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Abstract

We construct composite Higgs models admitting a weakly coupled Seiberg dual
description. We focus on the possibility that only the up-type Higgs is an elemen-
tary field, while the down-type Higgs arises as a composite hadron. The model,
based on a confining SQCD theory, breaks supersymmetry and electroweak sym-
metry dynamically and calculably. This simultaneously solves the µ/Bµ problem
and explains the smallness of the bottom and tau masses compared to the top
mass. The proposal is then applied to a class of models where the same confin-
ing dynamics is used to generate the Standard Model flavor hierarchy by quark
and lepton compositeness. This provides a unified framework for flavor, super-
symmetry breaking and electroweak physics. The weakly coupled dual is used
to explicitly compute the MSSM parameters in terms of a few microscopic cou-
plings, giving interesting relations between the electroweak and soft parameters.
The RG evolution down to the TeV scale is obtained and salient phenomenolog-
ical predictions of this class of “single-sector” models are discussed.
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1 Introduction

The Standard Model (SM) has deep theoretical puzzles that hint toward the existence of a
more fundamental microscopic theory. First, the SM fermions exhibit very special patterns of
Yukawa couplings; the origin of these “flavor spurions” is unknown. Another central question
concerns the hierarchy between the Fermi and Planck scales. Supersymmetry offers a very
attractive mechanism for stabilizing MZ , but does not explain its origin. Fits to precision
electroweak data suggest a weakly coupled Higgs and in the SM its mass is a free parameter
whose origin is unknown. There are various solutions to each of these problems separately,
but the different mechanisms are in general hard to combine. Nevertheless, trying to find a
single unified framework addressing these puzzles can reveal new connections between flavor,
supersymmetry breaking and Higgs physics, as well as providing windows into high energy
physics.

Based on [1, 2, 3], the authors of [4] proposed a realistic “single-sector” model where the
dynamics that explains the texture of fermion masses also breaks supersymmetry.1 The con-
fining dynamics is given by supersymmetric QCD with fundamental flavors plus a field in the
adjoint representation, in the free magnetic phase. The hierarchies in the Yukawa matrices
are explained by postulating that the first and second SM generations are composite mesons
of different UV dimensions, while the third generation is elementary.2 Supersymmetry is bro-
ken dynamically using a variant of the mechanism found by Intriligator, Seiberg and Shih
(ISS) [11]. The model is fully calculable and realistic, avoids flavor problems and produces
a low energy spectrum similar to the “more minimal” supersymmetric SM of [12, 13].

The original motivation of this work was to study the Higgs sector that could arise in the
single sector models of [4]. However, the dynamical mechanism that we found turns out to
be quite generic and simple, and can be applied to theories with a flavor sector different from

1The original models of [1, 2] contained strongly coupled incalculable effects; in [3] it was understood how
to construct calculable single sector models.

2SUSY models using compositeness to explain the flavor hierarchies were constructed in [5]; related ideas
make use of conformal dynamics [6, 7, 8, 9]. AdS/CFT can also be used to understand the generation of flavor
hierarchies at strong coupling; see e.g. [10]. We refer the reader to [4] for a recent overview of approaches to
the flavor problem.
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the one in [4]. We will argue that SQCD with fundamental flavors in the free magnetic phase
has the required structure to produce a composite Higgs model that breaks the electroweak
symmetry dynamically and calculably, and naturally solves the µ/Bµ problem.3

Therefore, the first part of the paper (§2 and §3) will be devoted to presenting the
mechanism for dynamical EWSB in its simplest and minimal form, independently of the
flavor sector. The precise low energy phenomenology at the TeV scale depends on the
spectrum and couplings to the (supersymmetric) SM particles, a well-known example being
the sensitivity of the Higgs to top/stop effects. In the second part of the work (starting from
§4), we will show how our proposal naturally combines with the single sector models of [4],
yielding a unified and realistic explanation for flavor, supersymmetry breaking and Higgs
physics.

The model has various interesting properties, stemming from the fact that the strong
dynamics responsible for the breaking of SU(2)×U(1) also produces the fermion masses and
mixings and breaks supersymmetry. For instance, the EW scale is tied to the supersymmetry
scale via a coupling which is also responsible for producing the Yukawa interactions. The µ
term is related to the scale of R-symmetry breaking and gaugino masses. The RG evolution
of the theory down to the TeV scale presents various special features, studied in §5. §6
presents the low energy phenomenology and a scan over parameter space, with particular
emphasis on the nature of the NLSP. Before proceeding, it is useful to summarize the basic
ideas and present an overview of the model.

1.1 The basic mechanism

Strongly coupled gauge theories have a very elegant mechanism for generating exponentially
small hierarchies,

ΛIR ∼ e−g
2

IR/g
2

UV ΛUV .

Both dynamical supersymmetry breaking and technicolor exploit this fact. In the latter
case, the electroweak scale is generated by identifying the Higgs field with a technifermion
bilinear H ≡ ψ̄ψ which condenses due to nonperturbative effects from a technicolor gauge
group GTC [15].

Technicolor constructions generically face the problem of new strongly coupled dynamics
close to the TeV scale. Some of the difficulties are overcome if the physical dimension of H
is close to one (e.g. walking technicolor), although this limit is also somewhat problematic.
Unitarity implies that H must become free when its dimension is equal to one, but in 4d
it is challenging to find a realistic technicolor theory supporting weakly coupled subsectors.
Furthermore, the operatorH∗H becomes relevant and the hierarchy and fine-tuning problems
reappear.

These points can in principle be resolved in a supersymmetric context. Weakly coupled
subsectors are quite common in supersymmetric confining gauge theories – the simplest
being SQCD in the free magnetic phase. And, of course, one of the main motivations

3See [14] for a recent analysis and references for this problem in the context of gauge mediation.
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for supersymmetry is that it stabilizes the Fermi scale, making the theory natural up to
extremely high scales. Our goal (in §2 and §3) is to construct a supersymmetric model
admitting a weakly coupled description at long distances, that breaks SU(2) × U(1) and
supersymmetry dynamically.

Our main example for the short distance theory is SQCD with gauge group SU(Nc)
and Nf fundamental flavors (Q, Q̃) in the free magnetic range Nc + 1 ≤ Nf <

3
2
Nc, the

“electric theory”. The low energy theory admits a dual “magnetic” description in terms
of weakly coupled mesons and baryons, and has a large unbroken symmetry group. After
weakly gauging a subgroup and identifying it with the SM gauge group, one of the Higgs
fields will arise from the composite meson,

H ⊂ (QQ̃) .

The magnetic description implies that the dimension of H approaches 1 in the IR. Further-
more, chiral symmetries and supersymmetry forbid explicit mass terms. The role of the
technifermion bilinear is now played by a scalar (superfield) bilinear.

More precisely, we postulate that the up-type Higgs Hu is an elementary field, while Hd

arises as a composite meson in the SQCD theory –in short, a “hybrid Higgs” sector. Other
components of this meson field break supersymmetry as in [11]. The magnetic theory is
described by an O’Raifeartaigh model (with composite messengers and direct mediation)
plus interactions between the Higgs fields and dimension two messenger operators O. The
superpotential has the form

Wmag = WO′R + λdHdOd + λuHuOu , (1.1)

where WO′R describes the O’Raifeartaigh fields. In our proposal, the coupling HdOd is dic-
tated by Seiberg duality, with λd ∼ 1. On the other hand, the interactions of the elementary
Hu with the supersymmetry breaking fields are generated by deforming the microscopic
theory with an operator HuOu that is irrelevant in the UV. While the dimension of Hu is
always close to one, at long distance Ou will flow to a dimension 2 operator. This generates
a marginal coupling with a naturally small λu ≪ 1.

We will argue that this low energy description of SQCD has the correct structure to si-
multaneously break supersymmetry and the electroweak symmetry. The dynamical breaking
is produced, in the magnetic description, by the Coleman-Weinberg mechanism [16].

The hypothesis that Hu is elementary and Hd is composite provides a simple explanation
for the following points:

• The hierarchy between the top and bottom/tau masses is generated naturally if Hd is
composite (as well as part of the SM matter), while Hu is still taken to be elementary.

• Hd will have parametrically large mixings with the supersymmetry breaking sector that
lead to m2

Hd
≫ m2

Hu
. As observed in [17, 18], this helps to solve the µ/Bµ problem.
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From a bottom-up perspective, this possibility appeared e.g. in the more minimal scenarios
of [12], and its relevance for the µ/Bµ problem was recently understood in [18].

Recall that minimizing the tree level Higgs potential requires

1

2
m2
Z = −|µ|2 −

m2
Hu

tan2 β −m2
Hd

tan2 β − 1

sin 2β =
2Bµ

2|µ2|+m2
Hu

+m2
Hd

.

(1.2)

Generically in gauge-mediated models, the tree-level µ and Bµ are forbidden, e.g. by a PQ
symmetry, and are dynamically generated at one-loop, implying that Bµ ∼ 16π2µ2. This
entails however, that there is no natural solution to the above relations (1.2).

The mass hierarchy generated in the magnetic theory (1.1) on the other hand is

m2
Hu

≪ Bµ ≪ m2
Hd

(1.3)

and, at the origin of field space, m2
Hu

< 0, triggers EWSB. Ref. [18] argued that for adequate
scalings of the soft parameters, the hierarchy (1.3) provides a viable solution to (1.2). The
theory has an approximate R-symmetry under which the O’Raifeartaigh (tree level) flat
direction and Hd have R-charge 2, while Hu has charge -2. This forbids a supersymmetric
µ-term and Majorana gaugino masses. The R-symmetry will be broken using the mechanism
of [19], producing realistic gaugino and higgsino masses.

Our proposal realizes some of the ideas of [12, 17] and especially [18] in a rather generic
SQCD setup.

1.2 Overview of the model

Generating dynamically the electroweak scale does not in principle explain the pattern of
masses and mixings of the SM fermions. We adopt the point of view that the same mecha-
nism responsible for breaking SU(2)× U(1) should also produce the correct flavor textures.
Starting from §4, the connection between flavor physics and the EW scale is established by
combining the hybrid Higgs theory with the single sector models of [4].

We add a field U transforming in the adjoint of the electric gauge group, with a renor-
malizable W ∼ U3 superpotential. The theory confines at a scale Λ and generates two types
of mesons, (QQ̃) and (QUQ̃). The first SM generation is identified with components of
the dimension 3 meson, the second generation and Hd arise from the dimension 2 meson,
while Hu and the third generation fields are elementary. Yukawa couplings are generated
at a scale Mflavor > Λ from superpotential couplings between the mesons and Higgs fields.
Such operators are irrelevant before the theory confines and become marginal in the infrared.
Therefore, different Yukawa couplings are proportional to different powers of the small ratio

ǫ = Λ/Mflavor ,
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and the correct Yukawa textures are generated. The down-type Yukawas are produced at a
higher order in ǫ, explaining the smallness of mbottom/mtop dynamically.

In models where unification is possible, the dynamical scale Λ is approximately MGUT ;
otherwise it could be smaller. In the class of models analyzed here, achieving unification is
difficult. It would be interesting to consider scenarios where this is naturally realized. The
scale Mflavor is roughly an order of magnitude above Λ, so that ǫ ∼ 0.1 generates the correct
Yukawa couplings.

Supersymmetry is now broken by one linear combination of the two mesons, denoted by
X , which acquires a linear term in the superpotential. From the IR point of view this is
again the ISS mechanism [11]. The model produces composite messengers; composite SM
fields couple strongly to the supersymmetry breaking sector and acquire (large) one loop
masses. On the other hand, elementary fields acquire their masses predominantly from two
loop (direct) gauge mediation. In summary,

• The first and second generation sfermions and Hd have masses

m2
Q̃i

∼ m2
Hd

∼ 1

16π2
|FX | , (1.4)

where FX is the F-term of the tree level flat direction X , and the messenger masses
are of order

√
|FX |.

• Third generation sfermions and Hu have masses generated from standard gauge medi-
ation at two loops,

m2
GM ∼

(
g2

16π2

)2

|FX | , (1.5)

• Gauginos and higgsinos have one loop masses proportional to the VEV of X that
breaks the R-symmetry spontaneously,

mψ ∼ 1

16π2
|X| . (1.6)

Having gaugino and sfermion masses around the TeV sets the supersymmetry breaking
scale √

|FX | ∼ 100− 200TeV .

This gives a light gravitino

m3/2 ∼
FX√
3MPl

∼ O(1–10 eV) . (1.7)

A typical spectrum is shown in Figure 1.4

4Spectra with inverted hierarchies arise generically in single sector models and they help solve the flavor
problem; see [4]. Similar phenomenology can arise from a strongly coupled approximately conformal hidden
sector, as was recently analyzed in [8].
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Figure 1: Typical spectrum of the model, for tan β ∼ 10 and higgsino NLSP.

In §5 and §6 we describe the RG evolution from the messenger scale down to the TeV scale.
Models with inverted hierarchies and a hybrid Higgs sector have quite distinct properties,
that are studied using a combination of effective potential methods and MSSM RGEs. This
will allow us to explicitly obtain the weak scale in terms of the microscopic parameters. §6
presents more detailed spectra and parameter ranges, and various explicit computations are
shown in the Appendix.

2 Composite Higgs from Seiberg duality

In this section and in §3 we present a composite Higgs model that breaks supersymmetry
and electroweak symmetry dynamically and calculably. The confining dynamics comes from
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SU(Nc) SQCD with fundamental flavors, in the free magnetic range. The theory will be
analyzed using its weakly coupled description, which we review in §2.1. The aim is to
explain in a simple setup the dynamical mechanism relating supersymmetry breaking to the
Fermi scale. It will be argued that this naturally solves the µ/Bµ problem, along the lines
of [17, 18].

As summarized above, in §4 an extra field transforming in the adjoint of the electric gauge
group will be added, in order to generate the Standard Model flavor hierarchies. This modifies
the UV properties of the theory, but the long distance description of the electroweak and
supersymmetry breaking sectors will be the same as the one for the simpler model analyzed
here.

2.1 Electric and magnetic descriptions

Before introducing the Higgs sector, we start with a brief review of [20]. The microscopic
theory is SQCD with gauge group SU(Nc) and Nf flavors (Qi, Q̃j) with equal masses,

Wel = m tr(QQ̃) . (2.1)

The quark masses are chosen to be much smaller than the dynamical scale Λ. This small
mass parameter can be generated dynamically, as in [21, 22]. Furthermore, we restrict to
the free magnetic range Nc + 1 ≤ Nf <

3
2
Nc.

The global symmetries are
SU(Nf )V × U(1)V (2.2)

under which (Qi, Q̃i) transform as (�+1, �−1). For phenomenological applications, we will
weakly gauge a subgroup of the global symmetry group and identify it with the Standard
Model gauge group,

SU(3)C × SU(2)L × U(1)Y ⊂ SU(Nf )V . (2.3)

We will find it convenient to use an SU(5) “GUT notation” as a shorthand for the SM
quantum numbers, but no assumption of unification is made.5 Furthermore, in the realistic
models of §4, baryon number U(1)V is automatically gauged; this has the advantage of
removing a Nambu-Goldstone boson from the low energy theory.

Below the scale Λ, the theory has a dual magnetic description [20] in terms of an SQCD
theory with gauge group SU(Ñc ≡ Nf−Nc), singlet mesons Φij , and Nf fundamental flavors
(qi, q̃j). The theory is weakly coupled in the infrared and has superpotential

Wmag = h tr(qΦq̃)− hΛ2
S tr Φ . (2.4)

The magnetic and electric variables are related by

QQ̃ ∼ hΛΦ , Λ2
S ∼ Λm. (2.5)

5Nevertheless, finding single sector models that can also accommodate unification is important. See [4]
for an analysis of this point.
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The magnetic superpotential of Eq. (2.4) (as well as the one in §4) receives nonperturbative
corrections which, in the regime ΛS ≪ Λ, do not affect our results.

In the limit gSM → 0, the classical symmetries are

SU(Nf )V U(1)V U(1)R
q � +1 0
q̃ � −1 0
Φ Adj+1 0 2

The R-symmetry, which becomes anomalous at the quantum level, will play an important
role in what follows.

2.2 Dynamical supersymmetry breaking

Intriligator, Seiberg and Shih (ISS) [11] have argued that SQCD, in the free magnetic phase,
with small quark masses flows to a weakly coupled O’ Raifeartaigh model, thus giving a
calculable model with dynamical supersymmetry breaking.

This can be seen from the classical magnetic superpotential Eq. (2.4), which breaks
supersymmetry by the rank condition, giving nonzero F-terms

∂Wmag

∂Φij
= −hΛ2

Sδij + hqiq̃j . (2.6)

Parametrizing the fields as

Φ =

(
YÑc×Ñc

ZT
Ñc×Nc

Z̃Nc×Ñc
XNc×Nc

)
(2.7)

qT =

(
χÑc×Ñc

ρNc×Ñc

)
, q̃ =

(
χ̃Ñc×Ñc

ρ̃Nc×Ñc

)
, (2.8)

(where Ñc = Nf − Nc is the rank of the magnetic gauge group) X is flat at tree level
(“pseudo-modulus”), while 〈χχ̃〉 = Λ2

SIÑc×Ñc
. This VEV completely breaks the magnetic

gauge group, leaving

SU(Ñc)G × SU(Nf )V × U(1)V → SU(Ñc)V × SU(Nc)× U(1)′ . (2.9)

The fields from (Y, χ) are supersymmetric at tree level and will not be important in
what follows. On the other hand, the (ρ, Z,X) sector gives Nc decoupled O’ Raifeartaigh
models [11]. In particular, the (ρ, Z) fields couple to the tree level F-terms and have super-
symmetric masses and nonsupersymmetric splittings of order hΛS. Once gSM 6= 0 in (2.3),
they play the role of composite messengers, generated dynamically by the theory.

As will be reviewed in §3, the flat directions are stabilized at 〈X〉 = 0 once one loop
effects from ρ and Z are taken into account. In this case, the U(1)R symmetry is unbroken.
Nonperturbative effects, which have been neglected here, create supersymmetric vacua. As
long as ΛS ≪ Λ, the metastable vacuum is parametrically long lived.
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2.3 A hybrid Higgs sector

In order to generate the small ratio MZ/MP l dynamically, we postulate that some of the
Higgs fields arise as composites of the SQCD theory introduced before. We take Hu to be an
elementary field, while Hd is generated from the meson QQ̃. In the weakly coupled magnetic
description the dynamical breaking of SU(2)×U(1) will be fully calculable, arising as a tree
level plus one loop effect.

After weakly gauging the SM gauge group, the mesons QQ̃ contain 5+5 representations,
which have the correct quantum numbers for a Higgs field. The global symmetry is broken
to (2.9) and SU(5)SM is embedded into the unbroken subgroup SU(Nc) [19]. This means
that Hd is identified with a 5 component from X ,

Hd ≡ X
5
. (2.10)

It is important that this element comes from an off-diagonal component of the meson that
does not have a tree level F-term.

Anomaly cancellation requires adding an elementary “spectator” S
5
with the quantum

numbers of Hd. Notice that X also contains conjugate representations that could couple
to Hd once more general electric perturbations are turned on (see §3). This is avoided by
coupling such extra unwanted matter to the spectator,

∆Wel = λS5(QQ̃)5 , (2.11)

as in [3]. In the magnetic theory, this gives masses λΛ to the unwanted representations.
Such deformations do not affect supersymmetry breaking. In summary, denoting

X = X ′ ⊕Hd ⊕X5 (2.12)

(where X ′ has an even number of 5+5), the low energy theory will contain only X ′ and Hd.
The interactions between Hd and the supersymmetry breaking sector are fully determined
by Seiberg duality, and follow from the superpotential (2.4).

The final step in defining the Higgs sector is to specify the interactions between the
elementary Hu and the SQCD fields. We postulate that at some high scale MH > Λ there is
new physics that generates the irrelevant interaction

WH ∼ 1

M2
H

(QQ̃)Hu(QQ̃) . (2.13)

In fact, we will see in §4 that these interactions are also required for producing the SM
flavor structure once some of the SM fermions are generated through compositeness. Then
MH will be identified with the “flavor scale” Mflavor, at which the SM Yukawa couplings are
produced.

In the low energy theory, (2.13) gives cubic terms of the form Wmag ∼ XHuX + ZHuZ̃.
The trilinear couplings involving the traceless part of X (which are responsible for the SM
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Yukawas of composite generations) will be analyzed in §4. Their effect on EW physics starts
at two loops. In contrast, in order to preserve the supersymmetry breaking structure of §2.2,
no extra couplings to the singlet trX should be generated. This can be enforced at the
scale MH by an approximate discrete symmetry under which trX is odd while the rest of
the SM fields are even. We focus then on the terms ZHuZ̃ that couple Hu to the composite
messengers. The contribution to the magnetic superpotential is

Wmag ⊃ λutr(ZHuZ̃) , λu ∼ O
(

Λ2

M2
H

)
. (2.14)

Since MH > Λ, this naturally gives λu ≪ 1.

To summarize, the magnetic description of the supersymmetry breaking plus Higgs sec-
tors becomes

Wmag =
[
−hΛ2

S trX
′ + h tr(ρX ′ρ̃) + hΛStr(ρZ̃ + ρ̃Z)

]
+ λdtr(ρHdρ̃) + λutr(ZHuZ̃) . (2.15)

For clarity, the supersymmetry breaking fields have been grouped inside the square brackets.
We have already expanded in the fluctuations (2.7), (2.8), and dropped inconsequential
contributions from the supersymmetric fields (Y, χ). Recall that X ′ was defined in Eq. (2.12);
when there is no confusion we will drop the primes in this field.

The Hd interaction is generated by htr(qΦq̃) in (2.4), and λd = h. On the other hand, the
interaction ZHuZ̃ with the elementary Higgs follows from the dimension 5 operator (2.13)
added to the electric theory. Therefore

λu ≪ λd (2.16)

and there is a parametrically strong mixing between the composite Higgs Hd and the super-
symmetry breaking sector, while the elementary field couples through a highly suppressed
operator (and decouples in the limit MH/Λ → ∞).

The R-symmetry assignments given at the end of §2.1, together with the superpotential
(2.15), imply that the Higgs fields have R-charges

R(Hu) = −2 , R(Hd) = 2 . (2.17)

This symmetry forbids a supersymmetric µ term W = µHuHd.

3 Dynamical electroweak symmetry breaking

We are now ready to analyze the breaking of SU(2) × U(1) in the magnetic theory, and
establish its relation to supersymmetry breaking.

First, at tree level the theory with superpotential (2.15) exhibits supersymmetry breaking
as in the ISS model described in §2.2. This happens because we have not added interactions
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involving the supersymmetry breaking fields corresponding to the diagonal components of
X . Both Hu and Hd are flat at the classical level.

To understand the dynamics of the low energy modes, one loop effects from the heavy
fields (ρ, Z) have to be taken into account. Keeping X , Hu and Hd as background fields and
integrating out the messengers produces a Coleman-Weinberg potential [16],

VCW =
1

64π2
Str M4

(
log

M2

(hΛS)2
− 3

2

)
. (3.1)

For computational purposes, it is simpler to evaluate the potential at the messenger scale
hΛS. However, the dependence on the scale cancels out, and the one loop potential actually
gives finite effects independent of hΛS.

The fermion mass matrix can be read off from (2.15),

Wmag ⊃ tr
(
ρ Z

)(hX + λdHd hΛS
hΛS λuHu

)(
ρ̃

Z̃

)
, Mf =

(
hX + λdHd hΛS

hΛS λuHu

)
. (3.2)

The bosonic mass matrix includes off-diagonal F-terms F ∗
X = hΛ2

S as well. Details of the
calculation (3.1) can be found in Appendix A.

3.1 One-loop effects and electroweak symmetry breaking

Expanding the CW potential to quadratic order in the fluctuations (X,Hu, Hd),

VCW = m2
X |X|2 +m2

Hu
|Hu|2 +m2

Hd
|Hd|2 − Bµ(HuHd + c.c.) + . . . (3.3)

gives

m2
X =

h2

8π2
(log 4− 1) (hΛS)

2 ,

m2
Hd

=
λ2d
8π2

(log 4− 1) (hΛS)
2 ,

m2
Hu

= − λ2u
8π2

(1− log 2) (hΛS)
2 ,

Bµ =
λuλd
8π2

(1− log 2) (hΛS)
2 . (3.4)

The mass contribution m2
X was found in [11] and stabilizes the pseudo-modulus X at the

origin. The squared Higgs masses are generated one loop factor below the supersymmetry
breaking scale, and are suppressed by the cubic couplings λu and λd. This gives a hierarchy

m2
Hu

≪ Bµ ≪ m2
Hd
.

Here we are neglecting two loop gauge mediated effects, that will be included in the full
model of §5. Note that for real values of the high energy parameters, no phases appear in
the soft masses given above.
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Importantly, integrating out the heavy messengers produces a tachyonic mass for Hu,
m2
Hu

< 0, so that electroweak symmetry is spontaneously broken. The up-type Higgs cou-

ples to the meson messengers (Z, Z̃), as opposed to the pseudo-modulus X that is stabilized
at the origin through its coupling to (ρ, ρ̃). The destabilization of the origin H = 0 is a non-
perturbative phenomenon from the point of view of the original electric theory, and appears
in the magnetic description as a one loop effect produced by the composite messengers. We
conclude that the effective model (2.15) that appears as the long distance description of our
SQCD theory has the right structure to break the electroweak symmetry (and supersymme-
try) dynamically.

This provides an alternative mechanism to radiative EWSB [25], where m2
Hu

becomes
negative due to the RG evolution driven by the top quark Yukawa coupling. Radiative
EWSB is particularly important at small tanβ and when supersymmetry is broken at a high
scale. Our mechanism could become useful outside those regimes. In fact, in the realistic
models presented below, we will break SU(2) × U(1) by a combination of dynamical and
radiative effects.

The position of the EWSB vacuum is obtained by minimizing (3.3) plus the quartic
potential coming from the SM gauge coupling D-terms,

VD =
g2

2
|H+

u H
0∗
d +H0

uH
−∗
d |2 + 1

8
(g2 + g′2)

(
|H0

u|2 − |H0
d |2 + |H+

u |2 − |H−
d |2
)2
. (3.5)

The CW potential (3.1) also generates quartic Higgs couplings of order λ4u,d/(32π
2), whose

effect is negligible compared to the D-term contribution.

Given the (real valued) soft parameters of Eq. (3.4), there are vacuum solutions with
〈H−

d 〉 = 〈H+
u 〉 = 0 and with real values for 〈H0

u〉 and 〈H0
d〉. First, extremizing with respect

to Hd gives

tanβ ≈
m2
Hd

Bµ

∼ λd
λu

. (3.6)

Then the Hu extremum gives, in terms of v2 = H2
u +H2

d ,

1

4
(g2 + g′2)v2 =

m2
Hd

− tan2 β m2
Hu

tan2 β − 1
. (3.7)

Using (3.4), all the terms in this equation are of the same order, and give

1

4
(g2 + g′2)v2 ≈ λ2u

16π2
(hΛS)

2 . (3.8)

The dynamically generated electroweak scale is then one loop below the supersymmetry
breaking scale and is controlled by the coupling of Hu to the messenger sector.

The model then gives a decoupling limit of the MSSM, having large tanβ and |mHd
| ≫

|mHu
|. Notice that all the terms contributing to (3.7) are naturally of the same order. For

example, a supersymmetry breaking scale

hΛS ∼ O(100TeV)
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and λu ∼ O(0.01) give a Fermi scale of the correct magnitude. It is necessary to point out
that in the concrete model presented below we will need larger values λu ∼ 0.1 in order
to get a realistic spectrum. Stop effects will also become important, and some amount of
tuning will be required.

3.2 R-symmetry, µ term and gaugino masses

The calculations of Appendix A reveal that there is no one loop µ term from integrating out
the messengers; similarly, no Majorana masses for gauginos are generated. The reason is that
in the limit gSM → 0 the supersymmetry breaking vacuum preserves the R-symmetry defined
before. For gSM 6= 0 the Higgs VEVs spontaneously break this symmetry, but such breaking
generates negligibly small higgsino and gaugino masses. An extra source of R-symmetry
breaking is hence needed.

This is remedied as follows [19]. The electric theory is perturbed by a quartic operator
produced at some high scale Λ0,

∆Wel =
λ

2Λ0

(QQ̃)2 , Λ0 ≫ Λ . (3.9)

At long distance this becomes a relevant mass term with a naturally small coefficient,

∆Wmag =
1

2
h2µφ tr Φ

2 , µφ ≡
Λ2

Λ0
λ . (3.10)

This term breaks U(1)R explicitly because R(Φ) = 2. We refer the reader to [23] for an
analysis of general polynomial deformations of this theory.

The deformation by Φ2 creates supersymmetric vacua at a distance Φ ∼ Λ2
S/µφ. However,

in the limit µφ ≪ ΛS, the metastable vacuum found before still exists, albeit shifted away
from the origin [19],

〈hX〉 ≈
µ∗
φ

(log 4− 1)(8π2) + |µφ/ΛS|2
∼ 16π2 µ∗

φ . (3.11)

The expectation value of X is larger than µφ by an inverse loop factor because the vac-
uum arises by balancing the tree level tadpole Λ2

SµφX against the one loop contribution
(Λ2

S/16π
2)|X|2. In the limit µφ/ΛS ≪ 1 the supersymmetry breaking vacuum can be made

parametrically long-lived.

The fact that the spontaneous breaking of the R-symmetry (〈hX〉) dominates over the
explicit breaking (µφ) implies that large enough gaugino and higgsino masses can be gen-
erated even if µφ/ΛS is small. Gaugino mass unification occurs as a consequence of the
global symmetry respected by the messengers. For instance, [19] found that for small X/ΛS,
gaugino masses are

mλa ∼ g2a
16π2

〈hX〉 ∼ g2aµφ . (3.12)
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TeV scale gaugino masses can be obtained for µφ ∼ TeV.

Importantly for our purposes, in the presence of (3.10) a nonzero one loop µ term is
produced by the heavy messengers (see Appendix A.3),

µ ∼ λuλd
16π2

〈hX〉 ∼ λuλdµφ . (3.13)

Our proposal naturally leads to a small higgsino mass, proportional to λu. For instance, for
µφ in the TeV range, λu ∼ 0.01 and λd ∼ 2π, we obtain µ ∼ 100 GeV.6 Finally, 〈hX〉 6= 0
also corrects the soft parameters computed in Eq. (3.4), in a way which will be discussed in
the following sections.

3.3 Comments on the µ/Bµ problem

In gauge mediation, the µ/Bµ problem appears because parameters with different mass
dimension are generated at the same loop level. Typically, loop effects from the hidden
sector produce µ2 ≪ Bµ. EWSB is then either impossible (if mHu

∼ mHd
∼ µ), or extremely

fine-tuned (if µ is at the weak scale and m2
Hu

∼ m2
Hd

∼ Bµ). In general, this is addressed
using new mechanisms that ensure

m2
soft ∼ µ2 ∼ Bµ ∼ m2

Hu,d
.

See e.g. [24, 14] and references therein.

On the other hand, the composite Higgs model produces soft parameters (3.4) and (3.13)
with

m2
Hu

≪ Bµ ≪ m2
Hd
.

This gives a viable electroweak scale, with all the terms in Eq. (3.7) being of the same order
of magnitude. Therefore, the hierarchy µ2 ≪ Bµ is no longer problematic, and in fact it leads
to an attractive phenomenology that we analyze below. From the low energy theory this
follows from the strong mixing between Hd and the “hidden” sector. In fact, the microscopic
theory shows that Hd is part of the supersymmetry breaking sector, and Seiberg duality
provides a weakly coupled dual where such dynamics can be understood.

Finally, it is necessary to point out that the simple mechanism presented so far receives
corrections from interactions with the rest of the MSSM fields, especially with the top and
stop. Such effects are analyzed in §4 – §6. Constructing a realistic single sector model places
certain constraints on the parameters of the Higgs sector, which lead to some amount of
fine-tuning (as discussed in Appendix C).

4 Building a composite supersymmetric SM

After having specified the supersymmetry breaking and Higgs sector, we next consider the
SM generations and focus on the question of how the Yukawa textures arise. Our goal in

6In the realistic proposals in §5 and §6, we will focus on values λd ∼ 1 and λu ∼ 0.1.
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this second part of the work is to present fully realistic models and analyze the RG evolution
from the messenger scale down to the top mass scale.

We advocate the idea that the dynamics responsible for breaking SU(2) × U(1) should
also generate the flavor hierarchies. This will be accomplished by combining the previous
mechanism of EWSB with the single sector model of [4]. We should point out that the idea
of SM fermions composed of preons that also break the weak symmetry has been explored
over the years using different tools; see [26] and references therein.

In our proposal, generating realistic flavor textures requires adding a field that transforms
in the adjoint representation of the gauge group. We start by discussing this new theory
and its long distance description. Then in §4.3 we review how this theory gives rise to
realistic Yukawa couplings via compositeness, and we go on to show that the mechanism
for dynamical EWSB can also be applied in this context, with certain modifications that
we shall analyze. Finally, §4.4 summarizes the main properties of the model and its soft
parameters.

4.1 The microscopic theory and its magnetic dual

The electric theory is SU(Nc) SQCD with Nf flavors (Q, Q̃) and a field U in the adjoint rep-
resentation of the gauge group; this has been studied in [27, 28, 29]. A general renormalizable
superpotential for U is introduced,

Wel =
gU
3

TrU3 +
mU

2
TrU2 . (4.1)

Here ‘Tr’ means a trace over the gauge indices, while ‘tr’ will be reserved, as before, for
traces over flavor indices.

The cubic superpotential restricts the chiral ring mesons to

M1 ≡ (QQ̃) , M2 ≡ (QUQ̃) (4.2)

which will be identified with the first two SM composite generations. We will shortly perturb
the superpotential using the operators QQ̃ and QUQ̃ to produce supersymmetry breaking
vacua.

Below the dynamical scale Λ, the theory admits a magnetic description in terms of an
SU(Ñc ≡ 2Nc−Nf ) gauge group, withNf fundamental quarks (q, q̃), singletsM1 andM2, and
an adjoint Ũ of the magnetic gauge group. The superpotential includes a cubic polynomial
in Ũ plus cubic and quartic interactions between the magnetic quarks, the singlet fields and
Ũ .

This theory is IR free and stable in the range

Nc

2
< Nf <

2

3
Nc .

The magnetic theory simplifies for

2Nf −Nc = 1 , (4.3)
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since there is no magnetic gauge group. For simplicity, in what follows we restrict to this
case, although our construction can be applied to the full free magnetic range. The magnetic
quarks correspond then to the dressed baryons

q =
[Q]Nf [UQ]Nf−1

Λ3Nf−2
, q̃ =

[Q̃]Nf [UQ̃]Nf−1

Λ3Nf−2
. (4.4)

It is also convenient to redefine the singlet mesons to have dimension one,

Φ1 =
(QQ̃)

Λ
, Φ2 =

(QUQ̃)

Λ2
. (4.5)

In terms of these fields, the classical magnetic superpotential is

Wmag = h tr q

(
−1

2
(Nc − 1)

mU

gUΛ
Φ1 + Φ2

)
q̃ (4.6)

(plus a nonperturbative contribution which is negligible for our analysis).The appearance of
the ratio mU/Λ multiplying Φ1 can be understood in terms of a non-anomalous R-symmetry
(R(U) = 2/3) that is restored in the limit mU/Λ → 0. The long distance theory consists
then of magnetic quarks (q, q̃) coupled to the linear combination of mesons appearing in
(4.6), plus a free meson corresponding to the orthogonal combination.

4.2 Supersymmetry breaking

The next step is to introduce appropriate deformations to generate supersymmetry breaking
vacua. Notice that the IR theory reduces to the one discussed in §2.1 after identifying

Φ ≡ −1

2
(Nc − 1)

mU

gUΛ
Φ1 + Φ2 . (4.7)

Supersymmetry and R-symmetry breaking will ensue once linear and quadratic deformations
in Φ are added to the magnetic superpotential.

There are, however, two important differences with the theory of §2:

1. There is an extra meson which we denote by Φ̃ (the orthogonal combination to (4.7))
that is decoupled from the supersymmetry breaking sector at the classical level. Once
supersymmetry is broken, this direction could become tachyonic. We have to make
sure that the magnetic deformations induce a large enough mass.

2. The UV theory is different. In particular, the mesons and baryons have different UV
dimensions than the ones in §2. This is important for our purposes because the flavor
hierarchies will be generated at a scale Mflavor > Λ. While supersymmetry breaking
is an IR effect, driven by the combination Φ, for the purpose of computing the SM
Yukawa couplings we have to keep track of mesons with different dimensions.
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In order to analyze the supersymmetry breaking vacuum, here we work in terms of the fields
Φ and Φ̃, but starting from the next subsection we reintroduce Φ1 and Φ2 in connection to
the SM Yukawa matrices.

Let us deform the electric theory by a polynomial in the mesons,

∆Wel = m(QQ̃) + λ1(QUQ̃) +
λ2
2Λ0

(QQ̃)2 + . . . (4.8)

We require thatm≪ Λ and λ1 ≪ 1, and the quartic coupling is generated at a scale Λ0 ≫ Λ.
The magnetic superpotential becomes

Wmag =

[
−hΛ2

S trΦ + htr(qΦq̃) +
1

2
h2µφ trΦ

2

]
− hΛ̃2

S trΦ̃ +
1

2
h2µ̃φ tr Φ̃

2 + . . . (4.9)

The largest of m/Λ and λ1 gives the leading contribution to the linear terms in the IR
theory; here the relation between electric and magnetic parameters is analogous to (2.5).
Similarly, the mass terms follow from the quartic and higher order deformations in (4.8).
The couplings with and without tildes are of the same order of magnitude –they differ by
order one numerical factors that enter into the definition of (Φ, Φ̃) in terms of (Φ1,Φ2). Also,
mixed terms ΦΦ̃ are not included because their effect can be absorbed into a redefinition of
µφ and ΛS after stabilizing Φ̃ (see below).

The terms grouped inside the square brackets give the model discussed in the first part of
the work. There is a supersymmetry breaking direction X corresponding to the lower sub-
block of Φ (see Eq. (2.7)), as well as composite messengers (ρ, Z). As in §3.2, R-symmetry
is broken both explicitly and spontaneously, with the latter dominating. For what follows,
it is important to keep in mind that X and Z arise now from a combination of dimension
2 and dimension 3 fields in the UV theory. The Coleman-Weinberg potential for the fields
with definite UV dimension reads

VCW = m2
CW

∣∣∣∣−
1

2
(Nc − 1)

mU

gUΛ
Φ1 + Φ2

∣∣∣∣
2

+ . . . , (4.10)

where the one loop mass m2
CW = m2

X was defined in Eq. (3.3).

On the other hand, since the meson Φ̃ is not coupled to (q, q̃), the rest of the terms
imply that Φ̃ is stabilized supersymmetrically at 〈hΦ̃〉 = Λ̃2

S/µ̃φ. We conclude that the same
deformations that break supersymmetry also stabilize Φ̃ and resolve the issue of potential
tachyons from microscopic corrections. This then gives a consistent model of supersymmetry
and R-symmetry breaking in SQCD with fundamentals and an adjoint.7

4.3 Flavor textures and composite Higgs

Finally, we add in the Higgs sector of §2 and combine with the composite MSSM of [4]. The
matter content of the model is the following:

7We refer the reader to [30, 31] for a different construction of metastable vacua in SQCD with an adjoint.
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• The supersymmetry breaking sector is composite and arises from the diagonal compo-
nents of (4.7) plus magnetic quarks.

• Hu, the third generation (Ψ3), and gauge supermultiplets are elementary.

• Hd and the second generation arise as dimension 2 composites from QQ̃.

• The first generation is generated from the dimension 3 meson QUQ̃ .

4.3.1 Embedding of the SM gauge group

Let us be more concrete regarding the embedding of the SM gauge group into the global
symmetry group. A simple choice for the number of flavors and colors of the electric theory
corresponds to [4]

Nf = 12 , Ñc = 1 ⇒ Nc = 23 .

Recalling that the SU(Nf ) global symmetry is broken to SU(Nf − Ñc), the embedding of
GSM is given by

Q ∼ (5+ 5̄+ 1) + 1 , Q̃ ∼ (5̄+ 5+ 1) + 1 . (4.11)

Actually, a realistic theory of flavor with inverted hierarchies requires larger Nf and Nc; we
refer the reader to [4] for details.

Decomposing the mesons as in Eq. (2.7),

Φi =

(
Yi, 1×1 ZT

i, 1×11

Z̃i, 11×1 Xi, 11×11

)
, i = 1, 2 , (4.12)

the SM quantum numbers of the X fields are

Xi ∼ (10+ 5̄) + 5̄+
[
2× 24+ 15 + 15+ 10+ 2× 5+ 3× 1

]
. (4.13)

Each of the mesons X1 and X2 yields one composite SM generation 10+ 5̄, while Hd comes
from the extra 5̄ in X1.

Except for the singlets, the representations R inside the square brackets give rise to extra
matter that has to be removed from the low energy spectrum. This is done by introducing
spectator fields SR̄ with couplings to the unwanted matter

Wel ⊃ λ1R
∑

R

S1R̄(QQ̃)R + λ2R
1

Λ0

∑

R

S2R̄(QUQ̃)R . (4.14)

In the IR this gives masses of order Λ and Λ2/Λ0 to the unwanted matter. The same
procedure is used to lift the linear combination of (Zi, Z̃i) that does not couple to the
supersymmetry breaking field (4.7).

Importantly, after turning on the chiral deformation (4.14), the composite SM fermions
only acquire masses from the Yukawa couplings. The µφ perturbations produce a negligible
admixture with spectators.
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4.3.2 Yukawa couplings

We assume that at some high scaleMflavor > Λ there is new physics responsible for generating
couplings between the Higgs and the gauge invariant mesons [3, 4],

Wyu ∼ 1

M4
flavor

(QUQ̃)Hu(QUQ̃) +
1

M3
flavor

(QQ̃)Hu(QUQ̃) +
1

M2
flavor

(QQ̃)Hu(QQ̃) +

+
1

Mflavor
(QQ̃)HuΨ3 +

1

M2
flavor

(QŨQ)HuΨ3 +Ψ3HuΨ3 . (4.15)

Notice that only couplings to the SM fields are generated, because the extra matter in the
mesons is lifted using (4.14).

After the theory confines, these irrelevant interactions become Yukawa couplings in terms
of the elementary mesons,

Wyu ∼ Λ4

M4
flavor

Φ2HuΦ2 +
Λ3

M3
flavor

Φ1HuΦ2 +
Λ2

M2
flavor

Φ1HuΦ1 +

+
Λ

Mflavor
Φ1HuΨ3 +

Λ2

M2
flavor

Φ2HuΨ3 +Ψ3HuΨ3. (4.16)

In terms of

ǫ ≡ Λ

Mflavor
(4.17)

the up-type fermion Yukawa matrix becomes

yU ∼



ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 ǫ
ǫ2 ǫ 1


 (4.18)

(up to order one numbers). The correct flavor texture is generated for ǫ ∼ 10−1 − 10−2, so
that the “flavor” scale is approximately one decade above the compositeness scale Λ.

On the other hand, the down- and lepton- type Yukawa couplings are generated from
couplings to the composite Higgs Hd ⊂ (QQ̃)/Λ. For simplicity, it is assumed that such
couplings are also generated at the scale Mflavor :

8

Wyd,yl ∼ 1

M5
flavor

(QUQ̃)(QQ̃)(QUQ̃) +
1

M3
flavor

(QQ̃)3 +
1

Mflavor
Ψ3(QQ̃)Ψ3 + . . .

→ ǫ5Φ2HdΦ2 + ǫ3Φ1HdΦ1 + ǫΨ3HdΨ3 + . . . (4.19)

This gives
yd ∼ yl ∼ ǫ yu . (4.20)

8For instance, in models that unify one has Λ ∼ MGUT [4], and then it’s natural to assume that all the
irrelevant interactions are produced near the Planck scale.
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In our proposal, this result explains dynamically the smallness of the bottom and tau
mass compared to the top mass. However, the hierarchy of second generation masses is
smaller, and in the first generation md is actually a bit heavier than mu. Eq. (4.20) at
large tan β would produce too light fermion masses in the first two generations, unless
additional structure is present in the Yukawa matrices. The realistic models we discuss
below have tan β ∼ 6 − 10 and then this is not a serious issue because factors of 5 or so in
the Yukawa matrices are enough to produce realistic fermion masses. On the other hand,
for parametrically large tan β, another mechanism for generating the down type masses of
the first two generations would be needed. See discussion below (4.31).

4.4 Summary of the model

We end this section by summarizing the model and its interactions, together with the effects
of integrating out the composite messengers.

First, the scales of the model are the following. The dynamical scale is Λ, below which
we switch to the weakly coupled magnetic description; in examples with unification this is
Λ ∼ MGUT but otherwise it can be smaller. There are two scales above Λ; first, Mflavor

is the scale at which the interactions between the Higgs and the other SQCD mesons are
generated. And Λ0, introduced in (4.8), controls the irrelevant polynomial deformations in
the mesons –these are responsible, in particular, for breaking the R-symmetry. These two
scales are taken to be roughly of the same order of magnitude, and are one or two orders
of magnitude above Λ. The other dimensionful parameter of the model is the electric quark
mass m; it sets the scale of supersymmetry breaking Λ2

S ∼ mΛ, and m/Λ ≪ 1 is required for
metastability. Actually, this mass parameter is not strictly required because supersymmetry
breaking can also be obtained from the marginal deformation ∆Wel ∼ QUQ̃ in (4.8).

The IR interactions are given by

Wmag =WO′R + λutr(ZHuZ̃) + tr ρ
(
λdHd + h1Φ

SM
1 + h2Φ

SM
2

)
ρ̃+WY uk . (4.21)

Let’s describe the different contributions to Wmag. The O’Raifeartaigh-type terms are, from
Eq. (4.9),

WO′R = −hΛ2
S trX + htr(ρXρ̃) +

1

2
h2µφ trX

2 + hΛStr(Zρ̃+ Z̃ρ) (4.22)

where X arises from the (Nf − Ñc)× (Nf − Ñc) sub-block in the linear combination (4.7);
(Z, Z̃) also originate from this combination, albeit from the 1× (Nf − Ñc) block. The fields
(Y, χ, χ̃) have not been included; they have a supersymmetric spectrum and don’t contribute
at one loop.

Next we have the interaction between Hu and the Z messengers; it comes from a dimen-
sion 5 operator in the UV so that λu ≪ 1. The couplings between the ρ messengers and
the composite MSSM fields originate from (4.6). Hd and the first generation arise from the
dimension two meson, so they have the same coupling h1 = λd. The second generation ΦSM2
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has a different coupling, denoted by h2. Both λd and h2 are of the order of h, while λu is
parametrically smaller; this is due to the fact that Hd and ΦSMi are composites, while Hu is
elementary.

The effective theory at the supersymmetry breaking scale hΛS is obtained by integrating
out (ρ, Z). The dominant effects arise at one loop (CW potential) and two loops (gauge
mediated contributions),

Veff = Vtree +
1

64π2
Str M4

(
log

M2

(hΛS)2
− 3

2

)
+ V 2−loop

GM . (4.23)

While we discuss these calculations in detail in Appendix A, let us analyze qualitatively the
various soft terms that are produced. There are three types of effects:

a) CW contributions: they affect scalars that have tree level couplings to the messengers,

m2
CW ∼ h2

16π2
(hΛS)

2

(
1 +O

(〈X〉
ΛS

))
. (4.24)

The corrections proportional to 〈X〉/ΛS, coming from the breaking of R-symmetry, are
important for some of the soft parameters, and are taken into account in the explicit
analysis of §6.

b) Elementary sfermion masses come predominantly from two loop gauge mediated ef-
fects,9

m2
GM ∼

(
g2

16π2

)2

(hΛS)
2 . (4.25)

c) Gaugino and higgsino masses appear at one loop and are proportional to the R-
symmetry breaking parameter (for small X/ΛS)

mψ ∼ 1

16π2
〈hX〉 ∼ µφ . (4.26)

The soft parameters for the Higgs sector produced by the CW potential were given in §3.1.
Gauge-mediated contributions to the Higgs potential (and the nonzero VEV 〈hX〉) have to
be taken into account as well.

We see that integrating out the heavy messengers produces masses squared (4.24) for the
composite MSSM fields that are one loop below the supersymmetry breaking scale. On the
other hand, elementary fields get their masses predominantly from gauge mediated effects
(4.25), so they are two loops below the supersymmetry breaking scale. Finally, the gauginos
and higgsinos end up having masses proportional to µφ (recall that 〈hX〉 ∼ 8π2µφ so that
the loop factors cancel in the fermion masses). In practice, the higgsinos tend to be quite

9These two loop computations for the model of [22], which our work uses, have been analyzed by R. Essig
and J. F. Fortin [32]. We thank them for their help.
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light because their mass receives an extra suppression proportional to λuλd. This spectrum
is of the type considered for instance in [12], where the first two generation sfermions (plus
in our case Hd) are decoupled to the multi-TeV range, while around the TeV scale one only
has third generation matter, gauginos and a light Higgs.

Requiring the masses of gauginos and third generation sfermions to be at around 1 TeV
sets

hΛS ∼ 200 TeV , µφ ∼ 1 TeV ⇒ x . 1 , (4.27)

where the relation between µφ and X/ΛS is given, to lowest order, in Eq. (3.11). In this
case, the composite masses are of the order

mHd
∼ mQ̃i

∼ 10− 20 TeV . (4.28)

In order to get higgsinos around 100− 200GeV, we take

λu ∼ 0.1 , λd ∼ h ∼ hi ∼ 1 . (4.29)

This is the parameter range of interest in what follows.10 Parameter ranges, spectra and
other phenomenological properties are discussed in §5 and §6.

Mixing between the Higgs fields and the supersymmetry breaking sector produces one
loop A-terms for the composite generations,

LA−terms = Ad Q̃Hd
˜̄d+ Al L̃Hd ˜̄e + A′

d Q̃H
†
u
˜̄d+ A′

l L̃H
†
u
˜̄e . (4.30)

Nonzero Au terms would require messengers transforming in a 10 + 10 representation. To
lowest order in the R-symmetry breaking parameter, the A-terms are found to be

Ad =
λdh

2
i

8π2

(
41

15
− 4 log 2

) 〈X〉3
Λ3
S

hΛS + . . .

A′
d =

λuh
2
i

8π2

(
129

20
− 9 log 2

) 〈X〉3
Λ3
S

hΛS + . . . , (4.31)

The contribution to the third generation is negligible, as in usual gauge mediation. It is
possible to choose the SM embedding so that the A-terms are diagonal in generation space;
this again requires Nf and Nc larger than the minimal (4.11).

Due to the cubic power of X/ΛS (and the λu factor in the case of A′
d), these A-terms are

parametrically smaller than the other CW soft terms. However, they may still give interesting

10It is necessary to point out that the simple mechanism for EWSB discussed in §3.1, where the messengers
generate a tachyonic mass for Hu, receives now important modifications. The reason is that having large
enough gaugino masses and µ term requires x ∼ 1 and around these values, the one loop contribution to m2

Hu

(first term in Eq. (5.4)) transitions from negative to positive. This has to be added to a positive two loop
mass, so that the total mass for Hu is positive in the regime of interest. As explained below, the breaking
of SU(2)× U(1) will be produced by a combination of dynamical and radiative effects.
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low energy effects, particularly the A′ term, which is rarely included. In particular, a one
loop diagram involving a bino and an A′

d insertion generates a fermion mass operator

Lf = −y′dQH∗
ud̄ .

This mechanism for generating quark masses radiatively could become useful in regions of
very large tan β. For a recent work on other loop induced fermion masses and references
see [33].

Let us end our analysis of the single sector model with a brief discussion of flavor changing
neutral currents (FCNCs). These are produced because the fermion mass matrix is not
diagonal in the same basis as the sfermion mass matrix and A-terms. After changing to the
fermion mass eigenbasis, the sfermion mass matrix acquires off-diagonal components that,
through loop effects, can induce for instance K0 − K̄0 mixing or rare decays like µ→ eγ. In
our model the soft masses in the interaction basis are diagonal in generation space, so the
off-diagonal components induced by the above rotation are much smaller than the diagonal
elements. In this case, constraints from FCNCs place upper bounds on ratios of the off-
diagonal mass components divided by the average sfermion mass [34].

Soft masses (4.24) give contributions ∼ m2
Q̃
(Q̃∗

LQ̃L+Q̃
∗
RQ̃R) which do not change chirality.

For these elements, the strongest constraint comes from K −K mixing. These effects were
studied in [4], where it was shown that the bounds are satisfied for composite masses around
10− 20 TeV. The analysis is similar in our case.

On the other hand, after setting the Higgs to its VEV, A-terms give mass-contributions
A′
dvu(Q̃

∗
LQ̃R + Q̃∗

RQ̃L) that change chirality. These lead to potentially new sources of flavor
violation. We find that the strongest constraint comes from the lepton flavor violating decay
µ → eγ. This bound is satisfied in our model with masses at 10 − 20 TeV, if we require
some degeneracy (at the 10− 20% level) between the soft masses. This can be obtained by
a mild tuning of the electric theory parameters, and the tuning decreases with increasing
masses. In summary, the model leads to flavor changing effects satisfying the experimental
bounds, by a combination of decoupling, diagonal soft terms in the interaction basis, and a
mild degeneracy between CW masses.

5 Effective field theory analysis

In §2–§4 we have described the RG evolution of the system, starting from the microscopic
SQCD theory, the generation of flavor textures at Mflavor by dimensional hierarchy, and then
the appearance of light composites giving rise to MSSM matter below the compositeness scale
Λ. At the scale hΛS the strongly coupled sector admits an effective description in terms of
Eq. (4.21). Supersymmetry is dynamically broken and integrating out the heavy messengers
via the Coleman-Weinberg potential (plus gauge mediated effects) generates finite soft terms
that were summarized in §4.4.

The aim of the next two sections is to link the physics taking place at the messenger scale
with that at MZ , putting special emphasis on the scalar potential for the Higgs fields and
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the breaking of the electroweak symmetry. A careful analysis is motivated by the fact that
models with inverted hierarchies and a hybrid Higgs sector exhibit quite different properties
from the usual MSSM spectrum. Since this discussion will be somewhat technical, the reader
interested mainly in the phenomenology at the TeV scale can move directly to §6.

Since so far we described the dynamics of the strongly coupled sector using Seiberg duality
(which follows from a Wilsonian analysis of the interactions) it is natural to study the flow
towards the EW scale in a physical approach that, as the Wilsonian one, takes into account
the decoupling of energy scales. We proceed by constructing successive effective theories,
integrating out particles at their thresholds; this should be done using a mass-dependent
renormalization scheme, which we approximate by defining the β-functions in a piecewise
manner at each energy interval. Besides quantum corrections coming from the RG flow, we
will take into account finite CW effects and two-loop loop gauge mediated masses.

As explained in §4.4, below the messenger scale there are three mass hierarchies, corre-
sponding to the composite fields (see (4.24)), third generation sfermions (given in (4.25)),
and gauginos (Eq. (4.26)). The discussion is simplified by integrating out simultaneously
particles with similar masses, resulting in only three thresholds below the messenger scale.
We do not decouple the third generation sleptons since their effect in the RG running of the
other parameters is negligible, and in some ranges they tend to be quite light.

In the following we will focus on the RG evolution produced by these mass hierarchies,
without giving specific numerical details. We will identify the relevant degrees of freedom
in the different energy regimes and determine the dependence of the soft masses and Higgs
VEV at theMZ scale on the messenger scale parameters (hΛS, µφ) and couplings (hi, λd, λu).
More detailed numerical results, the resulting spectra and low energy phenomenology are
presented in §6.

5.1 Parametrization of soft terms

It is useful to first recast the soft parameters at the messenger scale in a way that makes
manifest their dependence on (hΛS, µφ, hi, λi). Throughout, we make use of the running
scale

t = log
Q

hΛS
.

It was argued in §3.2 that the spontaneous R-symmetry breaking 〈hX〉 dominates over the
explicit breaking µφ, so we find it convenient to trade µφ for the dimensionless combination

x ≡ 〈hX〉
hΛS

. (5.1)

As explained in Appendix A.2, the dependence of the masses of composite particles on
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the microscopic parameters is given by

m2
Hd
(0) =

[
λ2d
8π2

V̂ cw
HdH

∗

d
(h, x) +

∑

a

CHd
a

(
g2a(0)

16π2

)2

fgm(h, x)

]
(hΛS)

2

m2
Q̃i
(0) =

[
h2i
8π2

V̂ cw
Q̃iQ̃∗

i

(h, x) +
∑

a

CQ̃
a

(
g2a(0)

16π2

)2

fgm(h, x)

]
(hΛS)

2 , i = 1, 2 . (5.2)

Here V̂ cw
HdH

∗

d
= V̂ cw

Q̃iQ̃∗

i

are second derivatives of a dimensionless potential V̂ cw defined in

terms of VCW in Eq. (A.16). This is useful in order to show explicitly the loop factors and
dependence on (hΛS). Similarly, fgm comes from the gauge-mediated two loop potential
(third term in Eq. (4.23)).

In the limit of small x, V̂ cw
HdH

∗

d
∼ (log 4 − 1) as given in (3.4); the full x dependence is

taken into account in the numerical results of §6. For these masses, one loop contributions
dominate over gauge-mediated two loop effects, which will be neglected in the analytical
formulae of this section.

Third generation sfermion masses arise at two loops,

m2
Q̃3

(0) =
∑

a

CQ̃
a

(
g2a(0)

16π2

)2

fgm(h, x) (hΛS)
2 . (5.3)

On the other hand, mHu
receives both one loop (from the trilinear coupling W ⊃ λuZHuZ̃)

and two loop contributions,

m2
Hu

(0) =

[
λ2u
8π2

V̂ cw
HuH∗

u
(h, x) +

∑

a

CHu

a

(
g2a(0)

16π2

)2

fgm(h, x)

]
(hΛS)

2 . (5.4)

Even though they appear at different loop orders, both contributions are comparable because
of the smallness of λu. The Bµ term comes from mixed derivatives of the CW potential,

Bµ(0) = −λuλd
8π2

V̂ cw
HuHd

(h, x) (hΛS)
2 . (5.5)

From Eq. (3.4), the small x behavior is V̂ cw
HuHd

∼ −(1− log 2).

Finally, gaugino and higgsino masses are parametrized as

mλa(0) =
g2a(0)

16π2
(xfλ(h, x)) hΛS , µ(0) =

λuλd
16π2

(xfµ(h, x)) hΛS . (5.6)

As discussed in §3.2, these masses vanish linearly with the R-symmetry breaking parameter
x, and fλ and fµ have order one values at x = 0. Choosing the microscopic parameters to
be real, there are no phases in the soft masses.
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5.2 Flowing down to the top scale: effective potential method

The flow from the messenger scale down to the top scale is done as follows. Below the mes-
senger scale the effective theory is the MSSM, with boundary values for the soft parameters
obtained in the previous subsection. Between hΛS ∼ 200 TeV and mCW ∼ 10− 20 TeV the
evolution is dictated by the one loop MSSM RG equations.

At energies Q ∼ mCW , Hd and the heavy generations are integrated out by absorbing
into tree-level parameters their contributions to the one loop potential

VCW =
1

64π2
Str M4

(
log

M2

Q2
− 3

2

)
, (5.7)

where now the role of the cutoff of the effective theory that results from integrating out the
heavy particles is played by the threshold scale Q ∼ mCW , andM is the Hu-dependent mass-
matrix for the heavy MSSM particles, evaluated at Q. These contributions are absorbed into
the low energy masses, producing finite corrections of order

∼ m2
CW

16π2
.

Such contributions are similar to the effects from integrating out the messengers, with the
replacement hΛS → mCW . Indeed, in composite models with inverted hierarchies the heavy
generations behave much like messengers (with the obvious difference that the fermions are
kept in the low energy theory).

The outcome is a new effective theory with cutoff mCW , containing only the third gener-
ation sfermions, gauginos and Hu, plus the SM matter. In order to implement correctly the
decoupling of the heavy particles, the β-functions have to be computed in a mass-dependent
scheme [37]. As is usually done, we will approximate the mass-dependent β-functions by
defining them in a stepwise fashion, starting from their MSSM values in a mass independent
scheme and implementing the decoupling of massive particles by simply removing their con-
tributions to the RG equations below each threshold. This procedure is then repeated for
the stop/sbottom and heavy gauginos.

In the last stage, EWSB is computed in a theory at the top scale, where the dominant
effects come from Hu and the top quark.11 For the purpose of obtaining approximate analyt-
ical formulae, the gauge and Yukawa couplings are considered as inputs at the high scale.12

The different energy ranges are analyzed, in turn, in §5.3 and §5.4.
11While these are one loop effects in the low energy theory, they arise at two loops in the theory (4.21)

containing all the fields of the magnetic theory. For h . 1 and λu ≪ 1, such effects dominate over the two
loop contributions involving the messengers only, which we have hence neglected. Two loop effects in the
ISS context have been discussed in [35].

12The parameters that are fixed by low energy experiments (such as gauge couplings) have to be evolved
towards the messenger scale accross different thresholds, whose scales depend in turn on the high energy
values of these couplings. This is solved iteratively in the results presented in §6.
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To make the discussion more concrete, consider a complex scalar φ with soft mass m2
φ,

and a marginal coupling to the light Higgs,

V =
(
m2
φ + y2|H|2

)
|φ|2 + . . . (5.8)

For energy scales above m2
φ, the running Higgs mass m2

Hu
(t) obeys, in a mass-independent

scheme,
dm2

Hu

dt
=

1

8π2
m2
φ + . . . (5.9)

Below the scale Q = mφ, in order to approximate the change of the β-function in a mass-
dependent scheme, this contribution is set to zero, and the particle is integrated out using
(5.7), which now reads

VCW (Q2 = m2
φ) = −

m2
φ

16π2
y2|H|2 +O(|H|6/m2

φ) . (5.10)

The quartic term vanishes at the threshold. Nonrenormalizable terms (kept frozen at and
below the thresholds) give negligible contributions, being suppressed by inverse powers of
mφ. They are ignored in the analytic results below.

Using first the RGEs valid at

t > tφ = log
mφ

hΛS

to compute m2
Hu

(tφ) –with the boundary condition (5.4)– and then combining this with
Eq. (5.10), gives a Higgs soft mass mHu

in the effective theory below the threshold at tφ
equal to

m2
Hu

(tφ) = m2
Hu

(tφ)−
m2
φ

16π2
y2 . (5.11)

For t < tφ, the contributions of m2
φ to the β-functions are set to zero and, as shown in [36],

the β-function for the Higgs quartic coupling L ⊃ −λ
2
|Hu|4 receives a correction

dλ

dt
= − y4

16π2
+ . . . (5.12)

This plays an important role in increasing the mass of the physical light neutral Higgs.

As a technical aside, it should be noted that this procedure of decoupling of particles can
be justified from a diagrammatic interpretation of the Coleman-Weinberg potential, making
use of the decoupling theorem of [37] to argue that the particle in question can be eliminated
from the effective theory (and β-functions) below its threshold. A transition to a mass-
dependent scheme has to be made so that the theorem applies. This is implemented, in
the procedure explained above, by absorbing at each threshold the quantum contributions
due to the corresponding particle into the tree-level parameters of the effective potential.
As a consequence, such parameters suffer threshold corrections and have a non-continuous
dependence on the renormalization scale Q. There are, however, no discontinuities in the
scale dependence of the full effective potential.
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The effective potential method for EWSB computations has been widely used (see e.g. [36]).
Combining the RG running of parameters with the CW potential minimizes the dependence
of the effective action on the renormalization scale [38]. Also, the implementation of the
decoupling of particles avoids the breakdown of perturbation theory due to the appearance
of large logarithms in a mass-independent renormalization scheme, and the integration of
fields at each threshold implements some higher loop corrections. Typically, this approach is
applied to the top/stop sector, because the other generations give negligible contributions.
Our main point here is that, in models with inverted hierarchies, effects from the heavy
composites are also important in the calculation of the EWSB vacuum, and have to be
consistently taken into account.

5.3 EFT at the scale of the composite MSSM fields

Let us describe the RG evolution from hΛS to mCW , the scale of the MSSM composites.
The soft parameters at t = 0 were defined before and, as usual, the effective potential in the
Higgs sector is

Veff = m2
Hu

|Hu|2 +m2
Hd
|Hd|2 −Bµ(HuHd + c.c.) +

g22
2
|H+

u H
0∗
d +H0

uH
−∗
d |2 +

+
1

8
(g22 +

3

5
g21)
(
|H0

u|2 − |H0
d |2 + |H+

u |2 − |H−
d |2
)2

+ V MSSM
CW + . . . (5.13)

Here ‘. . .’ includes irrelevant operators suppressed by inverse powers of hΛS which can be
safely ignored, and corrections from the microscopic theory –they are negligible by the ar-
guments given in [11]. It is convenient to introduce the shorthand notation

λ0 ≡
1

4
(g22 +

3

5
g21) (5.14)

for the tree level Higgs quartic coupling, while λ is reserved for the quartic coupling containing
quantum effects (to be discussed below). Here g1 is the U(1) ⊂ SU(5)GUT gauge coupling,
related to the conventional hypercharge coupling as g′2 = 3

5
g21.

In the present analysis, the running masses of the heavy composites can be taken to be
constant; the running of the Yukawa couplings can be similarly neglected. This is a rather
good approximation and simplifies many of the formulae. Solving the whole system of one
loop RGEs, we have checked numerically the consistency of this approximation; these effects
are taken into account in the computations leading to the results of §6.

Clearly, the main changes occur for the TeV scale elementary masses. Our composite
spectrum has two characteristic features that may affect the RG evolution considerably:

• Heavy first and second generation sfermions that enter into the β-functions of Hu and
third generation sfermions via Yukawa couplings, β ∝ y2im

2
Q̃i
. While such Yukawas

are parametrically smaller than yt and yb, these effects are still important because
mQ̃i

≫ mQ̃3
(i = 1, 2). Such contributions decrease the masses of the elementary

particles.
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• A hybrid Higgs sector with m2
Hd

≫ m2
Hu

; this induces a one-loop FI term for U(1)Y ,

S = Tr(Y m2) = m2
Hu

−m2
Hd

+
∑

i

(m2
q̃,i − 2m2

ũ,i +m2
d̃,i

−m2
l̃,i
+m2

ẽ,i) ∼ −m2
Hd

(5.15)

In the RGEs, this contribution increases the masses of fields with positive hypercharge
(and vice-versa). The usual sum rule Tr(Y m2) = 0 is violated and there are strong
effects on the third generation sleptons. See also the related discussion in [18].

First, we show in Appendix B that composite fields give small contributions to the running
of mHu

and the squark masses, which is dominated by the third generation elementary
fields. The RG running due to the composite fields alone changes m2

Hu
(t) marginally, while

it contributes to a small decrease of the squark masses (e.g. by ∼ 1% for ũ3). Explicit results
at the top scale are shown below.

On the other hand, the running of the third generation slepton masses receives large
corrections from the composite fields. This effect is especially important for the soft mass
m2
l̃,3
, whose β-function can be approximated by

8π2
dm2

l̃,3

dt
≈ y2l,33(m

2
Hd

+m2
l̃,3
+m2

ẽ,3)−
3

5
g21M

2
1 −3g22M

2
2 −

3

10
g21S+ y2l,32(m

2
Hd

+m2
ẽ,2) . (5.16)

Now all the loop effects from composites decrease this mass squared. Evaluating it at the
scale of the MSSM composites mCW , the condition to avoid a tachyonic slepton requires

ml̃3
(0) & 10−2mCW . (5.17)

Equivalently, we find a lower bound on the stop mass at the messenger scale,

mq̃,3(0) &
mCW

10
. (5.18)

In other words, the requirement of a non-tachyonic elementary slepton implies that the stop
cannot be much lighter than 2TeV in our composite model.13

Notice that the strong RG effects on the elementary slepton are a direct consequence
of the compositeness of the first SM generations and Hd. These parametrically heavy fields
decreasem2

l̃,3
through both inter-generational mixing and a large U(1)Y FI term. For the right

handed slepton, effects from composite fields are also important but smaller, because now
there is a partial cancellation between the contributions from off-diagonal Yukawa couplings
and the U(1)Y FI term. This generically results in an increase of the mass when flowing to
the TeV scale.

13The authors of [40] obtained a lower bound on the stop from two loop effects of heavy first and second
generations; in a general scenario, this restricts the possibility of solving the flavor problem by decoupling.
In our composite models such bound is less restrictive than (5.18), which comes primarily from having a
composite Higgs. Indeed, in the absence of a composite Higgs, the bound is closer to mq̃,3(0) ∼ mCW /50.
The flavor problem is solved as explained in [4].
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5.3.1 Finite effects from composites

At the scale mCW the MSSM composites are integrated out following §5.2. First, since
m2
Hd

≫ m2
Hu

, Hd can be simply integrated out by imposing its equation of motion from
Eq. (5.13),

H0
d

H∗0
u

≈ Bµ

m2
Hd

(5.19)

valid to lowest order in Hd/Hu. In our conventions Bµ is positive and, in what follows, the
phases of the Higgs VEVs are rotated away. Therefore, we see that the “direction” of EWSB,

tan β =
vu
vd

, vu ≡ 〈H0
u〉 , vd ≡ 〈H0

d〉 (5.20)

is determined at the scale of the composites to be

tanβ =
m2
Hd

Bµ
∼ λd
λu

≫ 1 . (5.21)

This agrees with the result of Eq. (3.6). Note that, though the Bµ term generated at the
messenger scale induces a mixing between Hd and Hu, the fact that m2

Hd
≫ Bµ means that

the heavy Higgs eigenstates are essentially aligned with Hd, which can then be integrated
out.

One loop effects from composite fields produce a finite shift to the Higgs mass (analogous
to (5.11)), and leave the quartic coupling unchanged –see Eq. (5.10). The Coleman Weinberg
contributions to the effective Higgs potential at the threshold due to the composite fields are

VCW ⊃
(
−
B2
µ

m2
Hd

+
3

8π2

[
1

20
g21m

2
Hd

− y2u,22m
2
q̃,2

])
|Hu|2 +O(|H|6) , (5.22)

where all the objects are evaluated at mCW (roughly, the average mass of the composite
fields). The contribution from Q̃2 is subdominant compared to the effect from Hd; however,
the analogous effect for the stop will be important. Even smaller terms from first genera-
tion particles are not shown. In the theory below the threshold, the coefficient of |Hu|2 in
Eq. (5.22) is absorbed into the tree-level parameter m2

Hu
at the scale mCW ,

m2
Hu

(m2
CW ) = m2

Hu
−

B2
µ

m2
Hd

+
3

8π2

[
1

20
g21m

2
Hd

− y2u,22m
2
q̃,2

]∣∣∣∣
Q2=m2

CW

. (5.23)

We see that the dominant contribution to the shift of the Higgs mass comes in fact from
Bµ/m

2
Hd
. The β-functions for m2

Hu
and the other soft parameters of the theory below the

threshold are obtained by dropping the contributions of the composites to the MSSM RGEs,
while the β-function for the quartic coupling is modified as in Eq. (5.12).
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5.4 Integrating out the stop and EWSB

At this stage the effective theory contains Hu, third generation sfermions and gauginos,
plus the SM matter. The RG evolution and CW corrections are given by the well-known
loop effects from third generation particles; gaugino contributions are small. The dominant
contributions of the third generation particles to the CW potential at a scale Q are

VCW (Q) ⊃ − 3

8π2
(yu,33mq̃,3)

2

(
1− log

m2
q̃,3

Q2

)
|Hu|2 +

3

16π2
y4u,33 log

m2
q̃,3

Q2
|Hu|4 +

− 3

16π2
y4u,33|Hu|4

(
log

y2u,33|Hu|2
Q2

− 3

2

)
. (5.24)

The first term is the familiar negative shift of the Higgs mass produced by the stop, while
the term in the second line comes from loop diagrams with the top quark; A-terms have
been neglected. See also [36].

Integrating out the stop/sbottom at Q = mq̃,3 produces

m2
Hu

(mq̃,3) = m2
Hu

(mq̃,3)−
3

8π2
(yu,33mq̃,3)

2 . (5.25)

The tree-level parameter λ does not receive threshold contributions, though its running
changes below Q = mq̃,3 due to the Q-dependent logarithm in the quartic term in Eq. (5.24),

βλ → βλ −
3y4t
8π2

, (5.26)

a known result in the MSSM decoupling limit. After decoupling the squarks of the third
generation, there remains the threshold of the gauginos. Their finite one loop corrections are
negligible, so that their decoupling is simply implemented by a change in the β-functions.

Finally we have gathered all the necessary results to study the breaking of SU(2)×U(1)
at the top scale mt ≈ yu,33 vu. Minimizing the effective potential

Veff ≈ m2
Hu

|Hu|2 +
λ

2
|Hu|4 −

3

16π2
m4
t

(
log

m2
t

Q2
− 3

2

)
(5.27)

and evaluating at Q = mt yields

λ(mt) v
2
u = −m2

Hu
(mt)−

3

8π2
y2u,33m

2
t . (5.28)

The resulting expectation value is real due to the absence of phases in the soft parameters.
This EWSB condition is key in relating the microscopic parameters to known physics at the
top scale. Indeed, following the RG evolution and the threshold corrections of the parameters
m2
Hu

and λ from the messenger scale down to the top scale (as described above), the Higgs
VEV vu is calculated in terms of the high energy parameters, and we have to search for ranges
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that yield the correct vu ∼ 174GeV. Furthermore, recalling that the Yukawa couplings are
fixed in the UV theory (at the scale Mflavor), tan β in Eq. (5.21) is determined in terms of
the bottom mass.

Let us summarize how m2
Hu

(mt) and λ(mt) are calculated. The Higgs mass parameter is
expressed in terms of the messenger scale parameters by

m2
Hu

(t) =
∑

i

∂m2
Hu

(t)

∂m2
i (0)

m2
i (0) , (5.29)

where the soft parameters m2
i (0) are functions of (hΛS, x, λu, h) that were described in §5.1.

Solving Eq. (B.1) along the different energy ranges and adding up the finite corrections
reveals that the dominant contributions are: a) dynamical, from the Bµ term in Eq. (5.22);
and b) radiative, from stop effects. Other contributions are subleading.

More precisely, the Higgs mass in terms of the magnetic superpotential parameters be-
comes

m2
Hu

(t) ≈ (hΛS)
2

8π2

(
λ2u

(
cHu

V̂ cw
HuH∗

u
+ cBµ

(V̂ cw
HuHd

)2

V̂ cw
HdH

∗

d

)
+ V̂ cw

HdH
∗

d
(h2cq̃,2 + λ2dcHd

)+ (5.30)

+
1

2
fgm

[
cHu

∑

a

CHu

a α2
a + cq̃,3

∑

a

Cq,3
a α2

a + cũ,3
∑

a

Cu,3
a α2

a

]
+

1

2
(xfλ)

2(cM3
α2
3 + cM2

α2
2)

)
.

Here ci ≡ ∂m2
Hu

(t)/∂m2
i (0) and all the running objects are evaluated at t ∼ log mt/(hΛS).

This makes explicit the dependence on the microscopic parameters. For instance, for

hΛS ∼ 200 TeV , µφ ∼ 0.7 TeV , h ∼ λd ∼ 1 , λu ∼ 0.1 (5.31)

the second derivatives are of order

cHu
∼ 0.78 , cBµ

∼ −0.85 , cq̃,2 ∼ −2 × 10−3 , cHd
∼ 3× 10−3

cq̃,3 ∼ −0.16 , cũ,3 ∼ −0.12 , cM3
∼ −0.05 , cM2

∼ 0.1 . (5.32)

In figure 2 the RG evolution for m2
Hu

is shown. The parameters are the same that give rise
to the spectrum in figure 1. Notice that there are three thresholds, where m2

Hu
receives finite

corrections, with the largest contribution coming from the composite fields (5.23). In the
first two segments of the evolution from the messenger scale Q = hΛS to the stop scale the
slopes are almost equal, which reflects the fact that the running is dominated by the third
generation, and the effects of the composites are small.

With the help of the result (5.30), in the next section we will find realistic EWSB vacua
in the range (5.31), where all the relevant terms contributing to m2

Hu
are of the same order of

magnitude. As we discuss in Appendix C, this will grant that EWSB occurs quite naturally.

The quartic coupling is calculated starting from the tree level coupling λ0 and solving
the modified β-functions (as in Eq. (5.26)):

λ(mt) ≈ λ0 −
3

8π2
y4u,33 log

m2
t

m2
q̃,3

. (5.33)
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Figure 2: RG evolution for m2
Hu

.
.

Contributions from the MSSM composites are negligible. Using this, the one loop mass of
the light physical Higgs (predominantly Re(H0

u)) is

mh(mt)
2 ∼ 2λ(mt)v

2 , (5.34)

(also, see e.g. [41, 42, 43]). Our model has a stop around 3TeV, yielding a neutral Higgs
around 140GeV. Higher loop effects (not taken into account here) tend to decrease this
value. The full spectrum and low energy predictions are discussed next.

6 Low energy phenomenology

In §5 we have already outlined general properties of the low-energy physics that we expect in
our model. This section presents results for the spectrum from direct numerical calculations,
solving the coupled RGEs in the step-wise procedure, and including finite effects, running of
Yukawas and decoupling of heavy particles at various thresholds. We stress that these are
one loop results (certain higher loop effects are also included, when they can be resummed
into one loop contributions in the effective potential). A more detailed two loop analysis is
postponed to a future work.

We also perform a scan of the allowed parameter space under some simplifying assump-
tions explained below. The NLSP (at the one loop level) is found in different energy ranges,
and the results are presented in theM1−µ plane, figure 4, which may be used for comparison
with projected exclusion plots from Tevatron and (future) LHC searches [44].
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6.1 Characteristics of the spectrum

Let us begin by summarizing the main features of the spectrum:

• Composites (i.e. first and second generation sfermions and Hd) have masses

m2
Q̃i

∼ m2
Hd

∼ m2
CW ∼ h2

16π2
(hΛS)

2 . (6.1)

• Elementaries (i.e. third generation sfermions and Hu) have masses generated from
standard gauge-mediation at two-loops,

(
g2

16π2

)2

(hΛS)
2 .

• Gauginos and higgsinos have masses proportional to µφ.

First, there is an inverted hierarchy, with the first two generation squarks and sleptons
being much heavier than their counterparts from the third generation. For parameter ranges
explored here, these masses are of order 10− 20 TeV. Also, from the hierarchy m2

Hd
≫ m2

Hu
,

the Higgs scalar eigenstates (A0, H±, H0) are much heavier than h0 and have masses of the
same order as the other composites. Ignoring such heavy particles, two detailed sample
spectra are shown in figure 3, for tan β = 10 in two parameter regimes, where the NLSP is
neutralino and sneutrino, respectively14. The parameter choices for these cases are

χ̃0
1 NLSP : λd ≈ h ≈ 1.4 , ΛS ≈ 180TeV , µφ ≈ 0.7TeV , λu ≈ 0.27

ν̃ NLSP : λd ≈ h ≈ 1.4 , ΛS ≈ 240TeV , µφ ≈ 0.9TeV , λu ≈ 0.27 .
(6.2)

Higher loop effects could give important corrections, particularly in the case of the sneutrino
NLSP (see discussion below).

Let us now focus on the fermion masses. It is possible to choose the microscopic param-
eters such that both gaugino and higgsino masses are real and positive, so there are no CP
violating effects. (We remind the reader that we work in the usual convention where 〈H0

u〉,
〈H0

d〉 and Bµ are real and positive.)

The suppression factor λu, coming from a dimension 5 operator in the electric theory,
implies that in general the NLSP is mostly higgsino. There are however, certain parameter
regimes where the sneutrino becomes the NLSP, in agreement with the analysis of Eq. (5.16),
(5.17). In these cases there is also a slightly heavier stau. Some comments about fine-tuning
in this setup can be found in Appendix C.

14The complete spectrum for the higgsino NLSP case is shown in figure 1.
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Figure 3: Sample spectra focusing on the masses around 1TeV, for tanβ ∼ 10 with higgsino
NLSP and tanβ ∼ 10 with sneutrino NLSP.
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6.2 Parameter space and NLSP

In order to understand the range of predictions of the model, it is important to systematically
scan the parameter space. A full analysis of the parameter ranges is left for the future; here
we restrict to the case h ≈ hi ≈ λd. Then the input parameters at the messenger scale are

λd , hΛS , λu and µφ . (6.3)

The first consistency condition is the absence of tachyons; as explained around Eq. (5.17),
these could come primarily from light third generation fields. This implies that h cannot be
much larger than one. Next, predicting the correct EWSB vacuum can be used to fix the
messenger mass hΛS in terms of the other parameters. This relation follows from Eqs. (5.28)
and (5.30).

Furthermore, the top and bottom mass ratio fixes a relation between tanβ and the
Yukawa couplings. In scanning the parameter space it is useful to keep the Yukawas, and
thus tanβ fixed. Given the approximate relation Eq. (5.21), λd can be eliminated in favour
of λu. This motivates scanning the parameter space in terms of λu and µφ alone, for a given
value of tan β. The light masses which are most sensitive to such parameters are the higgsino
and bino masses, respectively. So we present our results in the µ-M1 plane.

The parameter scan in figure 4 for tan β = 10 shows four regions in the µ-M1-plane:
the purple region is excluded as there are tachyonic sleptons. The boundary to the right
comes from requiring λu . 0.4. Extending the scan further to the right is possible, but
such larger values would not be generated naturally from the UV electric theory. The blue
region corresponds to models that have consistent EWSB, no tachyons and an NLSP which
is predominantly higgsino-like. We have distinguished the teal region out of the blue region;
this corresponds to models that are consistent with EWSB and that have a neutralino lighter
than 150 GeV. Moving closer to the origin, the bino component of the NLSP becomes larger.
These models could be ruled out by Tevatron [44]. Finally, the thin green region corresponds
to consistent models with sneutrino NLSP.

We see that in most cases the NLSP is mostly higgsino-like, which can be understood
from µ < M1,M2. Writing the lightest neutralino as a linear combination

χ̃0
1 =

4∑

i=1

N1,iψ̃
0
i , where ψ0

i = (B̃, W̃ , ψHu
, ψHd

) . (6.4)

We have |N13|, |N14| > |N11|, |N12|, and the sign of the fourth eigenvalue is sign(N14) < 0
[44] then suggests that the higgsino-like NLSP should decay mostly to Z’s. The detailed
structure of decays and final states depends also on the mass splitting between the lightest
neutralino and chargino.

On the other hand, the case of sneutrino NLSP is also of particular interest, as this is not
easy to realize in perturbative scenarios. For the region of parameters that we studied, and
computing the masses using tree level (soft plus Higgs induced mass terms) and one loop RG
effects, whenever a slepton was the NLSP, it was the sneutrino. This intriguing possibility
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has been recently studied in [45]. This might seem surprising at first sight, because the
gauge mediated slepton mass m2

l̃3
(which determines the sneutrino mass eigenvalue) is larger

than m2
ẽ3 . However, in our case we have strong RG effects from the composite generations,

coming from off-diagonal Yukawas and a large U(1)Y FI term, caused by the composite Hd

–see Eqs. (5.16) and (5.17). This produces an inversion in the hierarchy between m2
l̃3
and

m2
ẽ3
. The sneutrino and the lightest stau mass eigenvalues become similar, the latter turning

a bit heavier due to the leptonic Yukawa coupling and the Higgs D-term contributions.

Since the splitting between these masses ends up being quite small (around 15 GeV),
two loop corrections might become important and could alter the picture; we leave a more
detailed analysis for future work. The running mass eigenvalues –neglecting the running of
the Higgs VEVs– for the same choice of parameters that led to Figs. 1 and 2 are shown in
Fig. 5.

6.3 Concluding remarks

Let us conclude with some brief remarks about our construction and possible future di-
rections. We have argued that SQCD with flavors and an adjoint, plus an appropriate
superpotential, can simultaneously generate dynamically the electroweak scale, explain the
flavor hierarchies (as in [3, 4]) and produce a realistic low energy spectrum. It is rather
intriguing that the complicated structure of the MSSM can originate from a quite simple
microscopic theory.

It is necessary to point out that, since the electric theory is vector-like, it suffers from the
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existence of extra matter near the compositeness scale. We have not addressed this aspect
here, because it does not affect the EW effective theory or the soft parameters. It would be
useful to understand better their role, and to find models where unification occurs naturally.

The theory at the TeV scale also exhibits an interesting phenomenology, which we have
begun to explore in this work. A striking feature is that a small number of microscopic
couplings controls all the soft parameters and EW scale; this produces nontrivial relations
between the MSSM sectors, that can also vary along the parameter space of the model. We
have restricted to the case where the cubic couplings produced by Seiberg duality are all of
the same order of magnitude, hi ∼ λd. New effects are expected away from this subspace.
A more detailed analysis, including possible collider signatures, is left to future work.
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A One loop computations at the messenger scale

The analysis of the one loop effects in the ISS model with quadratic deformation has already
been performed in [19], and the first part of this appendix summarizes these results (with
the addition of background Higgs fields). The second part presents details of the soft term,
and the calculation of the one loop µ-term.

A.1 Single-sector Coleman-Weinberg contributions

We perform, as in [11], a calculation of the contributions to the one-loop Coleman-Weinberg
potential of the heavy messenger fields ρ, ρ̃, Z, Z̃, which allows us to understand the stabiliza-
tion of X and the computation of soft terms for the Higgs fields and composite generations.
Namely, X , the Higgs fields and the composite MSSM generations are treated as background
fields, and the heavy messengers are integrated out.

From Eqs. (3.2) and (4.21), the relevant superpotential terms are

Wmag = tr
(
ρ Z
)(hX + hiΦ

SM
i + λdHd hΛS

hΛS h2µφ + λuHu

)(
ρ̃

Z̃

)
, (A.1)
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giving a field-dependent supersymmetric mass matrix

Mf =

(
hX + hiΦ

SM
i + λdHd hΛS

hΛS h2µφ + λuHu

)
. (A.2)

To simplify our formulae, we absorb the composite generations into X (i.e. hX + hiΦ
SM
i →

hX) since their dependence can be easily restored at the end.

The only background superfield with an F -term is trX . Therefore the bosonic mass
matrix for (ρ, Z) is

M2
b =

(
M †

fMf −h∗F ∗
X

−hFX MfM
†
f

)
, (A.3)

where

−F ∗
X = h

(
−Λ2

S + hµφX 0
0 0

)
. (A.4)

Regrouping the fields as

ψ̂ = ( ψρ ψZ )T
ˆ̃
ψ = ( ψρ̃ ψZ̃ )T φ̂ =

(
ρ Z ρ̃∗ Z̃∗

)T
(A.5)

the mass terms give

Lmass = − ˆ̃
ψMf ψ̂ − h.c.− φ̂†M2

b φ̂ . (A.6)

The messenger mass matrices can be diagonalized by unitary matrices Uf , Ũf and Ub such
that

ψ = Uf ψ̂ ψ̃ = Ũf
ˆ̃
ψ φ = Ubφ̂ (A.7)

where ψ, ψ̃ and φ are messenger mass eigenstates. The quadratic Lagrangian for the mes-
sengers is therefore of the canonical form

Lmess = −
4∑

a=1

φ†
a

(
D2 + m̃2

a

)
φa +

+

2∑

a=1

(
ψ̄aiσ̄

µDµψa +
¯̃
ψaiσ̄

µDµψ̃a −ma(ψ̃aψa +
¯̃
ψaψ̄a)

)
. (A.8)

The fermionic and bosonic mass eigenvalues are

m2 = |hΛS|2 +
1

2
|hX + λdHd|2 +

1

2
|h2µφ + λuHu|2 (A.9)

+
1

2
σ

√
(|hX + λdHd|2 − |h2µφ + λuHu|2)2 + 4|hΛS(hX + λdHd)∗ + (hΛS)∗(h2µφ + λuHu)|2

m̃2 = |hΛS|2 +
1

2
|hX + λdHd|2 +

1

2
|h2µφ + λuHu|2 +

1

2
η|(hΛS)2 − h2µφ(hX + λdHd)|

+
1

2
σ
[ (

|hX + λdHd|2 − |h2µφ + λuHu|2 + η|(hΛS)2 − h2µφ(hX + λdHd)|
)2

+

4|(hΛS)(hX + λdHd)
∗ + (hΛS)

∗(h2µφ + λuHu)|2
]1/2

. (A.10)
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Here σ = ±, η = ±; the fermion masses have multiplicity 4NcÑc and the complex bosons
have multiplicity 2NcÑc. In the main part of the paper we set Ñc = 1.

One loop effects from integrating out the messengers (at their average mass hΛS) give
the effective potential

VCW =
1

32π2

(
4∑

i=1

m̃4
i

(
log

m̃2
i

(hΛS)2
− 3

2

)
− 2

2∑

a=1

m4
a

(
log

m2
a

(hΛS)2
− 3

2

))
. (A.11)

A.2 Bosonic soft terms at the messenger scale

Soft terms are identified by expanding the potential around 〈hX〉 (Eq. (3.11)), while the
VEVs for the Higgs fields are negligible at this stage. For the bosonic fields this gives

VCW (hΛS) = m2
Q̃i

|Q̃i|2 +m2
Hu

|Hu|2 +m2
Hd
|Hd|2 − (BµHuHd + c.c.) (A.12)

− Aiju (Q̃iHuQ̃j)−Aijd (Q̃iHdQ̃j)− A
′ ij
u (Q̃iH

†
dQ̃j)− A

′ ij
d (Q̃iH

†
uQ̃j)− c.c.+ . . . ,

where Q̃i denote the first two composite MSSM generations, arising form the lowest compo-
nents of the superfields ΦSMi in (A.2). Also, ‘. . .’ are quartic and higher order corrections,
which are much smaller than the tree level D-term potential for H .

The soft parameters depend on the X VEV. For µφ = 0, the pseudo-modulus is stabilized
at the origin and the soft terms were given in §2.2; the A-terms vanish in this limit. However,
as explained in §3.2, in this case there is an unbroken R-symmetry that forbids gaugino and
higgsino masses. Switching on the quartic deformation µφ 6= 0 shifts the metastable vacuum
to

〈hX〉 ≈ 8π2

log 4− 1
µ∗
φ . (A.13)

The R-symmetry is both spontaneously and explicitly broken, the first one dominating.

It is convenient to introduce the dimensionless R-symmetry breaking order parameter

x ≡
∣∣∣∣
〈X〉
ΛS

∣∣∣∣ . (A.14)

The mass terms at the messenger scale receive the following corrections to lowest order in x,

m2
Hd

=
λ2d
8π2

(
(log 4− 1)− 1

3
(12 log 2− 7)x2 +O(x4)

)
(hΛS)

2

m2
Hu

=
λ2u
8π2

(
−(1− log 2) +

5

6
(4− 3 log 2)x2 +O(x4)

)
(hΛS)

2

Bµ =
λuλd
8π2

(
(1− log 2)− 2

3
(5− 6 log 2)x2 +O(x4)

)
(hΛS)

2 . (A.15)

CWmasses for the composite generations are obtained fromm2
Hd

by the replacement λd → hi.
For simplicity, in this paper we have focused on the case in which all the trilinear couplings
generated by Seiberg duality are of the same order, namely, λd ∼ hi ∼ h.
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The mass squared for Hu starts tachyonic for small x, but then becomes positive for
x & 0.5. In fact, this is the regime where realistic gaugino and higgsino masses are generated
–these are explained below. For such values of x, the nonlinearities from (A.11) become
important, and higher order terms have to be added to (A.15).

It turns out to be useful to define a dimensionless potential from the one-loop CW
potential (second term in Eq. (4.23)), as follows:

(hΛS)
4

8π2
V̂ cw(h, x) ≡ 1

64π2
Str M4

(
log

M2

(hΛS)2
− 3

2

) ∣∣∣
λd=λu=hi=1

. (A.16)

Here M is the (field-dependent) mass matrix of the messengers. The trilinear couplings
λd, λu, hi are set to one because in future formulae we will indicate the explicit dependence
of V̂ cw –and hence of the soft parameters– on them; this dependence will be given simply by
loop counting factors proportional to λd, λu, hi.

Analogously, the gauge-mediated two loop potential (third term in Eq. (4.23)) can be
written as

V 2−loop
GM = fgm(h, x) (hΛS)

2
∑

i, a

C i
a

(
g2a

16π2

)2

|φi|2 (A.17)

for the light scalars φi, where C
i
a denotes the quadratic Casimir for the group labelled by

a in the corresponding representation of φi. In the limit in which R-symmetry is restored,
fgm(h, 0) ∼ 1 (more precisely, it is proportional to the number of messengers); then it receives
small corrections from nonzero x.

The soft masses are computed from the second derivatives of V̂ cw,

m2
Hd

=
λ2d
8π2

V̂ cw
HdH

∗

d
(h, x) (hΛS)

2

m2
Hu

=
λ2u
8π2

V̂ cw
HuH∗

u
(h, x) (hΛS)

2

Bµ = −λuλd
8π2

V̂ cw
HuHd

(h, x) (hΛS)
2 . (A.18)

Two loop gauge mediated effects are important inm2
Hu

. These were parametrized in Eq. (5.4)
in terms of the dimensionless function fgm(h, x), computed with the help of [32]. fgm is of
order of the number of 5 + 5 messenger pairs, and here corrections from x are not very
important.

Regarding the A-terms, if they are consistent with the tensor product of SU(5)SM rep-

43



resentations, their analytic expressions at small x are

Au =
h2λu
24π2

(6 log 2− 5)xhΛS +O(x2)

Ad =
h2λd
120π2

(41− 60 log 2)x3 hΛS +O(x4)

A′
u =

h2λd
48π2

(12 log 2− 7)xhΛS +O(x2)

A′
d =

3h2λu
160π2

(43− 60 log 2)x3 hΛS +O(x4) . (A.19)

In the example considered in this work, where the messenger fields transform in SU(5)
representations 5 and 5̄, only the Ad and A

′
d trilinear couplings will be nonzero.

A.3 Higgsino and gaugino masses

In this subsection, we briefly discuss the explicit one-loop effects that generate gaugino and
higgsino masses.

The µ term is computed from a one-loop diagram with external fermion legs Hu and Hd,
and with ρ and Z running in the loop. There is a factor of λuλd from the vertices, and also
a factor of hΛS coming from the loop.

Following the notation of the Appendix in [19], the Feynman diagram gives

µ = −λuλd
16π2

2∑

i=1

4∑

j=1

I(m̃j , mi)
(
Ub,j4U

∗
b,j1U

∗
f,i2Ũ

∗
f,i1 + Ub,j3U

∗
b,j2U

∗
f,i1Ũ

∗
f,i2

)
, (A.20)

where

I(m̃j , mk) = mk

[
ln

(
Λ2
cutoff

m2
k

)
−

m̃2
j

m̃2
j −m2

k

ln

(
m̃2
j

m2
k

)]
. (A.21)

The one loop µ term is finite, independent of the cutoff scale Λcutoff . Evaluating this gives

µ ≈ λuλd
〈hX〉
16π2

≈ λuλd µφ , (A.22)

which vanishes in the limit in which the U(1)R is unbroken. This can be understood from
the R-charge assignments of Eq. (2.17).

Gaugino masses are computed again from one-loop diagrams with scalar and fermion
messenger fields ρ, Z running the loop. Quoting [19], for a strongly coupled sector with a
trivial magnetic group,

mλ = − 2g2

16π2

2∑

c=1

2∑

d=1

4∑

j=1

2∑

k=1

(U∗
f )kc (Ũ

∗
f )k,d (Ub)jc (U

∗
b )j,d+2 I[m̃j , mk] ∼ g2µφ. (A.23)

As expected, they are proportional to the R-symmetry breaking parameter µφ.
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B Quantum effects from MSSM fields

In this appendix we present some formulae used in the computation of quantum effects below
the messenger scale, produced by loops of MSSM fields. This includes corrections calculated
from Eq. (5.7), as well as from the RG flow. We also estimate the size of the two-loop effects
on the light soft masses.

The fields that dominate the Higgs-dependent contributions to the effective potential
are, from Eq. (5.7), those with larger soft masses and/or stronger couplings to the Higgs in
their mass matrices. Since the first two generations have extremely heavy soft masses, their
contributions to VCW are important (actually, the second generation dominates).

Analogously, the heavy neutral and charged Higgs mass eigenvalues have to be taken into
account. In the third generation, it suffices to consider the squark, sbottom and top quark.
Effects from A-terms are subdominant: for the composite generations they are much smaller
than the other soft masses, while for the elementary third generation they are generated
through gauge mediation and hence negligible. Finite effects from off-diagonal Yukawa cou-
plings are also very small, and will not be included; they will be taken into account in the
running of the couplings.

For instance, the Higgs-dependent mass of q̃L in the generation i reads

m2
q̃,i,L = m2

q̃,i + y2u,ii|H0
u|2 +

1

4

(
g22 −

1

5
g21

)(
|H0

d |2 − |H0
u|2
)
,

where m2
q̃,i is the soft mass and yu,ii is the corresponding diagonal element in the Yukawa

matrix. The Hd-dependent term in this mass introduces quantum corrections to the down-
type Higgs parameters. However, since this composite Higgs has quite a heavy mass of the
order of mCW , it can in practice be neglected. On the other hand, the Hu-dependent mass
term gives large contributions, as we have discussed in §5 and §6. The other sparticle masses
may be found in e.g. [49].

B.1 One loop MSSM β-functions

For completeness, we reproduce below the one loop MSSM REGs for the soft parameters,
including inter-generational mixing, but ignoring A-terms. These are taken from [39]; here
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t = log(Q/hΛS), Q being the renormalization scale:

dµ

dt
=

µ

8π2

(
− 3

5
g21 − 3g22 + tr(y2l + 3y2d + 3y2u)

)
,

dBµ

dt
=

µ2

16π2

(
− 3

5
g21M1 − 3g22M2

)
+
Bµ

8π2

(
− 3

5
g21 − 3g22 + tr(y2l + 3y2d + 3y2u)

)
,

dm2
Hu

dt
=

1

8π2

(
−3

5
g21M

2
1 − 3g22M

2
2 +

3

10
g21S + 3

∑

ij

y2u,ij(m
2
Hu

+m2
q̃,i +m2

ũ,j)

+2µ2

(
−3

5
g21 − 3g22 + tr(y2l + 3y2d + 3y2u)

))
,

dm2
Hd

dt
=

1

8π2

(
−3

5
g21M

2
1 − 3g22M

2
2 − 3

10
g21S + 3

∑

ij

y2d,ij(m
2
Hd

+m2
q̃,i +m2

d̃,j
)

+
∑

ij

y2L,ij(m
2
Hd

+m2
l̃,i
+m2

ẽ,j) + 2µ2

(
−3

5
g21 − 3g22 + tr(y2l + 3y2d + 3y2u)

))
,

dm2
q̃,i

dt
=

1

8π2

(
− 1

15
g21M

2
1 − 3g22M

2
2 − 16

3
g23M

2
3 +

1

10
g21S +

∑

j

[y2u,ij(m
2
Hu

+m2
q̃,i +m2

ũ,j)

+ y2d,ij(m
2
Hd

+m2
q̃,i +m2

d̃,j
)]
)
,

dm2
ũ,i

dt
=

1

8π2

(
− 16

15
g21M

2
1 − 16

3
g23M

2
3 − 2

5
g21S + 2

∑

j

y2u,ji(m
2
Hu

+m2
ũ,i +m2

q̃,j)
)
,

dm2
d̃,i

dt
=

1

8π2

(
− 4

15
g21M

2
1 − 16

3
g23M

2
3 +

1

5
g21S + 2

∑

j

y2d,ji(m
2
Hd

+m2
d̃,i

+m2
q̃,j)
)
,

dm2
l̃,i

dt
=

1

8π2

(
− 3

5
g21M

2
1 − 3g22M

2
2 − 3

10
g21S +

∑

j

y2l,ij(m
2
Hd

+m2
l̃,i
+m2

ẽ,j)
)
,

dm2
ẽ,i

dt
=

1

8π2

(
− 12

5
g21M

2
1 +

3

5
g21S + 2

∑

j

y2l,ji(m
2
Hd

+m2
ẽ,i +m2

l̃,j
)
)
,

where

S = tr(Y m2) = m2
Hu

−m2
Hd

+
∑

i

(m2
q̃,i − 2m2

ũ,i +m2
d̃,i

−m2
l̃,i
+m2

ẽ,i).

The µ-dependent terms in the β-functions of m2
Hu

and m2
Hd

arise because the µ term in
our case corresponds to a higgsino mass, instead of a superpotential parameter. Note that
in the scalar potential (5.13, 5.27) there are no µ-terms appearing.
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Summarizing the approach described in §5, the RG flow to the scale of the top mass is
implemented in a mass-dependent scheme by integrating out particles at their decoupling
thresholds, which requires correcting the RG equations on each energy interval. For the
soft masses, this amounts to dropping the contributions to the beta functions proportional
to the soft masses of the integrated-out particles. In the case of the gauge couplings and
gaugino masses (not shown above), the β-function coefficient is computed at each energy
interval from the general one loop formula for a theory with an arbitrary number of scalar
and fermion multiplets, only counting the fields with masses below the upper threshold.

To illustrate some of the points in §5.3, let us analyze the leading contributions to the
RGEs of Hu and stops,

8π2 dm
2
Hu

dt
≈ 3y2u,33(m

2
Hu

+m2
q̃,3 +m2

ũ,3)−
3

5
g21M

2
1 − 3g22M

2
2 +

3

10
g21S + 3y2u,32(m

2
q̃,2 +m2

ũ,2)

8π2
dm2

q̃,3

dt
≈ y2u,33(m

2
Hu

+m2
q̃,3 +m2

ũ,3)−
1

15
g21M

2
1 − 3g22M

2
2 − 16

3
g23M

2
3 +

+
1

10
g21S + (y2u,32m

2
ũ,2 + y2d,32m

2
d̃,2
) + y2d,33m

2
Hd

8π2
dm2

ũ,3

dt
≈ 2y2u,33(m

2
Hu

+m2
q̃,3 +m2

ũ,3)−
16

15
g21M

2
1 − 16

3
g23M

2
3 − 2

5
g21S + y2u,32m

2
q̃,2 . (B.1)

Contributions from inter-generational mixing with the heavy sfermions, the U(1)Y FI term
and Hd are now manifest.

In the approximation where the heavy masses do not run, this closed system of equations
can be easily diagonalized, yielding analytical expressions for m2

Hu, m
2
q̃,3 and m2

ũ,3 in terms
of the microscopic parameters (hΛS, x, λu, λd). We find that composite fields give small
contributions to the running of m2

Hu
and m2

q̃3
, the reason being a (partial) cancellation of the

effects from S and inter-generational mixing. The effect on m2
ũ3 is slightly larger, but still

at the percent level.

On the other hand, there are strong effects on the running slepton mass, because the
boundary soft mass is smaller, and contributions from S and off-diagonal Yukawas now add
up. This was analyzed in §5.3.

B.2 Two loop effects

In models with heavy first and/or second generations at the multi-TeV scale, it is known
that two loop effects on the light third generation sfermions can become important and in
fact dominate over one loop effects [40]. We now estimate such contributions in our context.

The two loop MSSM RGEs can be found in the second reference of [39]. For example,
the two loop contribution to the beta function for the third generation slepton is (excluding
a factor of 1/(16π2)2)

β
(2)

L̃3

=
621

25
g41M

2
1 +

18

5
g22g

2
1

(
M2

1 +M2M1 +M2
2

)
+ 33g42M

2
2 −

6g21S ′

5
+

3

5
g21σ1 + 3g22σ2 . (B.2)
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Smaller contributions from Yukawas have been neglected, and

S ′ =2

(
2g21
15

+
8g23
3

)
m2
d̃1,2

+
12

5
g21m

2
ẽ1,2

+

(
3g21
10

+
3g22
2

)(
−m2

Hd
− 2m2

L̃1,2

)

+ 2

(
g21
30

+
3g22
2

+
8g23
3

)
m2
q̃1,2

− 2

(
16g21
15

+
16g23
3

)
m2
ũ1,2

σ1 =
1

5
g21

(
2
(
2m2

d̃1,2
+ 6m2

ẽ1,2 + 3m2
L̃1,2

+m2
Q̃1,2

+ 8m2
u1,2

)
+ 3m2

Hd

)

σ2 =g
2
2

(
m2
Hd

+ 2
(
m2
L̃1,2

+ 3m2
q̃1,2

))

σ3 =2g23

(
m2
d̃1,2

+ 2m2
q̃1,2

+m2
ũ1,2

)
.

(B.3)

Here we already made the simplifying assumptions appropriate in our context, that the
first two generations give the dominant contribution and that, approximately their masses
are degenerate. In particular mũ1,2 is the average mass of the first and second generation.

Two loop contributions tend to decrease the soft masses. Evaluating these effects in
our range of parameters (where composites have mass mCW ∼ 10 − 20 TeV), the two loop
correction to the stop squared mass is found to be approximately one order of magnitude
smaller than the one loop effects we have included. These effects are also in general small for
sleptons, except in the regime where the NLSP is the sneutrino. In this case they become
important, and it would be interesting to understand better how they modify the properties
of the NLSP. We leave this for future work.

C Comments about fine-tuning

In our proposal, supersymmetry breaking and EWSB have a unified origin, so it is interesting
to understand how sensitive the vacuum vu ∼ 174GeV is to changes in the microscopic
parameters (denoted below by ‘a’). The basic naturalness criterion, given for instance in [46],
is that

∆(M2
Z) ≡

∣∣∣∣
a

M2
Z

∂M2
Z

∂a

∣∣∣∣ (C.1)

should not be too large. (We refer the reader to [47] for a bottom-up analysis of tuning over
the MSSM parameter space, and for references.)

This places upper bounds on the masses of heavy superpartners, so the first worry is that
heavy composite generations require un-naturally large cancellations. However, this is not
the case because the Higgs mass is quite insensitive to quantum effects from such particles;
this was found in [12, 13], and can be seen directly from the smallness of the coefficient cq̃,2
in (5.30). This equation also shows that m2

Hu
is quite insensitive to the heavy Higgs as well

–in fact, there are partial cancellations between both effects. Composite masses of the order
10− 20TeV give a (mild) fine-tuning of order 10%.
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The Higgs VEV is most sensitive to the masses of the stop and Hu. Naively, having
a stop around 3TeV, as is the case in many of the examples above, leads to a fine tuning
generally much larger than a part in 100. However, this low energy estimate is not completely
correct, because the soft masses at the TeV scale are correlated, all being determined by a
few microscopic parameters (hΛS , x , λu , h). This tends to reduce the amount of fine-tuning.
Furthermore, the solution (5.30) reveals that the influence of the stop is somewhat smaller
than expected. The total fine-tuning measure in the range of (5.31) is slightly below the
percent level, so that the model is somewhat tuned. The underlying reason for this is the
rather strong assumption that a single-sector dynamics be simultaneously responsible for the
EW scale, soft parameters and flavor textures.
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