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abstract

Large-N QCD with heavy adjoint fermions emulates pure Yang-Mills theory at long distances. We

study this theory on a four- and three-torus, and analytically argue the existence of a large-small

volume equivalence. For any finite mass, center symmetry unbroken phase exists at sufficiently

small volume and this phase can be used to study the large-volume limit through the Eguchi-Kawai

equivalence. A finite temperature version of volume independence implies that thermodynamics on

R3×S1 can be studied via a unitary matrix quantum mechanics on S1, by varying the temperature.

To confirm this non-perturbatively, we numerically study both zero- and one-dimensional theories

by using Monte-Carlo simulation. Order of finite-N corrections turns out to be 1/N . We introduce

various twisted versions of the reduced QCD which systematically suppress finite-N corrections.

Using a twisted model, we observe the confinement/deconfinement transition on a 13 × 2-lattice.

The result agrees with large volume simulations of Yang-Mills theory. We also comment that the

twisted model can serve as a non-perturbative formulation of the non-commutative Yang-Mills

theory.
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1 Introduction

Recently Yang-Mills theory with adjoint fermions, QCD(Adj), attracts much interest. Main

impetus behind this is a network of exact large-N equivalences. The starting point is the large-N

orientifold equivalence, which states that the bosonic subsector of this theory is equivalent to

the charge-conjugation even subsector of QCD with fermions in anti-symmetric representation

[QCD(AS)] [1], provided symmetries defining the neutral subsectors are not spontaneously broken

[2]. QCD(AS) reduces to the ordinary QCD with fundamental quarks when N = 3, and is a

natural large-N generalization thereof [3].1 The second important link is an orbifold equivalence:

when quarks are massless or light with respect to strong scale ΛQCD, QCD(Adj) compactified on

a Euclidean four-torus exhibits volume independence, thanks to its unbroken prerequisite (center

and translational) symmetries at any radius [6]. Thus, through the Eguchi-Kawai equivalence

[7], one can study large-N QCD on R4 by using a unitary matrix model on a single site lattice.

1The phenomenology of QCD(AS) is examined in [4, 5].
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QCD(Adj) also provides new insights to gauge dynamics, especially on small S1×R3. This theory

exhibits new non-perturbative phenomena, most strikingly confinement due to magnetic bions, a

new class of non-selfdual topological excitations [8, 9], distinct from monopoles and instantons.

The statement of the volume independence [7, 10, 11, 6] is as follows. Consider SU(N) gauge

theories on R4, with or without fermions, toroidally compactified on a four manifold R4−d × T d.

For simplicity, we assume the matters are in adjoint representation and, hence, the theory has

a global (ZN )d center symmetry, described most easily as gauge rotations aperiodic up to an

element of the center group. The order parameters of this symmetry are Wilson lines wrapping

distinct toroidal cycles. The observables singlet under the center transformation constitute the

neutral sector. The volume independence states that dynamics of the neutral sector observables

is independent of the size of the torus provided the center symmetry and translational invariance

are not spontaneously broken. Among such observables are, non-perturbative mass spectrum, free

energy densities, deconfinement transition temperature, just to count a few. This is clearly an

extraordinarily well justified reason to study aspects of the small volume, large-N gauge theories.

In fact, center symmetry is spontaneously broken in most examples. In the original Eguchi-

Kawai model [7], which is a one-point reduction of Wilson’s bosonic lattice gauge theory, the break-

down can be shown by one-loop calculation around a diagonal background [12]. The quenched

[12, 13] and twisted [14] modifications of Eguchi-Kawai model were proposed to preserve the sym-

metry, but after two decades, it is now understood that both modifications fail non-trivially due to

non-perturbative effects [15], [16, 17, 18].2 3 Similarly, in any gauge theory compactified thermally

on R3 × S1, or on a torus with at least one thermal boundary condition, center symmetry breaks

spontaneously in high temperature deconfined phase, and volume independence is only valid in

low temperature confined phase, above a critical volume [11].

Kovtun, one of us (M.Ü.) and Yaffe, motivated by the quantitative differences between ther-

mal and circle (non-thermal) compactifications, showed that if light or massless adjoint fermions

endowed with periodic boundary conditions are added to Yang-Mills theory, then the center sym-

metry is stabilized at small volume dynamically [6]. (Also see the discussion in Refs.[23, 24, 25].)

For heavy fermions, the infrared physics of QCD(Adj) on R4 emulates the bosonic Yang-Mills

theory. Since heavy fermions are also capable of restoring center symmetry at sufficiently small

volume, this may provide an opportunity for a working Eguchi-Kawai reduction for an “almost”

Yang-Mills theory. However, this is not straightforward. When one dimension is compactified,

QCD(Adj) with massive fermions on small S1 × R3 exhibits an intricate phase structure. This

can be deduced from a one-loop effective action of the Wilson line [26, 24], simulations on an

asymmetric torus mimicking S1 ×R3 [27], and studies on S1 ×S3 [28] which also mimics S1 ×R3

due to topological reasons, as explained in [29]. In all these cases, the ZN symmetry along S1 is

intact at large radius, and as one decreases the radius, it breaks down completely at some critical

point and then gradually restores to various subgroups of the center symmetry. ZN symmetry

is restored fully only at mLN ∼ few, where L is compactification radius and m is the fermion

mass in continuum. This is troubling because volume independence (strong coupling, non-abelian

2The failure of these modifications can be cured by introducing supersymmetry [18, 19]. Ref.[20] proposed a

concrete way to construct 4d N = 4 super Yang-Mills theory by using the Eguchi-Kawai equivalence, which preserves

sixteen supersymmetries. Ref.[21] studied the Eguchi-Kawai reduction in the strong coupling domain of N = 4 SYM

by using AdS/CFT and D-branes.
3Recently, a new limiting procedure for the twisted Eguchi-Kawai model, which aims to prevent center breaking,

has been proposed [22].
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confinement) domain is LNΛYM ≫ 1 [30]. Whereas, for heavy fermions, m & ΛYM, the first

condition implies LNΛYM . few which is a volume dependent, weak coupling abelian confinement

domain [30].

One might expect a similar pattern for a single site lattice model based on this weak-coupling

intuition. However, recent important work of Bringoltz and Sharpe shows that (ZN )4 remains

intact in a rather generous “funnel”, in the fermion mass, lattice coupling plane, covering the

continuum limit of Yang-Mills theory [31] (also, see [32]), corresponding to the limit where bare

fermion mass is larger than cut-off scale. In particular, they observe a (ZN )4 restoration at

ma ∼ O(N0), where m is bare lattice mass and a is lattice spacing. Why and how the full center

symmetry restoration takes place at ma ∼ O(N0) is the main theoretical problem that we wish

to address in this work.

1.1 Results

To set the notation, we first express the action of continuum QCD(Adj) on a four-manifold:

S =
N

λ4d

∫ β

0
dt

∫
d3x Tr

[1
4
F 2
µν +

ND
f∑

f=1

ψ̄f ( /D +m)ψf

]
, (1)

where ψf are Dirac fermions with massm. (Generalization to different values of masses is straight-

forward.) In general, we will consider this theory on four-torus T 3 × S1, with sizes L and β,

respectively. If we impose the anti-periodic boundary condition on fermions along the temporal

direction, this action describes the finite temperature system and β corresponds to the inverse

temperature. For periodic boundary conditions on fermions in all directions, we consider β = L,

a symmetric four-torus.

We show that, with periodic boundary conditions, (ZN )4 symmetry is not broken at sufficiently

small-L, although it can be broken at some intermediate volume. (More precisely, (ZN )4 symmetric

and broken phases can co-exist, while quantum tunneling between them is suppressed in the large-

N limit.) The argument, which will be quantified in Section 2.1, is very simple – although the

one-loop effective action suggests the existence of the attraction between Wilson line eigenvalues

at small separation, the eigenvalues spread due to non-perturbative quantum fluctuations [40], and

the one-loop calculation can be trusted only at large separations where it leads to repulsion. The

estimates of non-perturbative fluctuations are outside the reach of one-loop perturbation theory

and often overwhelm the implications of one-loop analysis. Due to non-perturbative effects, we find

that the full center restoration takes place atmL ∼ O(N0), which is compatible with LNΛYM ≫ 1

for m & ΛYM.

Our main results are:

1. Small-large volume equivalence: The QCD(Adj) with heavy fermions of mass m on R4,

or T 4 with radii L & Λ−1, is equivalent to the theory on a small T 4, with radii mL < O(N0),

due to unbroken (ZN )4 center symmetry associated with the cycles on T 4. This is a small-

large volume equivalence with an intermediate center symmetry broken phase, where volume

independence is not valid.

2. Finite-temperature equivalence: The theory on R3 × S1 at finite temperature is equiv-

alent to the one on T 3 × S1 provided the (ZN )3 center symmetry associated with the cycles
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on T 3 is not spontaneously broken. The phase transition in the thermodynamic R3 × S1

limit can be studied by using a large-N reduced model on small T 3 × S1 by dialing β.

This form of equivalence is also useful for Hamiltonian formulation and extraction of the

non-perturbative spectrum of the theory.

3. Twisted QCD: In compactified QCD(Adj), finite-N corrections turn out to be order 1/N ,

as opposed to perturbative expectation on R4 [33], which is order 1/N2. There are two

plausibly related explanations for this behavior, whose footprints can be seen in finite volume

perturbation theory. In a weak-coupling center symmetric background, the volume is only

enhanced by a factor of N , and effective volume is Veff ∼ NV . Finite-N corrections should

scale as finite-volume corrections. The other is, in compact space, one cannot gauge away

zero momentum modes. Typically, there are order N bosonic and fermionic zero modes,

which may generate non-perturbative 1/N -effects [34]. Both problems can simultaneously

be cured and 1/N -corrections can systematically be improved by using twisted boundary

conditions.4 We refer the latter as TQCD(Adj) as per [14].

Our results have interesting spin-offs for non-commutative theories, phase transition in pure

Yang-Mills theory and orientifold equivalence. Adding massive or massless adjoint fermions to

TEK model cures the global instability of the model [16, 18, 17]. Therefore, our formulation can be

used to provide a non-perturbative definition of non-commutative bosonic Yang-Mills theory and

non-commutative QCD(Adj). By using the reduced matrix model for TQCD(Adj) with very heavy

adjoint fermions on 13 × 2-lattices, we observe the confinement/deconfinement transition at bare

coupling bc = 0.32−0.33. Large-volume simulations for pure Yang-Mills theory give similar results,

confirming finite-temperature version of equivalence non-perturbatively (for example, SU(8) YM

theory simulated on 103 × 5 lattices gives, in the extrapolated infinite volume limit, bc ∼ 0.34

[38] (see also [39]). Small difference is due to 1/N effects, the existence of heavy fermions in our

reduced model and difference of numbers of sites along the temporal direction). We hope that the

unitary matrix model can be used to gain insight into the nature of deconfinement transition of

the infinite volume theory.

Finally, combined with the large-N orientifold equivalence between (T)QCD(Adj) and QCD(AS),

thermal properties of the QCD(AS) can also be studied by using the large-N reduced model for

TQCD(Adj) at finite temperature [1, 2, 29].5 Our results for massive QCD(Adj) can be regarded

as a first step towards this direction of research.

2 Eguchi-Kawai equivalence for massive QCD(Adj)

In this section we analytically explain why it is natural to expect that the Eguchi-Kawai reduction

holds for the QCD(Adj) with massive adjoint fermions at sufficiently small volume. Our analysis is

based on the one-loop potential for diagonal components of fields and estimates of non-perturbative

4The relation between “effective” volume and N is discussed at many places, for a review, see [35]. The obser-

vations that twisted boundary conditions can be used i) to systematically reduce finite-volume corrections is given

in Ref.[36] and ii) to lift bosonic and fermionic zero modes is given in Ref.[37]. We give analytic and numerical

evidence suggesting that the two are indeed related.
5Earlier work on deconfinement transition in large-N QCD(Adj) and QCD(AS) in the weak-coupling limit of

small S3 × S1 showed that the critical temperatures agree [29], up to 1/N corrections.
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quantum fluctuation. We start with the zero temperature case and then generalize to the finite

temperature.

2.1 QCD(Adj) at zero temperature on T 4 at small L

Let us consider the QCD(Adj) at zero temperature on a symmetric four-torus, with size L. On

fermions, we impose periodic boundary condition along each circle. At sufficiently small L, gauge

coupling at the scale of the compactification is small and we may analytically compute the one-

loop effective action on T 4. The reason for doing this computation, apart from trying to determine

the center symmetry realization, is two-fold. One is, we would like to compare with the one-site

theory, given in (24). More importantly, we give evidence that some (not all) implications of

one-loop action are, in full theory, overwhelmed by large non-perturbative quantum fluctuations,

and therefore, incorrect.

Consider a constant, commuting set of Wilson lines, parameterizing the space of flat-connections

on T 4, i.e., zero field strength,

Vµ = diag(eiθ
1
µ , · · · , eiθNµ ), [Vµ, Vν ] = 0. (2)

The one-loop effective action induced by gauge fluctuations and ND
f adjoint Dirac fermions with

mass m and endowed with periodic boundary conditions can be written as

S1−loop[θ
ab
µ ] =

∑
a<b

∑
k1,...,k4

2 log

 4∑
µ=1

(2πkµ + θabµ )2

L2

− 4ND
f log

 4∑
µ=1

(2πkµ + θabµ )2

L2
+m2

 , (3)

where θabµ = θaµ − θbµ. Clearly, this expression has IR-singularities whenever two (or more) eigen-

values coincide, which we discuss throughly in Appendix A. Physically, at these points, there are

extra massless degrees of freedom which should not have been integrated out. In other words,

the zeroth order assumption that one can expand the fluctuations around commuting saddles (2)

is not always correct. The theory may have different saddles which are expressed in terms of

non-commuting matrices. The classification of the saddles, using the techniques of Ref.[53], of

QCD(Adj) as a function of mass of the fermion is given in Appendix A.

When we consider a regime where |θ⃗ab| ≪ 2π, we can split (3) to the zero and non-zero

momentum contribution. The eigenvalue dynamics is dominated by the interactions between

nearby eigenvalues and the effect of high Kaluza-Klein (KK) modes is negligible. Therefore,

we will use the truncated Hermitian matrix model (4) to gain an understanding of the typical

eigenvalue fluctuations. Strictly speaking, the truncation can be justified only when the (ZN )4

center symmetry is completely broken and consequently there exists a clear separation of scales

between the KK-modes and zero modes. In a center symmetric background, this is not the case.

However, at large-N , the states obtained by quantizing the theory on a center-symmetric vacuum

fill the [0, 2π/L] energy range uniformly. If we consider a finite, but small range |θ⃗ab| ≪ 2π,

there are still O(N2) states (in perturbation theory) in this interval. We may therefore use the

Hermitian model to probe the interaction of nearby eigenvalues, and their fluctuations. The

eigenvalue dynamics of the full theory is mimicked rather accurately by the truncated Hermitian

matrix model.
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The truncation of the KK modes in (1) yields the zero-dimensional Hermitian matrix model 6

S0d =
N

λ0d
Tr

(
−1

4
[Xµ, Xν ]2 +

ND
f∑

f=1

ψ̄f (γµ[X
µ, ψf ] +mψf )

)
, (4)

where

λ0d =
λ4d(

1
L)

L4
∼ 1

log( 1
LΛ)L

4
(5)

is the zero-dimensional ’t Hooft coupling. Recall that LΛ ≪ 1, where Λ is the strong scale of the

4d theory. Scalar eigenvalues in 0d theory are related to the phases θ of the Wilson lines winding

on temporal and spatial directions by

Lxµa = θµa (a = 1, · · · , N). (6)

The ’t Hooft coupling λ0d has the dimension of (mass)4 and its value sets the typical mass

scale of the 0d theory (4). In particular, typical fluctuation of the eigenvalues of the dynamical

fields is set by this scale. Ordinarily, the fluctuations of sensible gauge invariant operators are

suppressed in the large-N due to the classical nature of the N = ∞ limit [10]. However, the

eigenvalues of Wilson line are not of this type, although the traced Wilson line is. This is the

crucial observation that will be important below. Because of the generic non-commutativity of

Xµ matrices , the relative positions of the eigenvalues make sense only when their separation is of

order or larger than λ
1/4
0d [40].

The one-loop effective action of the matrix model around the diagonal background can be cal-

culated if all eigenvalue pairs are well-separated |x⃗a− x⃗b| ≫ λ
1/4
0d , corresponding to the case where

all eigenvalues are weakly coupled. Integrating out massive “W-bosons” (off-diagonal elements)

by using the background field gauge yields

S1loop[x
µ
ab] = 2

∑
a<b

log |x⃗a − x⃗b|2 − 4ND
f

∑
a<b

log
(
|x⃗a − x⃗b|2 +m2

)
. (7)

Note that this is nothing but Eq.(3) restricted to its KK zero-mode, as expected. Let us now

discuss the fate of (ZN )4 symmetry based on this effective action.

2.1.1 ND
f = 0 (bosonic)

For ND
f = 0, one-loop action leads to the mutual attraction of eigenvalues at large eigenvalue

separation and hence, eigenvalues must clump. This implies broken center symmetry. However

at small eigenvalue separation, one-loop approximation is not valid. Due to non-perturbative

quantum fluctuations, the eigenvalues do not collapse to a point, rather the eigenvalue clump has

a finite extent of the order λ
1/4
0d ≡ [λ4d(1/L)]

1/4/L. Note that, although the size of the eigenvalue

clump is suppressed with respect to 1
L at small λ4d(1/L) and hence center is broken, it scales as

O(N0) in large-N limit. This will be crucial later.
6It should be understood that the Hermitian model (4) is used as auxiliary. In the strict L = 0 limit, and for

massless fermions (or fermions with a finite mass), the quantum theory associated with the action (4) does not

exist. One-loop potential is unbounded from below as eigenvalue separations tend to infinity. In this paper, we

study finite-L, N → ∞ limit of (1) which is a well-defined quantum theory. The Hermitian model will be useful to

infer some general lessons about the finite-L case.
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2.1.2 ND
f = 1/2 (Single Majorana)

When ND
f = 1/2 and m = 0, the theory is 4d N = 1 pure super Yang-Mills theory. In

this case, the one-loop effective action (7) vanishes and in fact, this is true to all loop orders due

to supersymmetry. Taking non-perturbative fractional instanton effects into account, the center

is unbroken on R3 × S1 as discussed in [6]. In supersymmetric theories with supersymmetry

preserving boundary conditions, it is expected that there are no phase transitions as the volume is

varied [37]. At large-N , the absence of phase transitions transmutes to exact volume independence

[6] and unbroken (ZN )4 center symmetry. However, it is also possible to construct a meta-stable

center broken sector [41], which becomes stable at large-N .

When m is fixed and non-zero, taking L → 0, (7) is positive and, therefore, (ZN )4 symmetry

breaks down. If L is fixed and m→ 0, a center symmetry preserving background exists for a finite

range of m. This aspect is discussed throughly in Ref.[42]. This non-commutativity of limits

requires care in drawing conclusions about this case.

2.1.3 ND
f ≥ 1: Quantum fluctuations and uniforming eigenvalue distribution

The effective action (7) predicts attraction at short distance |∆x| . m, and repulsion at

long distance |∆x| & m. Then one may naively conclude that all eigenvalues clump and (ZN )4

symmetry is broken. However, one should notice that this effective action is valid only at |∆x| &
λ
1/4
0d . When λ

1/4
0d . m attractive force emerges at λ

1/4
0d . |∆x| . m and hence (ZN )4 is broken

(left of Fig.1). When λ
1/4
0d & m, however, it predicts only repulsion; eigenvalue fluctuation is of

order λ
1/4
0d and hence they cannot clump to small region where (7) predicts attraction (right of

Fig.1).

At sufficiently small, but O(N0) compactification radii L, we can always guarantee that non-

perturbative quantum fluctuations overwhelm fermion mass, i.e., λ
1/4
0d ≡ [λ4d(1/L)]

1/4/L & m. In

this case, fermion mass is negligible and for the purpose of center symmetry realization, the theory

cannot be distinguished from the massless theory, for which center is unbroken. At such values of

L, since the target space of eigenvalues is compact four-torus T̃ 4 with size 1
L , the repulsion implies

that the eigenvalues will uniformly distribute over T̃ 4.

This is the sense in which lower dimensional non-perturbative quantum fluctuations help

restoration of center symmetry at mL ∼ few, as opposed to quantum field theory on R3 × S1

where full center restoration requires mLN ∼ few.

As we will see in Appendix A, (ZN )4 broken phase which consists of k bunches of eigenvalues

may exist when (λ0d/k)
1/4 ≪ m. However, radius of each bunch is of order (λ0d/k)

1/4, which is

smaller than eigenvalue fluctuation in (ZN )4 symmetric phase (λ0d)
1/4, and hence even if (ZN )4

broken phase exists, tunneling to such a state is highly suppressed.

The above argument explains the reason for the working of Eguchi-Kawai reduction in Refs.[31,

32] for heavy fermions. In [31], initial configuration for simulation corresponds to Xµ = 0 (single

bunch). It is unstable and collapses to (ZN )4 symmetric phase. The reason why single bunch does

not collapse to k-bunch phase with sufficiently large k is clear – fluctuation in single-bunch phase

is larger than radius of k-bunch phase.
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Figure 1: The scales in the problem. Left panel: m & λ
1/4
0d and mass is important. Right panel:

m . λ
1/4
0d and mass is negligible with respect to quantum fluctuations. We can always realize the

latter case by taking the size of the four-torus sufficiently small, but still O(N0). See the text for

explanations.

2.2 QCD(Adj) at finite temperature on asymmetric T 3 × S1

We generalize the argument of the previous subsection to the finite temperature QCD(Adj)

on an asymmetric four-torus T 3 × S1. Circumferences of temporal and three spatial circles are

taken to be β and L. On fermions, we impose anti-periodic and periodic boundary conditions

along temporal and spatial circles, respectively.

Completely analogous to the discussion of Section 2.1, at small L, the eigenvalue dynamics

of the full theory is mimicked rather accurately by the truncated Hermitian matrix quantum

mechanics with action:7

S1d =
N

λ1d

∫ β

0
dt Tr

(
1

2
(DtX

i)2 − 1

4
[Xi, Xj ]2 +

ND
f∑

a=1

ψ̄a

(
γ0Dtψa + γi[X

i, ψa] +mψa

))
, (8)

where

λ1d =
λ4d
L3

. (9)

The ’t Hooft coupling λ1d has the dimension of (mass)3 and its value sets the typical mass scale

of the theory. In particular, typical fluctuation of the eigenvalues of the dynamical fields is given

by this scale. The mapping between the scalar eigenvalues and the phases θ of the Wilson loops

is the same as in (6), but now only running over spatial directions. Since S1 direction is compact,

unlike its decompactification limit S1 → R, the Wilson line along that direction cannot be gauged

away. We parametrize Wt = diag(eiα1β, · · · , eiαNβ), or At = −iβ−1 logWt.

The one-loop effective action of the matrix quantum mechanics around the static diagonal

7We repeat the same cautionary note as in Section 2.1. The classical theory written in Eq.(8) does not exist as

a quantum theory. In the strict L = 0 limit, and for massless fermions (or fermions with a finite mass), the theory

does not have a ground state. In this paper, we study finite-L, N → ∞ limit of (1) which is a well-defined quantum

theory. The Hermitian model (8) will be useful as auxiliary to infer some general lessons about the finite-L case.
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background in the background field gauge can be computed in the weak coupling domain,

λ
1/3
1d

|x⃗a − x⃗b|
≪ 1 or λ

1/3
1d β ≪ 1 , (10)

resulting in

S1d,1loop(α, x⃗) = 2
∑
a<b

∞∑
n=−∞

log

((
2πn

β
+ (αa − αb)

)2

+ |x⃗a − x⃗b|2
)

−4ND
f

∑
a<b

∞∑
n=−∞

log

((
2π(n+ 1/2)

β
+ (αa − αb)

)2

+ |x⃗a − x⃗b|2 +m2

)
,

(11)

where αa and x⃗a represents diagonal components of the gauge field At and three scalars Xi,

respectively. By subtracting a constant factor, (11) can be rewritten as [43] (for reference, we

quote both periodic and anti-periodic boundary conditions along β circle)

S±
1d,1loop = 2

∑
a<b

log (cosh (β|x⃗a − x⃗b|)− cos(β(αa − αb)))

−4ND
f

∑
a<b

log
(
cosh

(
β
√

|x⃗a − x⃗b|2 +m2
)
∓ cos(β(αa − αb))

)
. (12)

From the expression of S−
1d,1loop, one might naively conclude that eigenvalues x⃗a and αa coincide,

because the one-loop action is negative infinity at that point. However, the analysis is valid only

when condition (10) is satisfied, thus drawing reliable conclusions require care.

The β → ∞ limit of (12) is both intuitive and insightful. Since it is the limit of arbitrarily low

temperatures, the fermionic boundary conditions should not matter, and indeed, this is transpar-

ent from (12); hyperbolic cosine increases unboundedly, and trigonometric cosine is bounded, hence

the one-loop expression is dominated by the former.8 The ground state energy of the system at one

loop order (or one-loop potential) can be deduced from the limit limβ→∞ S1d,loop/β ≡ E1d,loop[|x⃗ab|]
and the result is

E1d,1loop[|x⃗ab|] = 2
∑
a<b

|x⃗a − x⃗b| − 4ND
f

∑
a<b

√
|x⃗a − x⃗b|2 +m2,

lim
m→0

E1d,1loop[|x⃗ab|] = (2− 4ND
f )
∑
a<b

|x⃗a − x⃗b|. (13)

This is an intuitive and simple result9 and various remarks are in order regarding the chiral

(m = 0) limit on R.
8Also note that at β → ∞ limit, At can be gauged away. Hence, it should not appear in one-loop potential.
9We could have guessed this result by physical reasoning as follows: In the weak-coupling domain where λ̃1d =

λ1d/|x⃗ab|3 ≪ 1 is small and one-loop analysis is reliable, the Lagrangian (8) reduces to a collection of bosonic and

fermionic harmonic oscillators:

L ≈ 1
2
|∂tX⃗

ab|2 + 1
2
|x⃗a − x⃗b|2|X⃗ab|2 + fermionic oscillators . (14)

The eigenvalue differences of background X⃗ matrices are identified with the frequencies of harmonic oscillators,

ωb
ab = |x⃗a − x⃗b| and ωf

ab =
√

|x⃗a − x⃗b|2 +m2. In the chiral limit, ωf
ab = ωb

ab. In gauge quantum mechanics, there

10



1. For ND
f > 1/2, E1d,1loop[|x⃗ab|] is unbounded from below and eigenvalues mutually repel each

other. The classical minima corresponding to the space of commuting triples [Xi, Xj ] = 0

are unstable against perturbative quantum-fluctuations. This means, at L = 0 limit, the

hermitian matrix quantum mechanics (8) does not have a ground state.

2. At finite L, since the target space of eigenvalues is compact three-torus T̃ 3 with size 1/L, the

repulsion implies that eigenvalues will uniformly distribute over T̃ 3. This implies unbroken

center symmetry in N = ∞ limit and the theory obeys volume independence.

3. For 0 ≤ ND
f < 1/2, E1d,1loop[|x⃗ab|] is bounded from below. The minimum is at |x⃗ab| = 0.

However, in this domain, one-loop analysis is not reliable, and there are quantum fluctuations

of order λ
1/3
1d . At ND

f = 1/2, m = 0, the ground state energy is zero to all orders in

perturbation theory due to supersymmetry.

In the following, we study in more detail the phase structure of the four-dimensional theory

by using (12) and estimates of the non-perturbative quantum fluctuations. We firstly explain

ND
f = 0 (bosonic) and ND

f = 1/2 (or one Majorana fermion) cases. We then study the case with

ND
f ≥ 1, our main interest in this paper.

2.2.1 ND
f = 0 (bosonic)

The one-loop action (12) generates an attraction between eigenvalues at long distance and

the center symmetry is broken. More precisely, there are N3 saddles related to each other by

center conjugations. The tunneling between these saddles is suppressed in the large-N limit and

the theory is in a center broken phase. However the eigenvalues do not collapse to a single

point due to the non-perturbative quantum fluctuations; the clump has a finite size of order

λ
1/3
1d ≡ [λ4d(1/L)]

1/3/L which is O(N0) in large-N limit.

2.2.2 ND
f = 1/2 (Single Majorana)

The supersymmetric theory (ND
f = 1/2 and m = 0) has been studied extensively, because its

maximally supersymmetric cousin has a dual description as D0-brane system. In this case the

one-loop potential falls off exponentially,

S−
1d,1loop ∼

∑
a<b

exp (−β|x⃗a − x⃗b|) , (16)

and the ground state energy is E1d,1loop[|x⃗ab|] = limβ→∞ S−
1d,1loop/β → 0. This follows from

the cancellation of the attractions and repulsions between eigenvalues due to supersymmetry.

Consequently, there exists a space of flat directions. Therefore, once eigenvalues are well separated,

they will propagate freely like gas of D0-branes to all order in perturbation theory.

are 2
∑

a<b many massive bosonic fluctuations and 2× 2ND
f

∑
a<b many massive fermionic fluctuations. Hence, the

background dependence of the ground-state energy of the system is

E =
∑

bosons

1
2
ωb −

∑
fermions

1
2
ωf = E1d,1loop[|x⃗ab|] , (15)

which is given in (13).
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In order to study non-perturbative aspects, it is more useful in this case to recall that the theory

is formulated on T 3×R, and to discuss the system in Hamiltonian formulation. As asserted above,

to all orders in perturbation theory, the theory has a moduli space, and all possible realizations

of center symmetry are possible. However, non-perturbatively, this is not the case. Quantization

of the zero-momentum bosonic modes give rise to a discrete spectrum and a gap.

Witten studied the gauge quantum mechanics for finite-N within Born-Oppenheimer approx-

imation and showed that the bosonic ground state wave function (ignoring fermionic zero modes

which is not crucial in what follows) is constant

Ψ0(θ⃗1, . . . , θ⃗N−1) = 1, (17)

and the excited states have an energy gap [37]. The center symmetry and volume independence

was not discussed in Ref.[37], however, its results has natural implications which apply to our

discussion. In particular, we can introduce an eigenvalue distribution function ρ(θ⃗) measuring

the density of eigenvalues. The density is everywhere non-negative and obeys (with a judicious

normalization)
∫
d3θ⃗ρ(θ⃗) = 1. Since the ground state wave function spreads uniformly over the

perturbative flat directions,

ρ(θ⃗) =
1

(2π)3
, (18)

and center is unbroken. Unlike the discussion in Section 2.2.1, it is also unbroken at large-N .

Non-perturbatively, we have a unique saddle singlet under center conjugations, and this is the

main difference with respect to purely bosonic theory which has N3 saddles.

When the fermion is massive, there is a subtlety due to order of limits of small-mass vs. small-L

analogous to the discussion in Section 2.1.2, with similar conclusions.

Finally, at large-N , this theory has a meta-stable bound state of eigenvalues [41] (with di-

verging lifetime as N → ∞) which is analogous to the one in maximally supersymmetric theory

[44] corresponding to the black zero-brane in type IIA supergravity.

2.2.3 ND
f ≥ 1

First consider the case with m = 0. From the one-loop effective action (12), it is apparent

that repulsive force coming from fermions dominates at long distance. In the limit where T 3 is

shrunk to zero size, the resulting hermitian quantum matrix model is not well defined; the one-

loop potential is unbounded from below for large eigenvalue separations. For finite T 3 × R, the
eigenvalues can no longer run-off to infinity, instead they spread over the dual T̃ 3 uniformly. We

expect the center symmetric phase to continue upon compactification, down to T 3 × S1
β so long

as λ
1/3
1d β ≫ 1. In this domain, the center symmetry is intact and in the large-N limit, volume

independence must hold.

In the high temperature limit, λ
1/3
1d β ≪ 1, fermions decouple due to thermal mass, eigenvalues

clump and a meta-stable bound state of eigenvalues exists. Let us assume |β∆x|, |β∆α| ≪ 1,

where ∆x = maxa,b{|x⃗a − x⃗b|} and ∆α = maxa,b{|αa − αb|}. Then the second term in the r.h.s.

of (12) is negligible, due to large thermal mass of fermions, and the effective action becomes that

of the zero-dimensional bosonic matrix model,

S−
1d,1loop ∼ S0d,bos[x

µ
a ] = 2

∑
a<b

log |x⃗a − x⃗b|2, (19)
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where we used the identification x4a = αa. This potential produces attraction between eigenvalues.

This model is studied extensively, and taking into account non-perturbative effects, a bound state

of eigenvalues exists and it satisfies conditions |β∆x|, |β∆α| ≪ 1. In this domain, (ZN )4 center

symmetry is completely broken.

Generalization to nonzero m is straightforward and follows from the discussion of Section 2.1.3

on T 4. At sufficiently small O(N0) volume such that m ≪ λ
1/3
1d , the effect of mass is small, and

hence attraction in one-loop action is overwhelmed by nonperturbative quantum fluctuations. In

this domain, the (ZN )3 center symmetry is intact.

3 Lattice model and Monte-Carlo simulation

In Section 2.1, we explained on continuum T 4 and T 3 × S1 why the Eguchi-Kawai reduction

holds for the QCD(Adj) at zero and finite temperature, based on perturbative-loop analysis,

supplemented crucially with the estimates of non-perturbative quantum fluctuations. Below,

we study the unitary matrix model and one-dimensional lattice model by using Monte-Carlo

simulation.

It is hard to implement the thermal model on a computer since the temporal direction is not

reduced. Moreover, in order to describe phenomena typical to the finite temperature system, we

need to take the effective spatial volume10 sufficiently large compared to Nt. As for a lattice model

with an isotropic lattice spacing, roughly speaking, we need to take the spatial lattice size Ns to

be twice larger than the temporal one Nt, Ns & 2Nt. Since the N eff
s is related to the matrix

size N for the large-N reduced models in the sense described in the footnote 10, we need to

take N large enough to satisfy this condition. When we use the original Eguchi-Kawai reduction

for the spatial directions, finite-N correction behaves as 1/N rather than 1/N2, as we will show

numerically. This fact indicates that the effective lattice size scales as N eff
s ∼ N1/3, and it is not

practical for numerical simulations. Therefore, to gain more effective spatial volume, we impose a

twisted boundary condition on the spatial directions. For the latter, the effective volume is more

enhanced; and volume independent domain can be reached more quickly. We call the QCD(Adj)

with the twisted boundary condition as TQCD(Adj). The introduction of TQCD(Adj), which is

algorithmically more convenient, is our main improvement over the one-site model of Ref.[31].

To explain the efficiency of the TQCD(Adj), we start with the zero temperature case, that is,

the single-site model with periodic boundary condition along the temporal direction on fermions.

Then we apply the twist to the finite temperature case, that is, the one-dimensional lattice model

with anti-periodic boundary condition on fermions along the temporal direction, and then see

the Eguchi-Kawai reduction holds in this case. Especially we show this reduced model at finite

temperature describes the confinent/deconfinement transition.

10The space size in its ordinary sense is fixed. By developing perturbation theory around a center symmetric

background, say for simplicity with only one-dimension compact, we observe that both the lowest states and the

spacing between the states is suppressed by a factor of N and is given by 2π/(LN) as opposed to the usual (center-

broken) KK-spectrum where the level spacing is 2π/L . In other words, to all orders in perturbation theory, the

effective space size is enhanced into Leff = LN . (See the discussion in [25] for QCD(Adj) and related discussions

in a review [35] for QEK and TEK.) This is the perturbative essence of volume independence, and in the sense of

neutral sector observables, decompactification limit can be reached at N → ∞ while keeping L fixed.
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3.1 Single-site theories

3.1.1 QCD(Adj) on 14-lattice

The single-site matrix model can be obtained from a four-dimensional lattice gauge theory by

reducing the number of lattice sites to one in all directions [31]. The action is

S0d = −2bNRe Tr

(∑
µ<ν

VµVνV
†
µV

†
ν

)
+ SF , (20)

where Vµ (µ = 1, 2, 3, 4) corresponds to the link variable in the four-dimensional theory. The

inverse ’t Hooft coupling constant b should be chosen appropriately depending on the lattice

spacing a. The fermionic part SF is obtained as dimensional reduction of the Wilson-Dirac

fermion term

SF =

ND
f∑

f=1

(
ψ̄fψf − κ

3∑
i=1

{
ψ̄f (1− γµ)VµψfV

†
µ + ψ̄f (1 + γµ)V

†
µψfVµ

})
. (21)

The hopping parameter κ can be expressed as

κ =
1

8 + 2am0
, (22)

where m0 is the bare mass.

This action has a (ZN )4 center symmetry

Vµ → e2πinµ/NVµ (nµ = 0, 1, · · · , N − 1). (23)

If this symmetry is not broken, then the model is equivalent to the translationally invariant

subsector of lattice theory with an arbitrary number of sites, including an infinite lattice limit.

Although detailed analytic evaluation of one-loop effective potential depends on the choice of

lattice fermions,11 intuitively, the absence of the center symmetry breaking phase follows closely

the discussion on continuum T 4. The discussion on T 4 can easily be generalized to 14-lattice. The

role of the compactification scale L is replaced by the lattice spacing a in the one-site model. The

main lesson that we learn is that the center symmetry on 14 lattice model is in fact much more

robust than the center on continuum T 4.

The one-loop action for the one-site theory in the classical background of commuting Wilson

lines [Vµ, Vν ] = 0 where Vµ = diag(eiθ
1
µ , · · · , eiθNµ ) is given by

S1loop = 2
∑
a<b

log
[ 4
a2

4∑
µ=1

sin2
(θabµ

2

)]
− 4ND

f

∑
a<b

log

 1

a2

4∑
µ=1

sin2 θabµ +
(
m0 +

2

a

4∑
µ=1

sin2
(θabµ

2

))2 ,

(24)

The first term is induced by gauge fluctuations and leads to eigenvalue attraction [12]. Geomet-

rically,

Pab
µ ≡ 2

a

∣∣∣∣∣sin
(
θaµ − θbµ

2

)∣∣∣∣∣ = 2

a
|eiθaµ − eiθ

b
µ | (25)

11Here, we use Dirac-Wilson fermion with Wilson parameter r = 1, [32] uses overlap fermions, and also discusses

naive fermions.
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is the separation between two eigenvalues of the Wilson line in µ direction. P2 ≡
∑4

µ=1(Pab
µ )2 is

the spectrum of massive gauge fluctuations (W -bosons), familiar from the usual D-brane pictures

as the spectrum of open strings ending on branes, where eigenvalues of Wilson line are identified

with branes. The second term, proportional to ND
f , is induced by fermionic fluctuations, and is

equal to −4ND
f

∑
a<b log

[
M2

f [θ
ab
µ ]
]
where M2

f [θ
ab
µ ] is the spectrum of fermions.12

Eq.(24) may be rewritten in a form mimicking the continuum expression on T 4 given in (3):

S1loop[θ
ab
µ ] = 2

∑
a<b

log

 4∑
µ=1

(Pab
µ )2

−4ND
f

∑
a<b

log

 4∑
µ=1

(Pab
µ )2 +

∑
µ<ν

a2(Pab
µ )2(Pab

ν )2

2(1 +m0a)
+

m2
0

(1 +m0a)

 .
(26)

where we have subtracted a holonomy-independent constant term. This expression can be Poisson

resummed and be written in terms of Wilson lines as

S1loop[θ
ab
µ ] =

∑
a<b

∑
n⃗∈Z4\{0}

eiθ⃗
ab·n⃗Pn⃗(m0a) , (27)

as discussed in Appendix A. The only difference with respect to the continuum expression on T 4

is that

P 1site
n⃗ (0) = en⃗P

T 4

n⃗ (0) , (28)

where en⃗ is an enhancement factor of one-site model over continuum T 4, for both bosonic and

fermionic contribution. In general, due to peculiarities of the dispersion relation of one-site model,

the center-stability is further enhanced on one-site model with respect to continuum T 4. Asymp-

totically, for |n⃗| ≫ 1, en⃗ → 1 as expected on physical grounds, by just inspecting the dispersion

relations.

The fermionic contribution to en⃗ is numerically sizeable and has interesting implications. For

example, on T 4, start with mL = ∞. Following the discussion of Appendix A, the singly-winding

Wilson lines do get stabilized (in perturbation theory) at mL = 2.027, whereas the one-site model,

the same phenomena take place at m0a = 9.3. This is due to the fact that in the domain of heavy

fermion bare mass, the last term in (26), which may roughly be viewed as an “effective mass” m2
eff ,

is suppressed with respect to the bare mass, meff ∼
√
m0/a. For ND

f = 1 theory, the fermions

contribution dominates, leading to eigenvalue repulsion, and unbroken center symmetry for the

theory defined on a 14-lattice, or EK reduction of QCD(Adj) to a single-site lattice.

If one-loop perturbation theory was the whole description, this would be the transition to a

(Z2)
4 restored phase. Interestingly, in terms of hopping parameter, this corresponds to κ ≈ 0.037

where the full center restoration is observed in simulations. See for example, the large-κ start

of the hysteresis Fig. 4. This is also approximately the value of κ where Ref.[31] observed the

full center restoration, not just Z2. As explained throughly in Section.2.1.3, the non-perturbative

quantum fluctuations of the eigenvalue bunches overwhelm the fermion mass term, and a phase

which would just be a (Z2)
4 unbroken phase in perturbation theory, is indistinguishable from a

uniform (ZN )4 unbroken phase.

12The relation between the continuum one-loop effective action on T 4 (3) and the one-loop effective action for

one site theory given in Eqs. (24) and (26) is analogous of the relation between the XY-model and its Villain-form.
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3.1.2 TQCD(Adj) at zero temperature

In compactified QCD(Adj), as we will see explicitly from simulations, the finite-N corrections

turn out to be order 1/N , as opposed to perturbative expectation on R4 [33]. As explained in

Section.1.1, there are two plausibly related explanations for this behavior. One is related to the

discussion of effective volume in the reduced model. In the reduced model, N serves the role of

an emergent spacetime volume, at least in a perturbative description in finite volume around a

center symmetric configuration. Finite-N corrections should scale as finite-volume corrections.

However, what is not always clear is the factor Np via which volume enhancement takes place

Veff ∼ NpV , 13, and p may in fact be determined non-perturbatively.

In compact space, one cannot gauge away zero momentum modes, and these modes are crucial

in studying perturbation theory in finite volume. In perturbation theory, the spectrum of the

theory relies on the background for the Wilson lines. If theory has massless adjoint fermions,

there will also be fermionic zero modes in the spectrum. Typically, there are order N light or

massless bosonic and order N fermionic zero modes, which may generate non-perturbative 1/N -

effects [34].

Both problems can simultaneously be solved and 1/N -corrections can systematically be im-

proved by using boundary conditions which cannot be obeyed by neither bosonic, nor fermionic (if

there are any) zero modes. This can be done by using the twisted boundary conditions of ’t Hooft

[45]. This idea is, of course, not new, and is used by Witten in Ref.[37] to lift the zero modes in

N = 1 SYM theory in the context of supersymmetric theories on T 3×R, and by Gonzalez-Arroyo

and Okawa [14] in the context of large-N reduced models.

Our main observation can be summarized by using the following pedagogical exercise. (The

generalization to the theories that we use in simulations is straightforward. The prescription given

below works equally well on lattice and continuum.) Let Φ(x1, x2, x3, x4) denote either a unitary

gauge field or an adjoint fermion field. We impose the following generalized boundary conditions

on fields

Φ(. . . , xµ + L, . . .) = BµΦ(. . . , xµ, . . .)B
†
µ . (29)

For the particular case of one-site matrix models, we can set Φ(x1, x2, x3, x4) = Φ =constant. For

the theory on 14-lattice, we consider two choices for Bµ.

pbc : Bµ = 1N
Twist : B1 = C√

N ⊗ 1√N , B2 = S√N ⊗ 1√N , B3 = 1√N ⊗ C√
N , B4 = 1√N ⊗ S√N (30)

where C√
N and S√N are

√
N ×

√
N are (non-commuting) clock and shift matrices obeying

13Of course, for QEK-like configuration, p = 1 and for TEK-like configurations, p = 2, see, for example, [35].

However, these deductions are in perturbation theory around particular backgrounds, and the determination of p

is likely non-perturbative.
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C√
NS

√
N = e

−i 2π√
N S√NC

√
N . A particular representation is

C√
N = diag(1, ω, ω2, · · · , ω

√
N−1), S√N =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0

 , (31)

where ω = exp(2πi/
√
N).

The first case in (30) is the original QCD(Adj) with periodic boundary conditions and does

not lift any zero or light modes associated with holonomy, or fermions. In this case, finite-N

corrections turn out to be largest, of order 1/N .

The second case in (30) is a twist of QCD(Adj). The twist lifts all possible zero or light modes

from the spectrum. In this case, finite-N corrections turns out to be of order 1/N2.

The action of the theory with twisted boundary conditions can be turned into a theory with

periodic boundary conditions and an action with an insertion of ’t Hooft flux. This is our definition

of “twisted” QCD(Adj) [or TQCD(Adj)]:

S0d = −2bNRe Tr

(∑
µ<ν

ZµνVµVνV
†
µV

†
ν

)
+ SF , (32)

where Zµν is the twist factor. Geometrically, Zµν is associated with the ’t Hooft flux passing

through the (µν)-plaquette. Here we adopt “symmetric twist”

Zµν = Z∗
νµ = e2πi/

√
N (µ < ν) . (33)

As the area enclosed by fermionic “plaquette” terms is zero, the flux passing through it is zero.

Thus, fermionic action is unaltered. This procedure, apart from helping QCD(Adj) algorithmi-

cally, also cures the global instability [16, 18, 17] of TEK model. We numerically compare the

behaviors of finite-N corrections for QCD(Adj) and TQCD(Adj) below.

3.1.3 Numerical results for ND
f = 1: Eguchi-Kawai equivalence and 1/N correction

We now discuss the Monte-Carlo results for QCD(Adj) and TQCD(Adj) at zero temperature.

We restrict our analysis to the case with single Dirac fermion in adjoint representation.14

In Fig. 2, the expectation value for the absolute value of the Wilson loop (averaged over all

directions)

|W | ≡ 1

4

4∑
µ=1

|Vµ|, (34)

14We implemented the RHMC algorithm [46] with the multi-mass CG solver [47]. Numerical coefficients in the

rational approximation necessary for the RHMC simulation was obtained by using the simulation code provided at

[48].
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in the QCD(Adj) and the TQCD(Adj) at zero temperature are plotted.15 For both the QCD(Adj)

and TQCD(Adj), ⟨|W |⟩ is of order 1/N and hence the (ZN )4 symmetry is unbroken. (As already

shown in [31], it is unbroken in a rather large parameter region.) The extent of the next-to-

leading correction is not clear from this plot; we fit it by ⟨|W |⟩ ∼ c/N + d/N2 for QCD(Adj) and

⟨|W |⟩ ∼ c′/N + d′/N3 for TQCD(Adj), where c, d, c′, d′ are constants.

In Fig. 3, expectation values of the plaquettes are plotted. From this plot, the finite-N

correction for the QCD(Adj) turns out to be of order 1/N . On the other hand, the finite-N

correction for the TQCD(Adj) is of order 1/N2 as expected.
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Figure 2: Expectation values of the Wilson

loop in QCD(Adj) and TQCD(Adj) at b =

0.50, κ = 0.09 and κ = 0 (bosonic twisted

Eguchi-Kawai model). Fitting curves are of

the form c/N + d/N2 for the former and

c′/N + d′/N3 for the latter. TQCD(Adj)

at b = 0.50, κ = 0.09 and κ = 0 agree quite

well, as expected because κ = 0.09 corre-

sponds to quite heavy fermion.
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Figure 3: Expectation values of the plaque-

tte in QCD(Adj) at b = 0.50, κ = 0.09 and

TQCD(Adj) at b = 0.50, κ = 0.09, κ = 0.

The 1/N correction is of order 1/N for the

QCD(Adj) and 1/N2 for TQCD(Adj).

In Fig. 4, expectation values of Wilson lines ⟨|W |⟩ near the phase transition are shown. The

argument in § 3.1.1 suggests the transition is of first order because several phases co-exist. To

confirm, we studied and observed hysteresis. We started simulation at κ = 0.01 (small-κ start)

and κ = 0.05 (large-κ start), and gradually increased/decreased the value of κ. At each point, we

collected 500 – 2000 samples, which is enough to evaluate the expectation values. As can be seen

from the plot, there is a clear hysteresis. Thus we conclude the transition is indeed of first order.

We also studied the distribution of Tr(VµVν)/N as in [31], and did not find partial breaking

of the center symmetry.

15We use absolute value of the Wilson line operator in small volume to distinguish a center-symmetric saddle

point from a multi-saddle configurations for which ⟨W ⟩ is non-vanishing at each saddle, but vanishes due to phase

averaging over all saddles (which is permitted in quantum theory due to tunneling). Multi-saddle configurations,

in the large-N limit, lead to spontaneously breaking of the center-symmetry, whereas a center symmetric saddle

continues to respect the center symmetry.
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Figure 4: Expectation values of the Wilson loop ⟨|W |⟩ in QCD(Adj) at b = 0.50, N = 25. Clear

hysteresis can be seen.

3.2 One-dimensional lattice: the Eguchi-Kawai model at finite temperature

We first introduce a one-dimensional lattice formulation corresponding to the large-N reduced

model at finite temperature and then apply two different types of twists to this model. An

implication of volume independence is that, one can study confinement/deconfinement transition

on R3 × S1
β on the equivalent unitary matrix model, corresponding to a 13 ×Nt lattice so long as

(ZN )3 center symmetry associated with the spatial cycles is not spontaneously broken. We indeed

observe the confinement/deconfinement transition in the reduced model. For the comparision of

1/N corrections, we also plot some numerical results for the QCD(Adj) (without twist) at finite

temperature.

3.2.1 (T)QCD(Adj) at finite temperature

On 13 × Nt-lattice or T 3 × S1
β continuum formulations, the relation between twisted boundary

conditions, zero (or light) modes, and suppression of finite-N effects can systematically be studied.

Let Φ(t, x, y, z) denote either a unitary gauge field or an adjoint fermion field. We impose, the

following generalized boundary conditions on fields

Φ(t, x+ L, y, z) = AΦ(t, x, y, z)A† ,

Φ(t, x, y + L, z) = BΦ(t, x, y, z)B† ,

Φ(t, x, y, z + L) = Φ(t, x, y, z) . (35)

For the particular case of matrix models, we can set Φ(t, x, y, z) = Φ(t). We consider three choices

for A and B.

pbc : A = 1N , B = 1N
Twist 1 : A = C√

N ⊗ 1√N , B = S√N ⊗ 1√N

Twist 2 : A = CN , B = SN (36)

where CN and SN are N ×N clock and shift matrices defined earlier.
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The first case in (36) is the original QCD(Adj) with periodic boundary conditions and does

not lift any zero or light modes associated with holonomy, or fermions. In this case, finite-N

corrections turn out to be of order 1/N .

The second case in (36) is a partial twist of QCD(Adj). The twist lifts a 1/
√
N fraction of

bosonic light modes and fermionic zero modes (in cases where fermions are light). This can be

seen by explicitly solving the boundary conditions. In this case, finite-N corrections turn out to

be of order 1/N3/2. This is explained below after introducing the twisted model.

The third case in (36) is a twist of QCD(Adj), which lifts all bosonic light modes and fermionic

zero modes. This can be seen by explicitly solving the boundary conditions. In this case, finite-N

corrections seem to be rather tame.

We study the theory reduced to a one-dimensional SU(N) unitary matrix model

Slat = −2bN
∑
t

Re Tr

∑
i

Ut(t)Vi(t+ 1)U †
t (t)V

†
i (t) +

∑
i<j

ZijVi(t)Vj(t)V
†
i (t)V

†
j (t)

+ SF , (37)

where Vi(t) (i = 1, 2, 3) corresponds to the link variable along the spatial direction in the four-

dimensional theory. For the usual non-twisted model Zij = 1 and Zii = 0, while, for twisted

models, Zij is given by16

Twist 1 : Zij = Z∗
ji = e2πi/

√
N (i < j),

Twist 2 : Zij = Z∗
ji = e2πi/N (i < j). (38)

The number of sites Nt is related to the temperature T by β = 1/T = aNt. The fermionic part

SF is given by

SF =

ND
f∑

f=1

ψ̄fD
(f)
W ψf , (39)

where DW is the usual Wilson-Dirac operator. The explicit form of SF after reducing the spatial

directions is

SF =
∑
t

(
ψ̄(t)ψ(t)− κ

3∑
i=1

{
ψ̄(t)(1− γi)Vi(t)ψ(t)V

†
i (t) + ψ̄(t)(1 + γi)V

†
i (t)ψ(t)Vi(t)

}
−κ
{
ψ̄(t)(1− γt)Ut(t)ψ(t+ 1)U †

t (t) + ψ̄(t)(1 + γt)U
†
t (t− 1)ψ(t− 1)Ut(t− 1)

})
.

(40)

We impose anti-periodic boundary condition for the fermions on the S1
β and generalized bound-

ary conditions given in (36) on reduced directions. The action has a global center symmetry, which

we split for convenience as (ZN )3 × ZN ,

Vi(t) → e2πi/NVi(t), (Ut=1 . . . Ut=Nt) → e2πi/N (Ut=1 . . . Ut=Nt). (41)

16In simulations, we use symmetric twist which is more efficient. The above boundary conditions can be modified

to incorporate the symmetric twists.
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If the (ZN )3 symmetry is not spontaneously broken, then this model is equivalent to the one

in infinite spatial volume lattice. This implies the phase transition of infinite volume theory,

associated with the realization of temporal ZN factor, can be studied by using the unitary matrix

model.

The relation between the twists, number of light modes, and the observed form of the finite-N

corrections are
Twist Zero−modes finite−N corr.

none N 1/N

e
i 2π√

N
√
N 1/N3/2

ei
2π
N none 1/N2

(42)

There is a nice geometric interpretation for twist 1 in terms of a classical background, and

foliation of non-commutative plane. This gives, in perturbation theory, that effective volume

should scale as V ∼ N3/2. However, for twist 2, there is no classical background solution. Due to

strong quantum fluctuations, a classical background cannot be written. Of course, this is not a

concern.

The emergence of V ∼ N3/2 in the case of twist 1 can be explained in perturbation theory as

follows: For simplicity, let us again consider the twist Z12 = e2πi/
√
N , Z13 = Z23 = 1. A natural

candidate of the ground state is

V1 = C√
N ⊗ 1√N , V2 = S√N ⊗ 1√N , V3 = 1√N ⊗ C√

N . (43)

This is because this configuration satisfies ViVj = Z∗
ijVjVi, and at the same time eigenvalues

spread as uniformly as possible. This configuration keeps (Z√
N )3 subgroup of the center symmetry,

which is enough for the Eguchi-Kawai reduction to work. Then, along V1 and V2 directions
√
N

sites arise as a fuzzy torus, similar to TEK, and
√
N sites emerges along V3 direction similar

to QEK. So, this configuration corresponds to V eff ∼ N3/2 lattice sites. If one views finite-N

corrections around N = ∞ analogous of finite volume corrections in compactified theories, then,

it is expected that finite-N corrections in the one-dimensional reduced model should be a power

series expansion in 1/N3/2.

3.2.2 Monte-Carlo simulation for ND
f = 1

Here we show the Monte-Carlo results for the one-dimensional lattice model for ND
f = 1. The

numerical algorithm adopted is the same as the one in the previous subsection.

First let us see that the (ZN )3 center symmetry is not broken. In Fig. 5, we plot the expectation

value of an averaged Wilson line given by

|W | ≡ 1

3Nt

3∑
i=1

Nt∑
t=1

|Vi(t)|, (44)

at b = 0.5 and various κ, and Nt = 1 for QCD(Adj). As expected, the (ZN )3 is not broken when

quarks are sufficiently light for both models. We can see similar behavior for the TQCD(Adj)

except for the finite-N corrections. From Fig. 6 and Fig. 7, it is clearly seen that ⟨|W |⟩ goes to

zero as 1/N for the QCD(Adj) while 1/N3/4 for the TQCD(Adj). That the Wilson line behaves
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Figure 7: ⟨|W |⟩ at b = 0.50, κ =

0.10, Nt = 1 for TQCD(Adj).

as ⟨|W |⟩ ∼ N−3/4 = 1/
√
V for the TQCD(Adj) is the same as what happened in the model in the

previous section. The same pattern can also be observed with Nt > 1 .

In Fig. 9, the plaquette is plotted for the QCD(Adj) and TQCD(Adj) with two types of twist.

The ansatz const.+ const./N3/2 for the twist 1 is consistent with the data, and, by assuming it,

the extrapolated value at N = ∞ agrees with the one obtained from the non-twisted model. For

twist 2, const.+ const./N2 is consistent with the data. We observe that by using twist 2, we can

suppress finite-N corrections more. We notice that, up to N = 25, we do not observe the jump in

the expectation value of the plaquette, which corresponds to the bulk transition.

Now, let us consider the confinement/deconfinement phase transition in the large-N reduced

model at finite temperature. We take κ = 0.10. From the experience in pure bosonic Yang-Mills

theory, which is studied extensively in [38, 39], it is known that one has to take the number of

spatial links Ns to be large (roughly Ns & 2Nt) in order to see the deconfinement transition clearly.

For QCD(Adj) without twist this is rather severe constraint, because N eff
s is related to the number

of colors N by N eff
s ∼ N1/3. As a result, at Nt = 2, we could not observe the transition below

N = 30, although we could observe a clear transition for Nt = 1. In contrast, in TQCD(Adj),

the transition can be seen at small values of N . In Fig. 10 we plot the expectation value of the

Wilson line and the Polyakov loop

|P | = 1

N

∣∣∣∣∣Tr
Nt∏
t=1

Ut(t)

∣∣∣∣∣ , (45)

for Nt = 2. We can clearly see a jump of the expectation values of the Polyakov loop around

b = 0.33 for Nt = 2, which corresponds to the confinement/deconfinement transition.17 This

17In order to take the continuum limit, we need to analyze large Nt. However, to do this, we also need to take N

large such that Neff
s & 2Nt. It is beyond our current numerical resources and we leave detailed analysis for larger

Nt for future work.
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result is consistent with the one given by large-volume simulations for pure Yang-Mills theory, (for

example, SU(8) YM theory simulated on 103×5 lattice gives, in the extrapolated infinite volume

limit, bc ∼ 0.34 [38, 39]) confirming finite-temperature version of equivalence non-perturbatively.

Before closing this section, let us give an estimate for the the physical temperature of the

transition. By using 2-loop beta function of the bosonic Yang-Mills theory (neglecting fermions

because they are heavy), b is related to be the temperature T and lattice Lambda parameter ΛLAT

as

T

ΛLAT
=

1

Nt

(
11

24π2
λ

)51/121

exp

(
12π2

11λ

)
, (46)

where λ = 1/(2b). If we take ΛLAT to be of order O(1MeV) as in the QCD with SU(3), by sub-

stituting it to (46), the transition temperature turns out to be of order O(100MeV), as expected.

4 Stabilizing non-commutative Yang-Mills theory

There is a well-know perturbative equivalence between the TEK model and non-commutative

YM theory. Non-perturbatively, this relation is problematic due to a global instability [16, 17,

18, 19]. In perturbative description, the twist-eater background is used to generate a fuzzy torus,

the non-commutative base space of target theory. The spontaneous center symmetry breaking

in the TEK model is associated with the spontaneous collapse of non-commutative torus. This

instability, in effect, is related to the center symmetry breaking instability of TEK-model. For a

nice discussion of the relation between non-commutative theories and matrix models, see [49].

In this work, we suggest that TQCD(Adj) can be used to define Yang-Mills theory on non-

commutative space (for recent developments, see e.g. [50]).

23



As asserted above, TEK construction is problematic due to instability of the twist eater back-

ground [18, 19, 16, 17]. Similar construction with fuzzy sphere also fails [19]. In non-commutative

field theory, this instability corresponds to tachyonic modes in gluon propagator [51, 52].

When adjoint fermions are introduced, the situation is different. The center symmetry is sta-

bilized even at one-site lattice and the twist eater configuration is stable. Hence TQCD(Adj) with

appropriate parameter scalings can serve as non-perturbative formulation of non-commutative

Yang-Mills theory with adjoint fermions. The interesting point is that the background is stable

even if fermions are very heavy. In such a situation, low energy physics is almost bosonic one,

but instability in the one-site model is removed thanks to fermion induced stabilizing effects.

We expect that the same effect can also be achieved by introducing a twist to the double-trace

deformation of Eguchi-Kawai model [30], which is purely bosonic.

5 Conclusions and Discussions

In this paper, we investigated the volume reduction for large-N gauge theory with adjoint

fermions [6]. We used perturbative one-loop analysis crucially supplemented with the estimates of

non-perturbative quantum fluctuations to analytically explain the zero temperature result of Ref.

[31]. We have shown that for heavy fermions, there exist a large-small volume equivalence, with

an intermediate volume dependent phase. In the sense of dynamics, the theory exhibits a 4d-0d-

4d cascade of dimensions. We have used small volume phase to extract results for large-volume

theory.

Next, we generalized the volume independence to finite temperature, and confirmed it numer-

ically. In effect, we have constructed a one-dimensional lattice model and analyzed it by using

Monte-Carlo simulation to directly show that the center symmetry is preserved for a wide param-

eter region including heavy fermions. In particular, we introduced a twisted version of the large-N

reduced theory with adjoint fermions for numerical efficiency and then succeeded in observing the

confinement/deconfinement transition. The temperature agrees with large-volume simulations of

pure Yang-Mills theory. We also argued that TQCD(Adj) with appropriate parameter scaling can

serve as a non-perturbative formulation of non-commutative Yang-Mills theory.

There are several directions for future research. Our discussion of QCD(Adj) with ND
f = 1

fermion can be generalized to address mass spectrum and other non-perturbative aspects. By

introducing more fermion flavors, our reduced models may be used to address the conformality or

confinement problem, the determination of lower boundary of conformal window and perhaps to

study models relevant to technicolor scenario.

In this work, we have seen that due to non-perturbative quantum fluctuations, the restoration

of full center symmetry occurs not at mLN ∼ few, but mL ∼ few. This suggests that the

number of double-trace operators suggested in [30] for theories on T 4 and T 3×R is a conservative

overestimation, and might be reduced considerably without spoiling unbroken center symmetry.

If so, since deformed reduced theories are purely bosonic, the simulation cost becomes cheaper

and it can be a practical tool. If it works, it can be used as a template to study QCD with

fundamental matter.
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A QCD(Adj) on continuum T 4 at finite L and one-loop analysis

In this appendix, we will rewrite the one-loop potential on small-T 4 (3) in terms of Wilson lines by

using Poisson resummation. Poisson resummation is a duality which maps sum over KK-momenta

given in (3) to a sum over winding number. The two are equivalent expressions, and some aspect

of physics is more transparent in one of the two.

Since (3) is periodic under θabµ → θabµ + 2π, it can be Fourier expanded:

S1−loop[θ
ab
µ ] =

∑
a<b

∑
n⃗∈Z4\{0}

eiθ⃗
ab·n⃗Pn⃗(mL). (47)

For a given winding number n⃗ ≡ (n1, . . . , n4),∑
a<b

eiθ⃗
ab·n⃗ = 1

2

∑
a,b

eiθ⃗
ab·n⃗ − 1

2

∑
a

1 = 1
2

(
|tr (V n1

1 · · ·V n4
4 )|2 −N

)
. (48)

It is also useful to express this sum in terms of trace over adjoint representation matrices,

given by

Ωadj(n⃗) = (V n1
1 . . . V n4

4 )⊗ (V n1
1 . . . V n4

4 )† , (49)

or equivalently,

Ωadj(n⃗) =



1N×N

ei(θ⃗1−θ⃗2)·n⃗

. . .

ei(θ⃗a−θ⃗b)·n⃗

. . .


. (50)
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Clearly, trΩadj(n⃗) = |tr (V n1
1 · · ·V n4

4 )|2. Eq.(3) can dually be rewritten as a sum over winding

modes

S1−loop[V1, . . . , V4] =
2

π2

∑
a<b

∑
n⃗∈Z4\{0}

1

|n⃗|4
(
−1 +ND

f m
2L2|n⃗|2K2(mL|n⃗|)

)
· cos(n⃗ · θ⃗ab)

≡ 1

π2

∑
n⃗∈Z4\{0}

m2
n⃗

(
|tr (V n1

1 · · ·V n4
4 )|2 −N

)
, (51)

where m2
n⃗ is interpreted as the mass square of the Wilson line with winding number n⃗. Unlike

the similar sums appearing in one-loop effective potential on R4−d × T d with 1 ≤ d ≤ 3 which are

absolutely convergent [6], the series (51) is conditionally convergent.18 This is, of course, physical

and related to non-trivial infrared (IR) aspects of the theory which we discuss below.

A.1 Conditional convergence, IR-singularities, and non-commutative saddles

The series in (3) and (51) are equivalent expressions, related to each other via Poisson-resummation.

Consider the zero KK-momenta subsector of (3). Since eigenvalue separation has an interpreta-

tion as momentum, (3) exhibits an IR-singularity whenever
∑4

µ=1(θ
ab
µ )2 = 0 for some a, b. This

IR-problem is also manifest in lattice one-site one-loop action (24). The series (51) is condi-

tionally convergent, and whenever two eigenvalues are coincident,
∑

n⃗∈Z4\{0} exhibits logarithmic

IR-divergences due to modes with large-winding number |n⃗| → ∞. Winding modes have an in-

terpretation in terms of spacetime distance [24] and this is the same IR-problem as in (3). The

physical interpretation of divergence is as follows: Whenever two (or more) eigenvalues are coin-

cident, there are (in perturbation theory) massless modes (analog of W -bosons or open strings).

IR-divergence comes about because we have integrated out these massless modes that we should

have kept in the correct description of long-distance dynamics of the effective theory.

Whenever two (or more)
∑4

µ=1(θ
ab
µ )2 = 0, the zeroth order assumption that one can expand

the fluctuations around commuting saddles (2) is incorrect . There are circumstances where

commutative saddle points of the classical theory may be a good description at one-loop order

in perturbation theory for some range of m. For example, if m = 0, then, the one-loop effective

action (3) and (51) reduce to

S1−loop[θ
ab
µ ] = (2− 4ND

f )
∑
a<b

∑
k1,...,k4

log

 4∑
µ=1

(2πkµ + θabµ )2

L2


= (−1 + 2ND

f )
1

π2

∑
n⃗∈Z4\{0}

1

|n⃗|4
(trΩadj(n⃗)−N) . (52)

This one-loop action is bounded from below and generates a repulsion between eigenvalues.

If m = ∞ or large, then the one-loop action (3) and (51) is unbounded from below and leads

to an attraction between eigenvalues. A configuration where all eigenvalues clump and center

is broken is the minimum. However, the action is IR-divergent there. This is an artifact of

18In (51), the subtraction of the constant divergent term is related to the absence of log divergent and holonomy

independent
∑

a=b terms in the first line, as well as (3). With this subtraction, any singularity that may appear in

the sum (51) or its dual (3) is physical IR-singularity. IR-aspects of one-loop effective action can be examined in

either picture.
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perturbation theory. Whenever eigenvalues are close to each other, then the relevant scale in the

theory is λ
1/4
0d , and the dynamics is strongly coupled for eigenvalues in the |x⃗ab| . λ

1/4
0d domain

where one should not use perturbation theory.

At one-loop order in perturbation theory, the actions (3) and (51) as well as the one-site version

(24) realize all the saddles conjectured to exist in Ref.[53]. At m = 0, the leading fluctuations

are quadratic or Gaussian; at m = ∞, the leading fluctuations are quartic according to the the

classification of Ref.[53]. As mL is dialed, all interesting saddles with varying number of quadratic

and quartic fluctuations appear in massive QCD(Adj). In Refs.[53, 12], only the two extreme cases

were shown to exist in pure Yang-Mills theory in d-dimensions, as d is varied.

Since the one-loop action has IR-singularities, the way to obtain the set of saddle points

requires some care.

1. Introduce an auxiliary IR cutoff µIR ≪ m, modifying gauge contribution in (3) to
∑4

µ=1(2πkµ+

θabµ )2L−2 + µ2IR [34]. At any finite, but infinitesimal value of µIR, we can sensibly compare

the one-loop effective action of different saddles, and find the global minima at a given value

of mL. At m = ∞, the global minima is at Vµ = 1 (and its center conjugates). This can be

studied by using the Hermitian matrix model (4).

2. Assume that the global minimum is a k-bunch configuration of Wilson line phases. The

non-perturbative width of each clump, due to quantum fluctuations is determined by zero

dimensional matrix model. Interactions between different clumps are well approximated by

one-loop effective action, and is repulsive. Dynamics inside each clump is approximated by

SU(N/k) matrix model,

Sclump =
(N/k)

(λ0d/k)
Tr

(
−1

4
[X ′µ, X ′ν ]2 +

ND
f∑

f=1

ψ̄′
f

(
γµ[X

′µ, ψ′
f ] +mψ′

f

))
, (53)

where we put primes in order to emphasize that matrices are (N/k)× (N/k). Then, ’t Hooft

coupling effectively becomes λ0d/k, and hence the non-perturbative width of each clump is

∼ (λ0d/k)
1/4 .

3. At relatively large values of fermion mass, mL ∼ 1, one may expect that only a small sub-

group of (ZN )4 symmetry persists. However, if k is sufficiently large that distance between

bunches becomes smaller than fluctuation scale, 2π/(Lk1/4) . λ
1/4
0d = λ

1/4
4d /L, interaction

between nearby bunches cannot be evaluated by one-loop approximation, and distinction

of bunches becomes obscure. This implies that k-bunch phase is indistinguishable from the

uniform phase. (See Fig.11).

References

[1] A. Armoni, M. Shifman and G. Veneziano, “Exact results in non-supersymmetric large N

orientifold field theories,” Nucl. Phys. B 667, 170 (2003) [arXiv:hep-th/0302163].

A. Armoni, M. Shifman and G. Veneziano, “SUSY relics in one-flavor QCD from a new 1/N

expansion,” Phys. Rev. Lett. 91, 191601 (2003) [arXiv:hep-th/0307097].

27



Figure 11: If k is large enough so that the distance between two nearest bunches 2π/(Lk1/4)

becomes smaller than the quantum fluctuation scale λ
1/4
0d , interaction between these two bunches

cannot be evaluated by using one-loop effective action. Quantum fluctuation turns the the k-bunch

phase into the uniform phase.
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