G. Cowan, ${ }^{38}$ S. Paramesvaran, ${ }^{38}$ A. C. Wren, ${ }^{38}$ D. N. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ A. G. Denig, ${ }^{40}$ M. Fritsch, ${ }^{40}$ W. Gradl, ${ }^{40}$ A. Hafner, ${ }^{40}$ K. E. Alwyn, ${ }^{41}$ D. Bailey, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ G. Jackson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ T. J. West, ${ }^{41}$ J. Anderson, ${ }^{42}$ R. Cenci, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Simi, ${ }^{42}$ J. M. Tuggle, ${ }^{42}$ C. Dallapiccola, ${ }^{43}$ E. Salvati, ${ }^{43}$ R. Cowan, ${ }^{44}$ D. Dujmic, ${ }^{44}$ G. Sciolla, ${ }^{44}$ M. Zhao, ${ }^{44}$ D. Lindemann, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ M. Schram, ${ }^{45}$ P. Biassoni ${ }^{a b},{ }^{46}$ A. Lazzaro ${ }^{a b},{ }^{46}$ V. Lombardo ${ }^{a},{ }^{46}$ F. Palombo ${ }^{a b},{ }^{46}$ S. Stracka ${ }^{a b},{ }^{46}$ L. Cremaldi, ${ }^{47}$ R. Godang, ${ }^{47}$, ${ }^{\S}$ R. Kroeger, ${ }^{47}$ P. Sonnek, ${ }^{47}$ D. J. Summers, ${ }^{47}$ X. Nguyen, ${ }^{48}$ M. Simard, ${ }^{48}$ P. Taras, ${ }^{48}$ G. De Nardo ${ }^{a b},{ }^{49}$ D. Monorchio ${ }^{a b},{ }^{49}$ G. Onorato ${ }^{a b},{ }^{49}$ C. Sciacca ${ }^{a b},{ }^{49}$ G. Raven, ${ }^{50}$ H. L. Snoek, ${ }^{50}$ C. P. Jessop, ${ }^{51}$ K. J. Knoepfel, ${ }^{51}$ J. M. LoSecco, ${ }^{51}$ W. F. Wang, ${ }^{51}$ L. A. Corwin,,${ }^{52}$ K. Honscheid, ${ }^{52}$ R. Kass, ${ }^{52}$ J. P. Morris, ${ }^{52}$ N. L. Blount,,${ }^{53}$ J. Brau, ${ }^{53}$ R. Frey, ${ }^{53}$ O. Igonkina, ${ }^{53}$ J. A. Kolb, ${ }^{53}$ R. Rahmat,,${ }^{53}$ N. B. Sinev, ${ }^{53}$ D. Strom, ${ }^{53}$ J. Strube, ${ }^{53}$ E. Torrence, ${ }^{53}$ G. Castelli ${ }^{a b},{ }^{54}$ E. Feltresi ${ }^{a b}$, ${ }^{54}$ N. Gagliardi ${ }^{a b},{ }^{54}$ M. Margoni ${ }^{a b},{ }^{54}$ M. Morandin ${ }^{a},{ }^{54}$ M. Posocco ${ }^{a},{ }^{54}$ M. Rotondo ${ }^{a},{ }^{54}$ F. Simonetto ${ }^{a b},{ }^{54}$ R. Stroili ${ }^{a b},{ }^{54}$ E. Ben-Haim, ${ }^{55}$ G. R. Bonneaud, ${ }^{55}$ H. Briand, ${ }^{55}$ G. Calderini, ${ }^{55}$ J. Chauveau, ${ }^{55}$ O. Hamon, ${ }^{55}$ Ph. Leruste, ${ }^{55}$ G. Marchiori, ${ }^{55}$ J. Ocariz, ${ }^{55}$ J. Prendki, ${ }^{55}$ S. Sitt, ${ }^{55}$ M. Biasini ${ }^{a b},{ }^{56}$ E. Manoni ${ }^{a b}$, ${ }^{56}$ A. Rossi ${ }^{a b},{ }^{56}$ C. Angelini ${ }^{a b},{ }^{57}$ G. Batignani ${ }^{a b},{ }^{57}$ S. Bettarini ${ }^{a b},{ }^{57}$ M. Carpinelli ${ }^{a b},{ }^{57}$, G. Casarosa ${ }^{a b},{ }^{57}$ A. Cervelli ${ }^{a b},{ }^{57}$ F. Forti ${ }^{a b},{ }^{57}$ M. A. Giorgi ${ }^{a b},{ }^{57}$ A. Lusiani ${ }^{a c},{ }^{57}$ N. Neri ${ }^{a b},{ }^{57}$ E. Paoloni ${ }^{a b},{ }^{57}$ G. Rizzo ${ }^{a b},{ }^{57}$ J. J. Walsh ${ }^{a},{ }^{57}$ D. Lopes Pegna, ${ }^{58}$ C. Lu, ${ }^{58}$ J. Olsen, ${ }^{58}$ A. J. S. Smith, ${ }^{58}$ A. V. Telnov, ${ }^{58}$ F. Anulli ${ }^{a},{ }^{59}$ E. Baracchini ${ }^{a b},{ }^{59}$ G. Cavoto ${ }^{a},{ }^{59}$ R. Faccini ${ }^{a b},{ }^{59}$ F. Ferrarotto ${ }^{a},{ }^{59}$ F. Ferroni ${ }^{a b},{ }^{59}$ M. Gaspero ${ }^{a b},{ }^{59}$ L. Li Gioi ${ }^{a},{ }^{59}$ M. A. Mazzoni ${ }^{a},{ }^{59}$ G. Piredda ${ }^{a},{ }^{59}$ F. Renga ${ }^{a b},{ }^{59}$ T. Hartmann, ${ }^{60}$ T. Leddig, ${ }^{60}$ H. Schröder, ${ }^{60}$ R. Waldi, ${ }^{60}$ T. Adye, ${ }^{61}$ B. Franek, ${ }^{61}$ E. O. Olaiya, ${ }^{61}$ F. F. Wilson, ${ }^{61}$ S. Emery, ${ }^{62}$ G. Hamel de Monchenault, ${ }^{62}$ G. Vasseur, ${ }^{62}$ Ch. Yèche, ${ }^{62}$ M. Zito, ${ }^{62}$ M. T. Allen, ${ }^{63}$ D. Aston,,63 D. J. Bard, ${ }^{63}$ R. Bartoldus, ${ }^{63}$ J. F. Benitez, ${ }^{63}$ C. Cartaro, ${ }^{63}$ M. R. Convery, ${ }^{63}$ J. Dorfan, ${ }^{63}$ G. P. Dubois-Felsmann, ${ }^{63}$ W. Dunwoodie, ${ }^{63}$ R. C. Field, ${ }^{63}$ M. Franco Sevilla, ${ }^{63}$ B. G. Fulsom, ${ }^{63}$ A. M. Gabareen, ${ }^{63}$ M. T. Graham, ${ }^{63}$ P. Grenier, ${ }^{63}$ C. Hast, ${ }^{63}$ W. R. Innes, ${ }^{63}$ M. H. Kelsey, ${ }^{63}$ H. Kim, ${ }^{63}$ P. Kim, ${ }^{63}$ M. L. Kocian, ${ }^{63}$ D. W. G. S. Leith, ${ }^{63}$ S. Li, ${ }^{63}$ B. Lindquist, ${ }^{63}$ S. Luitz, ${ }^{63}$ V. Luth, ${ }^{63}$ H. L. Lynch, ${ }^{63}$
D. B. MacFarlane, ${ }^{63}$ H. Marsiske, ${ }^{63}$ D. R. Muller, ${ }^{63}$ H. Neal, ${ }^{63}$ S. Nelson, ${ }^{63}$ C. P. O'Grady, ${ }^{63}$ I. Ofte, ${ }^{63}$ M. Perl, ${ }^{63}$ T. Pulliam, ${ }^{63}$ B. N. Ratcliff, ${ }^{63}$ A. Roodman, ${ }^{63}$ A. A. Salnikov, ${ }^{63}$ V. Santoro, ${ }^{63}$ R. H. Schindler, ${ }^{63}$ J. Schwiening, ${ }^{63}$ A. Snyder, ${ }^{63}$ D. Su, ${ }^{63}$ M. K. Sullivan, ${ }^{63}$ S. Sun, ${ }^{63}$ K. Suzuki, ${ }^{63}$ J. M. Thompson, ${ }^{63}$ J. Va'vra, ${ }^{63}$ A. P. Wagner, ${ }^{63}$ M. Weaver, ${ }^{63}$ C. A. West, ${ }^{63}$ W. J. Wisniewski, ${ }^{63}$ M. Wittgen, ${ }^{63}$ D. H. Wright, ${ }^{63}$ H. W. Wulsin, ${ }^{63}$ A. K. Yarritu, ${ }^{63}$ C. C. Young, ${ }^{63}$ V. Ziegler, ${ }^{63}$ X. R. Chen, ${ }^{64}$ W. Park, ${ }^{64}$ M. V. Purohit, ${ }^{64}$ R. M. White, ${ }^{64}$ J. R. Wilson, ${ }^{64}$ S. J. Sekula, ${ }^{65}$ M. Bellis, ${ }^{66}$ P. R. Burchat, ${ }^{66}$ A. J. Edwards, ${ }^{66}$ T. S. Miyashita, ${ }^{66}$ S. Ahmed, ${ }^{67}$ M. S. Alam, ${ }^{67}$ J. A. Ernst, ${ }^{67}$ B. Pan, ${ }^{67}$ M. A. Saeed, ${ }^{67}$ S. B. Zain, ${ }^{67}$ N. Guttman, ${ }^{68}$ A. Soffer, ${ }^{68}$ P. Lund, ${ }^{69}$ S. M. Spanier, ${ }^{69}$ R. Eckmann, ${ }^{70}$ J. L. Ritchie, ${ }^{70}$ A. M. Ruland, ${ }^{70}$ C. J. Schilling, ${ }^{70}$ R. F. Schwitters, ${ }^{70}$ B. C. Wray, ${ }^{70}$ J. M. Izen, ${ }^{71}$ X. C. Lou, ${ }^{71}$ F. Bianchi ${ }^{a b},{ }^{72}$ D. Gamba ${ }^{a b},{ }^{72}$ M. Pelliccioni ${ }^{a b},{ }^{72}$ M. Bomben ${ }^{a b},{ }^{73}$ L. Lanceri ${ }^{a b},{ }^{73}$ L. Vitale ${ }^{a b},{ }^{73}$ N. Lopez-March, ${ }^{74}$ F. Martinez-Vidal, ${ }^{74}$ D. A. Milanes, ${ }^{74}$ A. Oyanguren, ${ }^{74}$ J. Albert, ${ }^{75}$ Sw. Banerjee, ${ }^{75}$ H. H. F. Choi, ${ }^{75}$ K. Hamano, ${ }^{75}$ G. J. King, ${ }^{75}$ R. Kowalewski, ${ }^{75}$ M. J. Lewczuk, ${ }^{75}$ I. M. Nugent, ${ }^{75}$ J. M. Roney, ${ }^{75}$ R. J. Sobie, ${ }^{75}$ T. J. Gershon, ${ }^{76}$ P. F. Harrison, ${ }^{76}$ T. E. Latham, ${ }^{76}$ E. M. T. Puccio, ${ }^{76}$ H. R. Band, ${ }^{77}$ S. Dasu, ${ }^{77}$ K. T. Flood, ${ }^{77}$ Y. Pan, ${ }^{77}$ R. Prepost, ${ }^{77}$ C. O. Vuosalo, ${ }^{77}$ and S. L. Wu ${ }^{77}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ INFN Sezione di Bari ${ }^{a}$; Dipartimento di Fisica, Università di Bari ${ }^{\text {b }}$, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{9}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{10}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{11}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{12}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{13}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{14}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{15}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{16}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{17}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{18}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{19}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
${ }^{20}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{21}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{22}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{23}$ INFN Sezione di Ferrara ${ }^{a}$; Dipartimento di Fisica, Università di Ferrara ${ }^{b}$, I-44100 Ferrara, Italy
${ }^{24}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{25}$ INFN Sezione di Genova ${ }^{a}$; Dipartimento di Fisica, Università di Genova ${ }^{b}$, I-16146 Genova, Italy
${ }^{26}$ Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
${ }^{27}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{28}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{29}$ Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
${ }^{30}$ Imperial College London, London, SW7 2AZ, United Kingdom ${ }^{31}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{32}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{33}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{34}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
Centre Scientifique d'Orsay, B. P. 34, F-91898 Orsay Cedex, France
${ }^{35}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{36}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{37}$ Queen Mary, University of London, London, E1 4NS, United Kingdom
${ }^{38}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{39}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{40}$ Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{45}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$

${ }^{46}$ INFN Sezione di Milano ${ }^{a}$; Dipartimento di Fisica, Università di Milano ${ }^{b}$, I-20133 Milano, Italy
${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{48}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{49}$ INFN Sezione di Napoli ${ }^{a}$; Dipartimento di Scienze Fisiche, Università di Napoli Federico $I I^{b}$, I-80126 Napoli, Italy
${ }^{50}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{51}$ University of Notre Dame, Notre Dame, Indiana 46556, USA ${ }^{52}$ Ohio State University, Columbus, Ohio 43210, USA ${ }^{53}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{54}$ INFN Sezione di Padova ${ }^{a}$; Dipartimento di Fisica, Università di Padova ${ }^{b}$, I-35131 Padova, Italy
${ }^{55}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{56}$ INFN Sezione di Perugia ${ }^{a}$; Dipartimento di Fisica, Università di Perugia ${ }^{b}$, I-06100 Perugia, Italy
${ }^{57}$ INFN Sezione di Pisa ${ }^{a}$; Dipartimento di Fisica,
Università di Pisa ${ }^{b}$; Scuola Normale Superiore di Pisa ${ }^{c}$, I-56127 Pisa, Italy
${ }^{58}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{59}$ INFN Sezione di Roma ${ }^{a}$; Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{60}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{61}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{62}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
${ }^{63}$ SLAC National Accelerator Laboratory, Stanford, California 94309 USA
${ }^{64}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{65}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{66}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{67}$ State University of New York, Albany, New York 12222, USA
${ }^{68}$ Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
${ }^{69}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{70}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{71}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{72}$ INFN Sezione di Torino ${ }^{a}$; Dipartimento di Fisica Sperimentale, Università di Torino ${ }^{b}$, I-10125 Torino, Italy
${ }^{73}$ INFN Sezione di Trieste ${ }^{a}$; Dipartimento di Fisica, Università di Trieste ${ }^{b}$, I-34127 Trieste, Italy
${ }^{74}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{75}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{76}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{77}$ University of Wisconsin, Madison, Wisconsin 53706, USA

(Dated: July 19, 2010)
We present a search for the decay $B^{+} \rightarrow a_{1}^{+}(1260) K^{* 0}(892)$. The data, collected with the BABAR detector at the SLAC National Accelerator Laboratory, represent 465 million $B \bar{B}$ pairs produced in $e^{+} e^{-}$annihilation at the energy of the $\Upsilon(4 S)$. We find no significant signal and set an upper limit at 90% confidence level on the product of branching fractions $\mathcal{B}\left(B^{+} \rightarrow a_{1}^{+}(1260) K^{* 0}(892)\right) \times$ $\mathcal{B}\left(a_{1}^{+}(1260) \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)$of 1.8×10^{-6}.

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}$

Measurements of the branching fractions and polarizations of charmless hadronic B decays are useful tests of the standard model and a means to search for new physics effects. In decays of B mesons to a pair of spinone mesons, the longitudinal polarization, f_{L}, is particularly interesting. Simple helicity arguments favor f_{L}

[^0]to be close to 1 , but several vector-vector $(V V)$ decay modes such as $B \rightarrow \phi K^{*}$ [1] and $B^{+} \rightarrow \rho^{+} K^{* 0}$ [2, 3], are observed to favor $f_{L} \sim 0.5$. Possible explanations for this discrepancy have been proposed within the standard model [4] as well as in new physics scenarios [5].

New ways to explore the size of contributing amplitudes in charmless B meson decays and their helicity structure may come from measurements of the branching fractions and polarization of charmless decays of B mesons to an axial-vector meson and a vector meson $(A V)$ or to an axial-vector meson and a pseudo-scalar meson $(A P)$. Theoretical decay rates have been predicted with the naïve factorization (NF) [6] and QCD factorization (QCDF) [7] approaches. The NF calculations find the decay rates of $B \rightarrow A V$ modes to be smaller than
the corresponding $B \rightarrow A P$ modes. The more complex QCDF calculations find the reverse. For example, QCDF predicts a branching fraction of $\left(11_{-4.4-9.0}^{+6.1+31.9}\right) \times 10^{-6}$ for $B^{+} \rightarrow a_{1}^{+} K^{* 0}$ and $\left(32_{-14.7-4.6}^{+16.5+12.0}\right) \times 10^{-6}$ for $B^{0} \rightarrow b_{1}^{-} \rho^{+}$, while NF predicts a branching fraction of 0.51×10^{-6} and 1.6×10^{-6}, respectively. The first uncertainty on the QCDF prediction corresponds to the uncertainties due to the variation of Gegenbauer moments, decay constants, quark masses, form factors and a B meson wave function parameter and the second uncertainty corresponds to the uncertainties due to the variation of penguin annihilation parameters. The NF prediction does not give an uncertainty on their value.
B meson decays to charmless $A V$ final states are sensitive to penguin annihilation contributions, which enhance some decay modes while suppressing others. Thus, investigating decays to many final states will help determine the size of the contributing amplitudes.

A number of searches for $A V$ decays to the final states $a_{1}^{+} \rho^{-}, b_{1} \rho$ and $b_{1} K^{*}$ are presented in Ref. 8] and Ref. [9], with upper limits on the branching fractions of $30 \times$ 10^{-6} at 90% confidence level (C.L.) for $a_{1}^{+} \rho^{-}$and from 1.4 to 8.0×10^{-6} at 90% C.L. for the $b_{1} \rho$ and $b_{1} K^{*}$ final states. In this paper we present a search for the decay $B^{+} \rightarrow a_{1}^{+} K^{* 0}$.

The data for this measurement were collected with the BABAR detector [10] at the PEP-II asymmetric-energy $e^{+} e^{-}$storage ring located at the SLAC National Accelerator Laboratory. An integrated luminosity of $424 \mathrm{fb}^{-1}$, corresponding to $(465 \pm 5) \times 10^{6} B \bar{B}$ pairs, was produced in $e^{+} e^{-}$annihilation at the $\Upsilon(4 S)$ resonance (center-ofmass energy $\sqrt{s}=10.58 \mathrm{GeV}$).

A detailed Monte Carlo program (MC) is used to simulate the B meson production and decay sequences, and the detector response [11]. Dedicated samples of MC events for the decay $B^{+} \rightarrow a_{1}^{+} K^{* 0}$ with $a_{1}^{+} \rightarrow \rho^{0} \pi^{+}$ and $K^{* 0} \rightarrow K^{+} \pi^{-}$were produced. For the a_{1}^{+}meson parameters, we use the values given in Ref. [12] for studies with MC while for fits to the data we use a mass of $1229 \mathrm{MeV} / c^{2}$ and a width of $393 \mathrm{MeV} / c^{2}$, which were extracted from $B^{0} \rightarrow a_{1}^{+} \pi^{-}$decays [13]. We account for the uncertainties of these resonance parameters in the determination of systematic uncertainties. The $a_{1}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$decay proceeds mainly through the intermediate states $\rho^{0} \pi^{+}$and $\sigma \pi^{+}$[12]. No attempt is made to separate contributions of the dominant P wave ρ^{0} from the S wave σ in the channel $\pi^{+} \pi^{-}$. The difference in efficiency for the S wave and P wave cases is accounted for as a systematic uncertainty.

We reconstruct a_{1}^{+}candidates through the decay sequence $a_{1}^{+} \rightarrow \rho^{0} \pi^{+}$and $\rho^{0} \rightarrow \pi^{+} \pi^{-}$. The other primary daughter of the B meson is reconstructed as $K^{* 0} \rightarrow$ $K^{+} \pi^{-}$. Candidates for the charged kaons must have particle identification signatures consistent with those of kaons. Candidates for the charged pions must not be classified as protons, kaons, or electrons. We constrain the range of mass of reconstructed final-state candidates: between 0.55 and $1.0 \mathrm{GeV} / c^{2}$ for the ρ^{0}, between 0.9 and
$1.8 \mathrm{GeV} / c^{2}$ for the a_{1}^{+}, and between 0.8 and $1.0 \mathrm{GeV} / c^{2}$ for the $K^{* 0}$.
B^{+}candidates are formed by combining a_{1}^{+}and $K^{* 0}$ candidates. The five final decay tracks in a candidate are fit to a common vertex. Candidates which have a χ^{2} probability for the fit greater than 0.01 are retained. For these candidates, we calculate the energy substituted mass, $m_{\mathrm{ES}}=\sqrt{\frac{1}{4} s-\mathbf{p}_{B}^{2}}$, and the energy difference, $\Delta E=E_{B}-\frac{1}{2} \sqrt{s}$, where $\left(E_{B}, \mathbf{p}_{B}\right)$ is the B meson energy-momentum four-vector, all values being expressed in the $\Upsilon(4 S)$ rest frame. We keep candidates with $5.25 \mathrm{GeV} / c^{2}<m_{\mathrm{ES}}<5.29 \mathrm{GeV} / c^{2}$ and $|\Delta E|<100 \mathrm{MeV}$.

We also impose restrictions on the helicity-frame decay angle $\theta_{K^{* 0}}$ of the $K^{* 0}$ mesons. The helicity frame of a meson is defined as the rest frame of that meson, where the z axis is the direction along which the boost is performed from the parent's frame to this frame. For the decay $K^{* 0} \rightarrow K^{+} \pi^{-}, \theta_{K^{* 0}}$ is the polar angle of the daughter kaon, and for $a_{1}^{+} \rightarrow \rho^{0} \pi^{+}, \theta_{a_{1}^{+}}$is the polar angle of the normal to the $a_{1}^{+} \rightarrow 3 \pi$ decay plane. We define $\mathcal{H}_{i}=\cos \left(\theta_{i}\right)$, where $i=\left(K^{* 0}, a_{1}^{+}\right)$. Since many background candidates accumulate near $\left|\mathcal{H}_{K^{* 0}}\right|=1$, we require $-0.98 \leq \mathcal{H}_{K^{* 0}} \leq 0.8$.

Backgrounds arise primarily from random combinations of particles in continuum $e^{+} e^{-} \rightarrow q \bar{q}$ events $(q=$ $u, d, s, c)$. We reduce this background source with a requirement on the angle θ_{T} between the thrust axis 14 of the B^{+}candidate in the $\Upsilon(4 S)$ frame and that of the charged tracks and neutral calorimeter clusters of the rest of the event.

The distribution is sharply peaked near $\left|\cos \theta_{\mathrm{T}}\right|=1$ for jet-like continuum events, and nearly uniform for B meson decays. Optimizing the ratio of the signal yield to its (background dominated) uncertainty, we require $\left|\cos \theta_{\mathrm{T}}\right|<0.8$.

A secondary source of background arises from $b \rightarrow c$ transitions. We reduce this background by eliminating events in which one of the pions in the B^{+}candidate is also part of a D candidate.

Such D candidates, reconstructed from $K^{-} \pi^{+}$and $K^{-} \pi^{+} \pi^{+}$, are required to have an invariant mass within $0.02 \mathrm{GeV} / c^{2}$ of the nominal D meson mass.

The number of events which pass the selection is 15802 . The average number of candidates found per event in the selected data sample is 1.5 (2.0 to 2.4 in signal MC depending on the polarization).

We define a Neural Network (NN) for use in selecting the best B^{+}candidate. The χ^{2} probability of the vertex fit and the ρ meson mass were the input variables to the NN.

To further discriminate against $q \bar{q}$ background we construct a Fisher discriminant \mathcal{F} [15] which is a function of four variables: the polar angles of the B^{+}candidate momentum and of the B^{+}thrust axis with respect to the beam axis in the $\Upsilon(4 S)$ rest frame; and the zeroth (second) angular moment $L_{0}\left(L_{2}\right)$ of the energy flow, ex-
cluding the B candidate, with respect to the B thrust axis. The moments are defined by $L_{j}=\sum_{i} p_{i} \times\left|\cos \theta_{i}\right|^{j}$, where θ_{i} is the angle with respect to the B thrust axis of a track or neutral cluster i, and p_{i} its momentum.

We obtain yields and the longitudinal polarization f_{L} from an extended maximum likelihood (ML) fit with the seven input observables $\Delta E, m_{\mathrm{ES}}, \mathcal{F}$, the resonance masses $m_{a_{1}^{+}}$and $m_{K^{* 0}}$, and the helicity variables $\mathcal{H}_{K^{* 0}}$ and $\mathcal{H}_{a_{1}^{+}}$. Since the correlation between the observables in the selected data and in MC signal events is small, we take the probability density function (PDF) for each event to be a product of the PDFs for the individual observables. Corrections for the effects of possible correlations, referred to as fit bias yield, are made on the basis of MC studies described below. The components in the ML fit used are: signal, $q \bar{q}$ background, charm $B \bar{B}$ background, charmless $B \bar{B}$ background, and $B^{+} \rightarrow a_{2}^{+} K^{* 0}$ background.

We determine the PDFs for the signal and $B \bar{B}$ background components from fits to MC samples. We develop PDF parameterizations for the combinatorial background with fits to the data from which the signal region (5.26 $\mathrm{GeV} / c^{2}<m_{\mathrm{ES}}<5.29 \mathrm{GeV} / c^{2}$ and $|\Delta E|<$ 60 MeV) has been excluded.

For the signal, the m_{ES} and ΔE distributions are parametrized as a sum of a Crystal-Ball function 16] and a Gaussian function. In the case of m_{ES} for $q \bar{q}$ and $B \bar{B}$ backgrounds we use the threshold function $x \sqrt{1-x^{2}} \exp \left[-\xi\left(1-x^{2}\right)\right]$, where the argument $x \equiv$ $2 m_{\mathrm{ES}} / \sqrt{s}$ and ξ is a shape parameter. This function is discussed in more detail in Ref. [17]. In the case of ΔE for $q \bar{q}$ and $B \bar{B}$ backgrounds we use a polynomial function. The PDFs for the Fisher discriminant $\mathcal{P}_{j}(\mathcal{F})$ are parametrized as a single Gaussian function or a sum of two such functions. The PDFs for the invariant masses of the a_{1}^{+}and $K^{* 0}$ mesons for all components are constructed as sums of a relativistic BreitWigner function and a polynomial function. We use a joint $\operatorname{PDF} \mathcal{P}_{j}\left(\mathcal{H}_{K^{* 0}}, \mathcal{H}_{a_{1}^{+}}\right)$for the helicity distributions. The signal and the $B^{+} \rightarrow a_{2}^{+} K^{* 0}$ background component is parametrized as the product of the corresponding ideal angular distribution in $\mathcal{H}_{K^{* 0}}$ and $\mathcal{H}_{a_{1}^{+}}$from Ref. [18] times an empirical acceptance function $\mathcal{G}\left(\mathcal{H}_{K^{* 0}}, \mathcal{H}_{a_{1}^{+}}\right)$, while the helicity PDF for the other components is simply the product of the helicity PDFs for $\mathcal{H}_{K^{* 0}}$ and $\mathcal{H}_{a_{1}^{+}}$. The \mathcal{H}_{i} distributions for $q \bar{q}$ and $B \bar{B}$ backgrounds are based on Gaussian and polynomial functions.

The likelihood function is

$$
\begin{aligned}
\mathcal{L}= & \frac{e^{-\left(\sum_{j} Y_{j}\right)}}{N!} \prod_{i}^{N} \sum_{j} Y_{j} \times \mathcal{P}_{j}\left(m_{\mathrm{ES}}^{i}\right) \mathcal{P}_{j}\left(\mathcal{F}^{i}\right) \mathcal{P}_{j}\left(\Delta E^{i}\right) \\
& \mathcal{P}_{j}\left(m_{a_{1}^{+}}^{i}\right) \mathcal{P}_{j}\left(m_{K^{* 0}}^{i}\right) \mathcal{P}_{j}\left(\mathcal{H}_{K^{* 0}}^{i}, \mathcal{H}_{a_{1}^{+}}^{i}\right)
\end{aligned}
$$

where N is the number of events in the sample, and for each component j (signal, $q \bar{q}$ background, $b \rightarrow c$ transition $B \bar{B}$ background, charmless $B \bar{B}$ background, or

TABLE I. Summary of results for $B^{+} \rightarrow a_{1}^{+} K^{* 0}$. Signal yield Y, fit bias yield Y_{b}, the branching fraction $\mathcal{B}=\mathcal{B}\left(B^{+} \rightarrow\right.$ $\left.a_{1}^{+} K^{* 0}\right) \times \mathcal{B}\left(a_{1}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)$, significance S (see text) and upper limit UL. The given uncertainties on fit yields are statistical only, while the uncertainties on the fit bias yield include the corresponding systematic uncertainties. The branching fraction of $K^{* 0} \rightarrow K^{+} \pi^{-}$is assumed to be $\frac{2}{3}$.

Y	Y_{b}	$\mathcal{B}\left(10^{-6}\right)$	S	$\mathrm{UL}\left(10^{-6}\right)$
61_{-21}^{+23}	34 ± 17	$0.7_{-0.5-1.3}^{+0.5}+0.6$	1.8	

$B^{+} \rightarrow a_{2}^{+} K^{* 0}$ background), Y_{j} is the yield of component j and $\mathcal{P}_{j}\left(x^{i}\right)$ is the probability for variable x of event i to belong to component j. We allow the most important parameters (first coefficient of the polynomial function for ΔE, the invariant masses of the a_{1}^{+}and the $K^{* 0}$, and the width of the Breit-Wigner for the invariant mass of the $K^{* 0}$) for the determination of the combinatorial background PDFs to vary in the fit, along with the yields for the signal, $q \bar{q}$ background and $b \rightarrow c$ transition $B \bar{B}$ background.

We validate the fitting procedure by applying it to ensembles of simulated experiments with the $q \bar{q}$ component drawn from the PDF, and with embedded known numbers of signal and $B \bar{B}$ background events randomly extracted from the fully simulated MC samples. By tuning the number of embedded events until the fit reproduces the yields found in the data, we find a positive bias yield Y_{b}, to be subtracted from the observed signal yield Y. The fit bias yield arises from the neglected correlations in signal and $B \bar{B}$ background events.

The corresponding numbers are reported in Table
We do not find a significant signal thus we do not report a measurement on the quantity f_{L}. In order to obtain the most conservative upper limit, we assume $f_{L}=1$ in estimating the branching fraction.

We compute the branching fraction by subtracting the fit bias yield from the measured yield and dividing the result by the number of produced $B \bar{B}$ pairs and by the product of the selection efficiency and the branching ratio for the $\mathcal{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)$decay. We assume that the branching fractions of the $\Upsilon(4 S)$ to $B^{+} B^{-}$and $B^{0} \bar{B}^{0}$ are equal, consistent with measurements 12]. The efficiency for longitudinally and transversely polarized signal events, obtained from the MC signal model, is 12.9% and 18.6%, respectively. The results are given in Table II along with the significance, S, computed as the square root of the difference between the value of $-2 \ln \mathcal{L}$ (with additive systematic uncertainties included) for zero signal and the value at its minimum. In Fig. 1 we show the projections of data with PDFs overlaid. The data plotted are subsamples enriched in signal with the requirement of a minimum value of the ratio of signal to total likelihood, computed without the plotted variable. We used 0.9 as requirement on the ratio in Fig. 1 for each variable. The efficiency of these requirements for signal is between 57%

FIG. 1. Distributions for signal-enhanced subsets (see text) of the data projected onto the fit observables for the decay $B^{+} \rightarrow a_{1}^{+} K^{* 0}$; (a) m_{ES}, (b) ΔE, (c) \mathcal{F}, (d) $m(\rho \pi)$ for the a_{1}^{+} candidate, (e) $m(K \pi)$ for the $K^{* 0}$ candidate, (f) $\mathcal{H}_{K^{* 0}}$ and (g) $\mathcal{H}_{a_{1}^{+}}$. The solid lines represent the results of the fit, and the dot-dashed and dashed lines the signal and background contributions, respectively. These plots are made with requirements (see text) on the ratio of signal to total likelihood, computed without the plotted variable.
and 70% depending on the variable.
Systematic uncertainties on the branching fraction arise from the imperfect knowledge of the PDFs, $B \bar{B}$ backgrounds, fit bias yield, and efficiency. PDFs uncertainties not already accounted for by free parameters in the fit are estimated from varying the signal-PDF parameters within their uncertainties. For $K^{* 0}$ resonance parameters we use the uncertainties from Ref. [12] and for the a_{1}^{+}resonance parameters from Ref. [13]. The uncertainty from fit bias yield (Table (I) includes its statistical uncertainty from the simulated experiments, and half of the correction itself, added in quadrature.

To determine the systematic uncertainty arising from our imperfect knowledge of the branching fractions of charmless B decays, we vary the charmless $B \bar{B}$ background component yield by 100%. We conservatively assume that the branching ratio of $B^{+} \rightarrow a_{2}^{+} K^{* 0}$ could be as large as that of $B^{+} \rightarrow a_{1}^{+} K^{* 0}$ and vary the $B^{+} \rightarrow a_{2}^{+} K^{* 0}$ from 0 to 18 events around a fixed yield
of 9 events used for the $B^{+} \rightarrow a_{2}^{+} K^{* 0}$ component in the likelihood function.

The uncertainty associated with f_{L} is estimated by taking the difference in the measured branching fraction between the nominal fit $\left(f_{L}=1\right)$ and the maximum and minimum values found in the scan along the range $[0,1]$. We divide these values by $\sqrt{3}$, motivated by our assumption of a flat prior for f_{L} in its physical range.

Uncertainties in our knowledge of the tracking efficiency are 0.24% per track in the B^{+}candidate. The uncertainties in the efficiency from the event selection are below 0.6%. The systematic uncertainty on the measurement of the integrated luminosity is 1.1%. All systematic uncertainties on the branching fraction are summarized in Table II.

TABLE II. Summary of systematic uncertainties of the determination of the $B^{+} \rightarrow a_{1}^{+} K^{* 0}$ branching fraction.

Source of systematic uncertainty	
Additive uncertainty (events)	
PDF parametrization	4
a_{1}^{+}meson parametrization	6
ML fit bias yield	17
Non resonant charmless $B \bar{B}$ background	3
$B^{+} \rightarrow a_{2}^{+} K^{* 0}$ charmless background	6
Remaining charmless $B \bar{B}$ background	7
Total additive (events)	22
Multiplicative uncertainty (\%)	
Tracking efficiency	1.2
Determination of the integrated luminosity	1.1
MC statistics (signal efficiency)	0.6
Differences in selection efficiency for a_{1}^{+}decay	3.3
Particle identification (PID)	1.4
Event shape restriction (cos $\left.\theta_{\mathrm{T}}\right)$	1.0
Total multiplicative $(\%)$	4.1
Variation of $f_{L}\left[\mathcal{B}\left(10^{-6}\right)\right]$	${ }_{-1.2}^{+0.0}$
Total systematic uncertainty $\left[\mathcal{B}\left(10^{-6}\right)\right]$	${ }_{-1.3}^{+0.6}$

We obtain a central value for the product of branching fractions:

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow a_{1}^{+} K^{* 0}\right) & \times \mathcal{B}\left(a_{1}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right) \\
& =\left(0.7_{-0.5-1.3}^{+0.5+0.6}\right) \times 10^{-6}
\end{aligned}
$$

where the first uncertainty quoted is statistical, the second systematic. Including systematic uncertainties, this result corresponds to an upper limit at 90% confidence level of 1.8×10^{-6}.

Assuming $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)$is equal to $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}\right)$, and that $\mathcal{B}\left(a_{1}^{ \pm}(1260) \rightarrow 3 \pi\right)$ is equal to 100%, we obtain a central value:

$$
\mathcal{B}\left(B^{+} \rightarrow a_{1}^{+} K^{* 0}\right)=\left(1.3_{-1.0-2.6}^{+1.1+1.1}\right) \times 10^{-6}
$$

where the first uncertainty quoted is statistical, the second systematic. Including systematic uncertainties, this
result corresponds to an upper limit at 90% confidence level of 3.6×10^{-6}.

This upper limit is in agreement with the prediction from naïve factorization and lower than, but not inconsistent with, that of QCD factorization.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation,
the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l'Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).
[1] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 91, 171802 (2003); K.F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 91, 201801 (2003).
[2] Charge-conjugate reactions are implied.
[3] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 95, 141801 (2005); B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 201801 (2006).
[4] C.W. Bauer et al., Phys. Rev. D 70, 054015 (2004); P. Colangelo, F. De Fazio, and T.N. Pham, Phys. Lett. B 597, 291 (2004); A.L. Kagan, Phys. Lett. B 601, 151 (2004); M. Ladisa et al., Phys. Rev. D 70, 114025 (2004); H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 71, 014030 (2005); H.-n. Li and S. Mishima, Phys. Rev. D 71, 054025 (2005); H.-n. Li, Phys. Lett. B 622, 63 (2005).
[5] A. K. Giri and R. Mohanta, Phys. Rev. D 69, 014008 (2004); E. Alvarez et al., Phys. Rev. D 70, 115014 (2004); P. K. Das and K. C. Yang, Phys. Rev. D 71, 094002 (2005); C.-H. Chen and C.-Q. Geng, Phys. Rev. D 71, 115004 (2005); Y.-D. Yang, R. M. Wang and G. R. Lu, Phys. Rev. D 72, 015009 (2005); A. K. Giri and R. Mohanta, Eur. Phys. Jour. C 44, 249 (2005); S. Baek et al., Phys. Rev. D 72, 094008 (2005); W. Zou and Z. Xiao, Phys. Rev. D 72, 094026 (2005); Q. Chang, X.-Q. Li, and Y. D. Yang, JHEP 0706, 038 (2007).
[6] G. Calderon, J. H. Munoz, and C. E. Vera, Phys. Rev. D 76, 094019 (2007).
[7] H.-Y. Cheng and K.-C. Yang, Phys. Rev. D 78, 094001 (2008).
[8] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74, 031104 (2006).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80, 051101(R) (2009).
[10] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[11] The BABAR detector Monte Carlo simulation is based on GEANT4 [S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003)] and EvtGen [D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001)].
[12] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
[13] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 051802 (2006).
[14] A. de Rújula, J. Ellis, E. G. Floratos and M. K. Gaillard, Nucl. Phys. B 138, 387 (1978).
[15] R. A. Fisher, Annals Eugen. 7, 179 (1936).
[16] M.J. Oreglia, Ph.D Thesis, SLAC-236(1980), Appendix D; J.E. Gaiser, Ph.D Thesis, SLAC-255(1982), Appendix F and T. Skwarnicki, Ph.D Thesis, DESY F31-86-02(1986), Appendix E.
[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 032006 (2004).
[18] A. Datta, Phys. Rev. D 77, 114025 (2008).

[^0]: * Now at Temple University, Philadelphia, Pennsylvania 19122, USA
 \dagger Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
 \ddagger Also with Università di Roma La Sapienza, I-00185 Roma, Italy
 § Now at University of South Alabama, Mobile, Alabama 36688, USA
 『 Also with Università di Sassari, Sassari, Italy

