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Abstract

Collimators and transitions in accelerator vacuum cham-
bers often include small-angle tapering to lower the wake-
fields generated by the beam. While the low-frequency
impedance is well described by Yokoya’s formula (for ax-
isymmetric geometry), much less is known about the be-
havior of the impedance in the high frequency limit. In
this paper we develop an analytical approach to the high-
frequency regime for round collimators and tapers. Our
analytical results are compared with computer simulations
using the code ECHO.

INTRODUCTION
The impedance of small-angle axisymmetric tapers with

perfectly conducting walls was first computed analytically
by Yokoya in the limit of low frequencies [1]. In this limit
the longitudinal impedance is purely imaginary, which
means that the beam does not lose energy to radiation.
Later works [2, 3] generalized Yokoya’s approach for rect-
angular and elliptical cross sections of the transitions. In
the opposite limit of very high frequencies a so-called op-
tical model has been developed [4, 5] which predicts a real
longitudinal impedance. Simulations show, however, that
there is a large range of frequencies between Yokoya’s the-
ory and the optical impedance where both theories fail to
provide an accurate result. In this paper we address this in-
termediate regime between the two limiting theories. This
paper uses the method developed in an earlier paper by one
of the authors [6], which attempted to solve this problem,
but failed to take into account the effect of mode transfor-
mation in transition regions.

In this paper we consider the geometry of an axisym-
metric collimator shown in Fig. 1. It consists of two iden-
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Figure 1: Geometry of an axisymmetric collimator.

tical conical tapers of length l connected by a section of a
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cylindrical waveguide of length g. The radius of the pipes
outside of the collimator is b1, and the radius of the pipe be-
tween the tapers is b2. We use cylindrical coordinate sys-
tem r, z, φ with the origin of the coordinate z situated in
the middle of the collimator. The system is then symmetric
with respect to reflection in the plane z = 0. The radius of
the collimator b(z) as a function of z is defined by

b(z) =

{ b2, 0 < |z| < g
2 ,

b2 + (b1 − b2) |z|−g/2l , g
2 < |z| < l + g

2
b1, |z| > l + g

2 .

(1)

Throughout this paper we assume that the angle of the
collimator α is small,

α = arctan
b1 − b2

l
≈ b1 − b2

l
� 1.

We assume that a beam propagates along the axis of the
collimator at the speed of light. Our goal is to calculate the
longitudinal impedance of the collimator.

THE METHOD
We will use a method of eigenmodes, in which the elec-

tromagnetic radiation field of the beam is represented by a
sum of modes of the empty waveguide. It is based on calcu-
lation of the energy radiated by the image currents induced
by the beam in the walls of the waveguide. In the absence
of other losses, the radiated energy is equal to the energy
loss of the beam and can be related to the real part of the
impedance. The imaginary part of the impedance can then
be found using the Kramers-Kronig relations between the
imaginary and real parts of the impedance.

The Fourier component of the beam current is (we as-
sume the e−iωt time dependence in what follows)

Iω = I0e
ikz, (2)

where ω stands for frequency, I0 is the amplitude of the
current harmonic and k = ω/c. Let us denote the time-
averaged intensity of radiation of this current from the col-
limator region by Pω . The real part of the impedance is
then given by the following relation (see, e.g., [7])

ReZ(ω) =
2Pω
I20

. (3)

The radiation is due to the image currents induced in the
perfectly conducting walls in the taper regions where the
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walls are not parallel to the z-axis. It is convenient to rep-
resent the total electric field of the beam current (2) inside
the taper as a sum of the vacuum field, Evac, and the radi-
ation field Erad, E = Evac + Erad, where for an on-axis
beam

Evac = r̂
2I0
rc
eikz, (4)

with r̂ being a unit vector in the radial direction of the
cylindrical coordinate system.

The radiation field Erad satisfies Maxwell’s equation
with the boundary condition that requires the tangential
component of the total electric field on the wall to vanish

Erad
t |wall = −Evac

t |wall. (5)

It is convenient to replace the boundary conditions (5) for a
non-vanishing tangential component of the radiation elec-
tric field on the wall by the surface magnetic current imag

located inside the waveguide infinitesimally close to the
wall [8, 9]. The magnitude and direction of the magnetic
current is given by

imag =
c

4π
n×Erad

t |wall = − c

4π
n×Evac

t |wall, (6)

where n is the unit vector normal to the surface and di-
rected towards the metal. Note that the magnetic current
exists only inside the tapers and vanishes in the region
where the wall is parallel to the z axis.

Inside the waveguide, the radiation field excited by the
magnetic currents can be represented as a sum of eigen-
modes,

Erad =
∑
n

anE
+
n , (7)

where an is the amplitude and E+
n is the electric field of

the n-th eigenmode, propagating in the positive direction
of the z axis. A similar expansion in terms of the ampli-
tudes an is also valid for the magnetic field. Note that in
general, the sum in (7) also includes modes E−n propagat-
ing in the backward direction [8]. However, in the limit of
high frequency, the modes that make a dominant contribu-
tion to the impedance propagate in the forward direction,
and the backward propagating modes can be neglected.

The norm Nn of the mode n is defined as

Nn =
c

4π

∫
m ·

(
E+
n ×H−n −E−n ×H+

n

)
dS, (8)

where the integral is taken over the cross section of the
waveguide and the unit vector m is perpendicular to the
integration surface and points in the direction of propaga-
tion. One can consider the right hand side of Eq. (8) as
a scalar product of the two fields E+

n ,H
+
n and E−n ,H

−
n .

One can show [8] that the scalar product of two different
modes is equal to zero, so that a generalization of Eq. (8)
for n 6= j is

c

4π

∫
m ·

(
E+
n ×H−j −E−j ×H+

n

)
dS = Nnδnj . (9)

We will use this equation in the next section.
The energy radiated by the current Pω can be written as

a sum over all possible modes,

Pω =
∑
n

Pn|an|2, (10)

where Pn is the energy flow in the mode of unit amplitude.

EIGENMODES IN THE COLLIMATOR
As described in the previous section, to calculate the ex-

citation of electromagnetic field by the beam, one needs to
know the eigenmodes of the complete waveguide. Analyt-
ical expressions for eigenmodes are available for cylindri-
cal and conical waveguides, however, there is no a compact
expression for eigenmodes of a collimator shown in Fig. 1.
More precisely, a single conical mode that propagates in
the left taper of the collimator, experiences transformation
at the transition to the straight central section, generating
several modes in the cylindrical waveguide. Each of these
modes, in turn, experiences a transformation at the second
transition from the cylindrical waveguide to the right ta-
per, resulting in multiple conical modes in the right taper.
We will have to take these transformation processes into
account in our analysis.

For calculation of the longitudinal impedance one only
needs axisymmetric TM modes. In the cylindrical central
part of the collimator, the modes propagating in the positive
direction, E+

n ,H
+
n , are given by the following equations

E+
z,n =

j2n
b22
J0

(
jn
r

b2

)
eiφn(z)

E+
r,n = − ijnkn

b2
J1

(
jn
r

b2

)
eiφn(z)

H+
φ,n = − iωjn

b2c
J1

(
jn
r

b2

)
eiφn(z) (11)

where n is the mode index, n = 1, 2, . . ., J0 and J1
are the Bessel functions, jn is the n-th root of J0, and
kn = (ω2/c2 − j2n/b22)1/2. The phase of the mode is equal
to φn(z) = knz. The modes propagating in the negative
direction, E−n ,H

−
n , are obtained from the forward modes

by changing the signs of φn and E+
r,n in (11).

A simple calculation gives the norm (8) of the mode n

Nn =
1

2
ωknj

2
nJ

2
1 (jn), (12)

with the energy flow in the mode equal to Pn = Nn/4.
In the limit of high frequency, it turns out that only the

modes that propagate at small angles to the axis of the sys-
tem make the dominant contribution to the impedance (so
called paraxial approximation, see [10]). In this approxi-
mation one can neglect the transverse component jn/b2 of
the wavevector and replace kn by k everywhere in Eqs. (11)
and (12), except for the phase φn.

Analytical expressions for eigenmodes of the electro-
magnetic field are also available for conical geometry (see,



e.g., [8]). In the general case of arbitrary cone angle α
and arbitrary frequency ω, they involve the Legendre and
Bessel functions. We will use here a simplified version of
these functions valid in the limit of small angle α and high
frequency ω, replacing kn by k where possible (see expla-
nation after Eq. (12)). In this limit, the conical eigenmodes
(which we mark by the tilde below) are similar to the cylin-
drical ones, and, in our cylindrical coordinate system, they
can be written as follows

Ẽ+
z,n =

j2n
b2
J0

(
jn
r

b

)
eiφn(z)+ikr

2/2R(z)

Ẽ+
r,n = − ijnk

b
J1

(
jn
r

b

)
eiφn(z)+ikr

2/2R(z)

H̃+
φ,n = − iωjn

bc
J1

(
jn
r

b

)
eiφn(z)+ikr

2/2R(z), (13)

where the phase φn is now determined from the differential
equation dφn/dz = [ω2/c2 − j2n/b(z)

2]1/2. The factor
R(z) in the above equations is the curvature radius of the
spherical wavefronts of the modes in the conical regions;
it is equal R(z) = [arctan b′(z)/b(z)]−1 ≈ b(z)/b′(z).
Note that due to the linear dependence of b(z) in the tapers,
b′ = const. The sign of R is important: it is negative
in the left taper, corresponding to converging wavefronts
of the modes, and is positive in the right taper, where the
wavefronts are diverging from the center of the collimator.
Because Eqs. (13) differ from Eqs. (11) only by a phase
factor, the norm for the conical modes is the same as for
the cylindrical ones, given by (12). Also, the relation Pn =
Nn/4 holds as well.

For the phase φn(z) in (13) we have

φn(z) =

∫ z

0

[
ω2

c2
− j2n
b(z′)2

]1/2
dz′. (14)

The conical modes propagating in the negative direction
are obtained from (13) by changing the signs of φn and
E+
r,n.
The small angle of the collimator, as was pointed out in

[6], allows one to neglect the reflection of eigenmodes at
the transitions between the cylindrical and conical regions.
However, it does not preclude mode transformation at these
transitions, and we will account for this below.

AMPLITUDES OF THE MODES AND
MODE TRANSFORMATION

Calculation of the mode amplitudes in the collimator is
performed in several steps. At z = −(l + g/2) where
the beam enters the collimator, there is no radiation field
present, hence an = 0.

In the left taper, where there are magnetic currents (6),
the amplitudes an depend on z. The values of the ampli-
tudes at the exit from the left taper, z = −g/2 − ε (an in-
finitesimally small ε here indicates a location right before
the exit from the taper), are given by the following integrals

[8]

a(1)n = − 1

Nn

∫
left

imag · H̃−n dS, (15)

where H−n is the magnetic field of the n-th eigenmode
propagating in the negative direction, dS is an infinitesi-
mal element of the surface area, and the integration covers
the wall area in the left taper where the magnetic current
resides.

At the transition point z = −g/2 the modes will be
transformed from conical to cylindrical ones, and the am-
plitudes of the modes will be linearly transformed from
a
(1)
n at z = −g/2− ε to a(2)n at z = −g/2 + ε,

a(2)n =
∑
j

Snja
(1)
j . (16)

We will discuss below how the matrix elements Snj are
computed.

The next mode transformation occurs at the transition
z = g/2 with the new amplitudes a(3)n

a(3)n =
∑
j

Rnja
(2)
j . (17)

Finally radiation of the magnetic currents in the right taper
will add to a(3)n

a(4)n = a(3)n −
1

Nn

∫
right

imag · H̃−n dS. (18)

The amplitudes a(4)n are the final values that should be used
in Eq. (10) to calculate the radiated power.

We now use Eqs. (4), (6), (12) and (13) to compute a(1)n
in (15)

a(1)n = − 2iI0α

ckjnJ1(jn)

∫ −g/2
−l−g/2

dz

b(z)
eikz−iφn(z)+ikb(z)α/2,

(19)

where we have used the small angle approximation, α� 1,
and b′ ≈ −α in the left taper. Taking into account the sym-
metry of the collimator and performing a similar calcula-
tion for the second term on the right hand side of Eq. (18)
one finds that it is equal to the complex conjugate of (19).

To find the matrix elements Snj in Eq. (16) we note that
due to the continuity of the field at z = −g/2 it can be
expanded into the conical eigenmodes as well as the cylin-
drical modes: ∑

n

a(2)n Ẽ
+

n =
∑
j

a
(1)
j E+

j , (20)

with a similar continuity equation holding for the magnetic
fields. Using the orthogonality property of the modes with
respect to the scalar product (9), we find

a(2)n =
c

4πNn

∑
j

a
(1)
j

×
∫

m ·
(
E+
j × H̃

−
n − Ẽ

−
n ×H+

j

)
dS, (21)



which defines the matrix elements in Eq. (16). The ma-
trix elements Rnj in Eq. (17) could be found in a similar
fashion.

In numerical calculations, the infinite sums involved in
Eqs. (10), (16) and (17) are truncated, and only first Nm ≈
10 lowest modes are used to calculate the impedance. By
varying Nm we verified that the result does not depend on
the exact value of Nm.

NUMERICAL RESULTS
The impedance calculation algorithm described above

was implemented in Mathematica [11]. For illustration
purposes we have chosen the following collimator geom-
etry: l = g = 3 cm, b1 = 2b2 = 0.5 cm, so that the
collimator angle is α = 4.7 degrees. Real part of the
impedance computed from the beam pipe cutoff, fc =
j1c/2πb2 = 46 GHz, up to the frequency fmax = 3.9
THz is shown in Fig. 2 in solid blue. At higher frequen-
cies this impedance approaches the optical model value,
Zopt = (Z0/π) log(b1/b2) = 83Ω.
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Figure 2: Collimator impedance: present theory is shown
with solid line, the result of simulations with ECHO are
shown with dots.

While our algorithm directly finds only the real part of
impedance, we can find the imaginary part by making use
of causality, that relates imaginary and real parts of the
impedance via the Hilbert transforms ( Kramers-Kronig re-
lations) [7]. To proceed, we need to define Re Z for all
frequencies, so we set it to zero below fc, and set it equal
to the optical model value above fmax. Im Z calculated
by the Hilbert transform of this Re Z is shown in Fig. 2 in
solid red. Below the cutoff frequency it ends up very close
to the Yokoya value. For comparison, we plot impedances
calculated from a Fourier-transformed wakepotential of a
σz = 20 µm Gaussian bunch computed by the finite ele-
ment EM code ECHO [12]. One can see a very good agree-
ment between our approach and the ECHO results.

Since our algorithm allows one to accurately find the
impedance over a very broad frequency range, we can use
inverse Fourier transform to reconstruct the wakepotential

of a short bunch. For instance, for a Gaussian bunch with
rms length σz = 100 µm we obtain the wakepotential
shown in Fig. 3, plotted with the ECHO result for com-
parison. Again, we observe a perfect agreement between
the two.
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Figure 3: Wakepotential of a σz = 100 µm bunch.

Finally, in Fig. 4 we present the loss factor and the max-
imum absolute value of the wakepotential as a function
of bunch length. As we expect from the optical model,
for short bunches, both quantities scale as σ−1z , while in
the opposite, Yokoya regime, |W (s)|max ∝ σ−2z and
the loss becomes exponentially small. In the intermedi-
ate region (roughly 2 magnitude orders in σz with cor-
responding changes of 3 or more orders in magnitude in
|W (s)|max and kloss) the scaling is more complex, and, to
our knoledge, it is not described by any existing analytical
treatments. Our new approach comfortably fills this gap.
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Figure 4: Loss factor and maximum of the wakepotential.

In conclusion, we developed a novel analytical approach
to find the impedance of (small angle) tapered collima-
tors in axially symmetric geometry. Impedance can be
found over a very broad frequency range, from DC to high-
frequency optical model limit, thus allowing one to recon-
struct the wakepotential of short bunches. We note that this
algorithm is also applicable to convex (cavity-like) struc-
tures, and, with some modifications, small angle require-
ment can be dropped. Extension to 3D geometries will be



investigated in the future.
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