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Recently, angle-resolved photoemission spectroscopy (ARPES) has revealed a dispersion anomaly
at high binding energy near 0.3-0.5 eV in various families of the high-temperature superconductors.
For further studies of this anomaly we present a new two—dimensional fitting-scheme and apply it
to high-statistics ARPES data of the strongly-overdoped BizSr2CuQOg cuprate superconductor. The
procedure allows us to extract the self-energy in an extended energy and momentum range. It is
found that the spectral function of BizSroCuOg can be parameterized using a small set of tight-
binding parameters and a weakly-momentum-dependent self-energy up to 0.7 eV in binding energy
and over the entire first Brillouin zone. Moreover the analysis gives an estimate of the momentum
dependence of the matrix element, a quantity, which is often neglected in ARPES analyses.

PACS numbers: 74.72.Jb, 74.72.Hs, 79.60.-i, 78.20.Bh

I. INTRODUCTION

quantities of interest, most notably the self-energy. An

Angle-resolved photoemission spectroscopy (ARPES)
has been an excellent tool for studying many-body inter-
actions in two-dimensional strongly-correlated systems!.
Recently, ARPES studies revealed a new energy scale in
the form of a large dispersion anomaly near 0.3-0.5 eV
below Er, seen in various families of cuprates, at a wide
range of doping and measuring conditions (e.g. photon
energy)?2456.78  Given its phenomenological behavior,
this anomaly could be important to understand the na-
ture of high-temperature superconductivity. However, its
origin is still under debate?:3:4:2:6.7.8,9,10,11,12,13,14,15

From earlier study, this energy scale is in the range
where the J scale coherent band is split from the ¢ scale
incoherent electronic structure structure due to Mott-
Hubbard physicst®. Newer data seem to suggest that
there is momentum dependence even in the incoherent
part of the electronic state at higher energy, even though
the uncertainty due to matrix element distortion has
been raised!™!8. An interesting question would then be
whether one can take the data in its face value and make
a global analysis in terms of self-energy. This has several
advantages. First, it explores a new ARPES methodol-
ogy to extract and parameterize many body effects in
complex materials. Second, it allows one to make a
comparison with the information extracted from opti-
cal reflectivity measurements®12:20:21 where one would
not expect the same kind of matrix element effects as in
ARPES. This would be a good consistency check. Last, it
will help us to gain insights of many-body effect and ma-
trix element effect even in the ARPES context. Such an
approach is non-trivial to implement due to the difficul-
ties encountered with standard data analysis techniques,
which can introduce strong artifacts in the extracted

improved quantitative analysis of the experimental data
would undoubtedly help to advance our understanding.

It is a technical challenge to extract the spectral func-
tion, which contains the information of the interactions,
from ARPES data. The main problem is the lack of gen-
eral analytic expressions for individual momentum dis-
tribution curves (MDCs) or energy distribution curves
(EDCs). Non-Lorentzian MDC peak shapes are common
even in simple situations, e.g. in the case of non-linearly
dispersing bands. Emnergy distribution curves are even
more delicate to analyze since their precise shape is de-
termined by the energy dependence of the self-energy, i.e.
the quantity that should be extracted from the analysis.
Further complications arise from the finite instrumental
energy and momentum resolution, low-counting statis-
tics, or matrix element effects. All these complications
cause discrepancies between the commonly used MDC or
EDC analyzes, which become, particularly pronounced
at high binding energy®2. Different problems arise in
the other important regime near the Fermi level where
the feature of interest (e.g. the scattering rate near the
Fermi level) are comparable in width to the instrumen-
tal resolution. In this case, one needs to estimate the
combined effect of energy and momentum resolution on
a single EDC or MDC, which can only be done approxi-
mately or by restricting the self-energy to simple analytic
forms22:23,

In this paper we introduce a new two-dimensional (2D)
analysis scheme, which allows us to extract an empir-
ical spectral function of a strongly interacting system
over an extended energy range. The method is applied
to high-statistics ARPES data from strongly-overdoped
BigaSraCuOg (Bi2201) single crystals. The feature of in-
terest will be the high-energy anomaly around 0.3-0.5
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eV. We will not concern ourselves with the low energy
anomaly or "kink” (0.03-0.09¢V), which can be highly
momentum dependent?4. Since the width of the high-
energy anomaly is large compared to the experimental
resolution, we will neglect the influence of instrumental
broadening. Our analysis qualitatively reproduces all the
basic features seen in both MDC and EDC analysis and
shows that the spectral function of Bi2201 can be empiri-
cally parameterized by a simple and compact set of tight-
binding parameters fitted to local-density-approximation
(LDA) calculations and a weakly momentum-dependent
self-energy. Further, this extracted self-energy is in rea-
sonable agreement with the one extracted from optical
reflectivity measurement?. This finding provides a new
approach to understanding many-body effects beyond the
narrow energy range around the Fermi level which has
traditionally been the focus of ARPES studies.

We have selected strongly-overdoped Pb-substituted
Bi2201 for this study for several reasons: (a) in the over-
doped regime, there is no complication from pseudogap
behavior near the antinodal region or from polaronic be-
havior; hence the 2D analysis can be applied to the whole
Brillouin Zone (BZ); (b) bi-layer splitting effects are ab-
sent in this single-layer cuprate and superlattice effects
are largely suppressed by the Pb content; (c) measure-
ments at low temperature, where thermal broadening is
small, are not complicated by the effects of the supercon-
ducting gap.

II. EXPERIMENT

We have measured single crystals of Pb-substituted
Bi2201. The overdoped (OD) samples with composition,
Pby.38Bi1.74511.88CuOgt5, are non-superconducting (T,
< 4 K). ARPES data were collected on a Scienta R4000
electron energy analyzer at the Advanced Light Source
(ALS) with photon energies of 42 and 55 €V and a base
pressure of 4 x 107! torr. This analyzer has the advan-
tage of a large-angle window which can cover the band
dispersion across the entire BZ. Samples were cleaved in
situ in the normal state at the measurement temperature
of 20K. The energy resolution was set to 13-18 meV. The
average momentum resolution at these photon energies
was  0.021 A=! (or 0.35°). The linear polarization of
the light source is fixed to be in-plane along (0,0) to ()
through out the measurement. Note that the fitted ma-
trix element, which will be shown in the following, should
be referred to this particular experimental geometry.

IITI. 2D ANALYSIS

Conventionally, ARPES data from cuprates are ana-
lyzed by fitting large numbers of one-dimensional inten-
sity profiles at constant energy (MDCs) or constant mo-
mentum (EDCs) using simple analytical functions. How-
ever, such an analysis of EDCs or MDCs has limitations

which will be discussed in more detail in Appendix A
(Fig. 5). Attempting to go beyond the conventional EDC
or MDC analysis , we use here a full 2D analysis which
will be explained in the following. Our starting point is
the common expression for the photocurrent within the
sudden approximation?:

I(k,w) = Ik, v,A) f(w)A(k,w) (1)

where Iy(k,v,A) is proportional to the squared one-
electron matrix element and depends on in-plane electron
momentum k, the energy () and polarization (or vector
potential, A) of the incoming photon, f(w) is the Fermi
function. A(k,w) is the single-particle spectral function
that contains all the corrections from the many-body in-
teractions in the form of the self-energy, ¥(k,w),

(—=1/7) ImX(k,w)

Aks) = =T Fos o) + [

where 62 is the bare band dispersion. Note that we have
neglected the instrumental resolution in Eq. 1.

This form is intrinsically multi-dimensional. Given
that ARPES data are collected with most modern spec-
trometers in parallel as a function of energy and one mo-
mentum coordinate, it appears to be an artificial oversim-
plification to analyze the data by fitting single line pro-
files. Instead, the analysis presented below is an attempt
to fit ARPES data at once in 2D images. This analysis
assumes a simple form of the bare band dispersion given
by a tight-binding approximation of LDA calculations?.
For simplicity , we will also assume weak momentum de-
pendence of the self-energy (i.e. over a sufficiently small
k space range, X(k,w) — 3(w)) where in the next sec-
tion, we will show that this is a reasonable assumption.
However, our analysis does not assume any particular
form of the self-energy and the matrix element. This is
achieved by assigning an individual fit parameter for real
and imaginary part of the self-energy to every measured
energy point and a fit parameter for the matrix element
to every momentum point.

This is illustrated in Fig. 1 showing an image plot of
the fitted intensity together with the values of the fit-
ting parameters for the self-energy (¥) and matrix ele-
ment (Io(k,v, A)). The bare dispersion €2 derived from
LDA is shown as solid line. Starting with an ARPES im-
age of 154 by 140 data points in momentum and energy
respectively, the least-square fit of this Fig. 1 includes
154 parameters for each k point for the matrix element,
140 parameters for each energy point of Im¥ and ReX,
and a few additional parameters for an overall intensity
and background, i.e. a total of about 440 parameters.
This number seems high, but it is justifiable given that
the number of data points is much larger. In the above
example, we have 140 x 154 = 21560 data points corre-
sponding to about 50 points per parameter. Fitting a
single MDC with a Lorentzian on a constant background
requires more parameters per data-point.

We stress again that this 2D analysis on Bi2201 will
focus on the high-energy anomaly whose energy scale of
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FIG. 1: (Color online) a) Image plot of the fitted intensity
from the 2D analysis of ARPES data of OD Bi2201 along the
nodal direction (0,0) to (mw,7) where the solid line shows a
bare dispersion derived from LDA. b) The fitting parameters
for real and imaginary parts of self-energy. c) The fitting
parameters for the matrix element.

0.3-0.5eV is larger than the energy resolution. We will
not focus on the energy scales below 0.1 eV where it has
been shown that the self-energy is strongly momentum
dependent?*. We also note that Kramers-Kronig consis-
tency of the self-energy is not implemented in the fitting
procedure. This will be discussed in more detail in Ap-
pendix B.

IV. RESULTS
A. Extracting Spectral Function and Self-energy

We now apply the 2D analysis to several k-space cuts
as shown in Fig. 2. The ARPES experimental data are
shown in the first row (Fig. 2(a)-2(c)), taken with photon
energy 42 eV. We deliberately choose the spectra which
would be difficult to analyze by MDC or EDC analysis
alone because they have regions where EDC (see, cut
a) and MDC (see, cut c¢) peaks are not be well-defined.
We then apply the 2D analysis on these data using the
following tight binding description of the bare dispersion:
E(k) = —2t[cos(kya) + cos(kyb)] — 4t' cos(kga)cos(k,b) —
2t" [cos(2kza) + cos(2kyb)] — Ep where t = 0.435,t =
—0.1,t” = 0.038, and Er = —0.5231 eV223. Since the
background is small (~5% of the spectral intensity at kr)
and flat in this chosen energy range (EDCs are shown
in Fig. 1(c) of Ref.3), we use a constant energy-and-

momentum-independent background for this particular
data.

The corresponding fits are very well in agreement as
shown in the second row (Fig. 2(d)-2(f)) while MDCs of
the fit and the raw data are shown in the third row (Fig.
2(g)-2(i)). From this 2D analysis, we then extract the
spectral function (A(k,w)) which is shown in Fig. 2(j)-
2(1). These plots of extracted spectral function do not
contain the matrix elements anymore but still show the
high-energy dispersion anomaly. Further, the optics ma-
trix element effect is different and much weaker and an
extracted self-energy of the same Bi2201 sample obtained
from optical reflectivity measurement shows a reasonable
agreement??. The above analysis as well as the consis-
tency with optics suggests that there is a real many body
anomaly in the energy range. We should note that al-
though we agree that matrix element effects may distort
the spectral line shape (e.g. the difference between Fig.
2(a)-2(c) and 2(j)-2(1), respectively), they can hardly ex-
plain the high-energy anomaly as put forward by Ref1&.
Possibly, the effects observed and discussed there are in-
fluenced in a non-negligible way by multi-band effects
known in Bi2212 and YBCO.

The self-energies (X) extracted by the 2D analysis in
Fig. 2(m) and 2(n) show only weak momentum depen-
dence over the most relevant energy range. Pronounced
differences between the three cuts shown in Fig. 2 are
only found at energies below the band bottom. How-
ever, these parts of the self-energies (see grey symbols in
Fig. 2(m) and 2(n)) should not be overestimated as they
will not contribute much spectral weight to the spectra.
Hence, the ARPES data of this OD Bi2201 system can
approximately be parameterized in a simple form using
tight-binding parameters and the self-energy along the
nodal direction without losing much information of the
spectral weight distribution throughout energy and mo-
mentum space. Therefore, we can calculated a good ap-
proximation of the full 3D intensity distribution from this
information as shown in Fig. 2(0).

This is intriguing finding that the information of the
ARPES spectra of the OD Bi2201 system throughout the
BZ can be much deduced into a very simple and compact
set of tight-binding parameters and a weakly-momentum
dependent self-energy. Given its simplicity, we believe
that this finding will reveal us more of the nature of
the interactions in cuprates, especially of the high-energy

anomaly23:4:5.6.15

B. Matrix Element Effect

Although the matrix element effect is known to exist
in ARPES measurement2®, matrix elements are often ne-
glected in the analysis of ARPES data, whereas they are
naturally embedded in the presented 2D analysis. This
uniquely allows one to separate the spectral function from
matrix element effects as demonstrated in Fig. 2(j)-2(1).
The behavior of the matrix elements, as obtained from
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FIG. 2: (Color online) On the first row, a)-c) are the experimental ARPES data along momentum direction as indicated by the
band shown in bottom right. On the second row, d)-f) are the corresponding image plots of the fitted intensity from the 2D
analysis. The thicker color dashed lines are the dispersions generated from the tight-binding parameters from LDA calculation
(LDA) given above. The solid color lines are the matrix elements (ME) obtained from the 2D analysis where the smaller white
dashed lines are the empirically guessed form of the matrix element in the form of a cosine function (COS). On the third row,
g)-i) are the MDCs of raw data (black dots) and corresponding image plot of the fitted intensity (blue line). Taken out the
matrix element effect and background, j)-1) are the corresponding extracted spectral function (A(k,w)) from the 2D analysis.
m) and n) are the extracted real and imaginary parts of the self-energy in Eq. 2 for the cuts a, b and c; the extracted values
are plotted in colors up to the energy not far from the bottom of the bare band (up to 0.6 €V for cut b and 0.25 eV for cut
¢) and in grey at higher energy. o) shows the band structure generated from the tight-binding parameters and the self-energy
along the nodal direction.
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FIG. 3: (Color online) a) shows the experimental Fermi sur-
face map of OD Bi2201 where the light polarization, E, is
along the nodal direction, I' — Y. b) shows the Fermi sur-
face map which is constructed from the extracted spectral
function and the empirical guessed matrix element.

Kx

our analysis is shown in arbitrary units at the bottom
of Fig. 2(d)-2(f) by solid colored lines. The line shape
of the extracted matrix element are usually smooth in
the region of |k| < kp but will get noisy outside the
Fermi surface. This can be explained by the following.
In the region outside kg, there is not much of the spec-
tral weight to be fitted and hence, we emphasize that only
in region of |k| < kp, the extracting of matrix element
should be counted. As shown in Fig. 2(d)-2(f), the ex-
tracted matrix elements in the |k| < kp region show simi-
lar line shape. Here, we empirically guess the form of the
matrix element to be in the form of a(1 — cos(2k - as))/2
where 3 is the direction of the light propagating vector
(perpendicular to the polarization, £') and « is an arbi-
trary constant along §; these empirical forms are shown
as the white dash lines on top of the extracted matrix
elements.

As a cross test of our analysis, we construct the Fermi
surface using the extracted spectral function and the em-
pirical form of the matrix element with o« = 1. In Fig. 3,
we compare this constructed Fermi surface of OD Bi2201
(Fig. 3(b)) to the experimental data (Fig. 3(a)). The
one-step model calculation by Mans et. al. for Bi2212
system2? shows a similar intensity distribution. Although
this empirical form of the matrix element may be over-
simplified, some of main features (e.g. the suppression of
the intensity along I' — Y") could already be captured by
this form.

C. Comparison of Data Measured at Two Different
Photon Energies

To check further on the robustness of the 2D analysis,
we perform ARPES measurement with a second photon
energy (55 eV) (Fig. 4), taken on a different sample and
compare them with the 42 eV data shown in Fig. 2 and
3. A clear difference in intensity modulation of Fermi
surface maps with these two photon energies is evident

(A2) (Rv -

Matrix Element (a.u.)
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FIG. 4: (Color online) Measured at photon energy, E, = 55
eV, a) shows the experimental ARPES data along (0,0) to
(w,m) direction as indicated in f) where the dash line shows
the tight-binding band from LDA calculation used as bare dis-
persion. b) shows the corresponding extracted spectral func-
tion (A(k,w)) from the 2D analysis. c) show the extracted
matrix elements of the data taken at E, = 55 eV (solid line)
and 42 eV (dash line) where the areas under the graphs be-
tween k < |kr| are normalized to be the same. d) and e) are
the extracted ReX and Im>X of the data taken at E, = 55 eV
(solid line) and 42 eV (dash line). f) shows the Fermi surface
map.

from a comparison of Fig. 3(a) and 4(f). We then ap-
ply the 2D analysis on this 55 eV data. As shown in
Fig. 4(c), the extracted matrix element of 55 eV data
(solid line) looks different in curvature from the 42 eV
data as expected from the different appearance of the
two Fermi surface maps. And, as shown in Fig. 4(d)
and 4(e), the extracted self-energies of 42 eV and 55 eV
show the same line shape but have slight differences in
energy value, giving the impression of error bar from this
2D analysis. Notice that the comparison of the extracted
Im3 gives better agreement than ReX. We believe that
one possibility might be due to that ReX couples directly
to the k-dependent bare band dispersion €) (see Eq. 2)
and hence a slight misalignment of k space from exper-
iment or any k., dependent effects from different photon
energies?® could cause a larger error bar to the extracted
value of ReX.



V. CONCLUSION

We presented a 2D analysis method for ARPES data,
which allows one to extract self-energies and matrix ele-
ments in more general situations and with much higher
reliability as compared to standard line-by-line analyses.
The method has been applied to high-statistics ARPES
data from strongly overdoped Bi2201. It was found that
the spectral function at high energies is well approxi-
mated over the entire Brillouin zone by a very simple and
compact set of tight-binding parameters and a weakly-
momentum dependent self-energy. We believe that this
method will be useful in the analysis of ARPES data from
many systems and may provide us with more information
for improving understanding of many-body interactions
in cuprates.
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APPENDIX A: MDC AND EDC ANALAYSIS

MDC and EDC analysis is the conventional method to
analyze each one dimensional (1D) spectrum of ARPES
data. For an example, a peak position of an EDC could
represent the band dispersion and its peak width could
represent the scattering rate. However, a common prob-
lem occurring with these analysis is that a good fitting of
an experimental data set cannot be done empirically but
often needs an additional theoretical modeling. To get
a precise fitting of an EDC, or an 1D energy-dependent
spectrum at a fixed momentum, one will need to know
its self-energy as a function of energy (i.e. the quantity
that should be extracted from the analysis). Similarly
for an MDC, one will need to know the matrix element
as a function of momentum. Therefore, when the ma-
trix element effect is pronounced or the self-energy is
strongly energy dependent, fitting an MDC or EDC with
a simple function (e.g. Lorenztian) will not give a good
agreement. Note that the implementation of Kramers-
Kronig transformation on self-energy can help to avoid
having assumption on the self-energy form and make it
empirical??3?. However, such transformation has limita-
tion and requires the spectrum from —oo to +oc in energy
while clean data in doped cuprates can only be obtained
from Fermi level up to around half of band width in bind-
ing energy before complications from valance bands come
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FIG. 5: (Color online) a) shows the real (solid line) and imag-
inary (dash line) parts of self-energy used to construct the
spectral image shown in b). In Fig. b), we compare the
MDC-peak (fine dash line) and EDC-peak (medium-size dash
line) dispersions with the input band dispersion (solid line).
We note that ReX and Im¥. shown in a) satisfy the Kramers-
Kronig relation where the diamond and circle symbols repre-
sent extracted real and imaginary parts of self-energy, respec-
tively from Fig. 2(m) and 2(n) of cut a.

n=.

As shown in Fig. 5, to compare the MDC and EDC
peak dispersions, we have constructed ARPES data (Fig.
5(b)) from the generated Kramers-Kronig satisfied self-
energy in Fig. 5(a) and the same matrix element as used
in Fig. 3(b). To generate this self-energy in Fig. 5(a),
we start out with our extracted self-energy of the nodal
spectrum (cut a) in Fig 2(m) and 2(n) and then we extend
it in an arbitrary but Kramers-Kronig consistant way.
Given that all information is known, the solution of poles
(w— e — ReX(w) = 0) can be traced precisely as shown
in Fig. 5(b). Although MDC and EDC peak dispersions
show agreement for small binding energy less than 0.3 eV,
the discrepancy is large at energy above the high-energy
anomaly (> 0.3 eV.) In Fig. 5, where the band is very
dispersive, EDC analysis fails to track the band since the
EDC peak is not well-defined. On the other hand (not
shown), when the band is shallow (e.g. Fig. 2(c)), MDC
peak dispersion may fail to describe the band dispersion
(discussed also in Ref.5.)



APPENDIX B: KRAMERS-KRONIG RELATION

From Eq. 2, by causality, the real and imaginary part
of self-energy are related by Kramers-Kronig relations. In
principle, if the full spectral function A(k,w) is known,
one could perform an inversion to obtain the full self-
energy using the Kramers-Kronig transformation22:30,
However, such transformation has limitations and re-
quires the spectrum from —oo to 400 in energy. Un-
fortunately, clean ARPES data from doped cuprates can
usually be obtained from Fermi level to around half of
the band width where complication of valance bands will
come in3.

Attempting to use the Kramers-Kronig transformation
on self-energy of doped-cuprate data is then required
to have a cut-off/extension model at energies above
the existing data points3!. However a cut-off/extension
model is difficult to be justified and the result can vary
substantively, depending on the cut-off/extension model
used. For example, with a certain assumption of cut-

off /extension model, Ref1® claims that the self-energy
extracted by using LDA as a bare band cannot satisfy
Kramer-Kronig relation. In contradiction to the claim,
here, by extending the self-energy in arbitrary form but
still having similar line shape as calculations from Ref9
ort? Fig. 5(a) shows that our self-energy extracted by us-
ing LDA could satisfy Kramer-Kronig condition. In con-
clusion, given the limitation of obtaining the whole band
of doped cuprates, the implementation of Kramer-Kronig
relation is not possible without a further assumption (e.g.
cut-off /extension model) while it is found that such as-
sumption on cut-off/extension model can be highly sen-
sitive and difficult to be justified.

With the above reason, instead of attempting to im-
plement Kramers-Kronig condition in our analysis, we
obtain self-energy by using LDA as a reference of the
bare band. By this way, in principle, a self-energy ob-
tained from 2D analysis will at least be same from one
to another ARPES measurement if referring to LDA cal-
culation which is a robust and mature technique.
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