Observation of the $\Upsilon\left(1^{3} D_{J}\right)$ bottomonium state through decays to $\pi^{+} \pi^{-} \Upsilon(1 S)$

P. del Amo Sanchez, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ E. Prencipe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ M. Martinelli ${ }^{a b},{ }^{3}$ A. Palano ${ }^{a b},{ }^{3}$ M. Pappagallo ${ }^{a b},{ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ B. Hooberman, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Lynch, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ T. Tanabe, ${ }^{5}$ C. M. Hawkes, ${ }^{6}$ A. T. Watson, ${ }^{6}$ H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$ D. J. Asgeirsson, ${ }^{8}$ C. Hearty, ${ }^{8}$ T. S. Mattison, ${ }^{8}$ J. A. McKenna, ${ }^{8}$ A. Khan, ${ }^{9}$ A. Randle-Conde, ${ }^{9}$ V. E. Blinov, ${ }^{10}$ A. R. Buzykaev, ${ }^{10}$ V. P. Druzhinin, ${ }^{10}$ V. B. Golubev, ${ }^{10}$ A. P. Onuchin, ${ }^{10}$ S. I. Serednyakov, ${ }^{10}$ Yu. I. Skovpen, ${ }^{10}$ E. P. Solodov, ${ }^{10}$ K. Yu. Todyshev, ${ }^{10}$ A. N. Yushkov, ${ }^{10}$ M. Bondioli, ${ }^{11}$ S. Curry, ${ }^{11}$ D. Kirkby, ${ }^{11}$ A. J. Lankford, ${ }^{11}$ M. Mandelkern, ${ }^{11}$ E. C. Martin, ${ }^{11}$ D. P. Stoker,,11 H. Atmacan, ${ }^{12}$ J. W. Gary, ${ }^{12}$ F. Liu, ${ }^{12}$ O. Long, ${ }^{12}$ G. M. Vitug, ${ }^{12}$ C. Campagnari, ${ }^{13}$ T. M. Hong, ${ }^{13}$ D. Kovalskyi, ${ }^{13}$ J. D. Richman, ${ }^{13}$ A. M. Eisner, ${ }^{14}$ C. A. Heusch, ${ }^{14}$ J. Kroseberg, ${ }^{14}$ W. S. Lockman, ${ }^{14}$ A. J. Martinez, ${ }^{14}$ T. Schalk, ${ }^{14}$ B. A. Schumm,,14 A. Seiden, ${ }^{14}$ L. O. Winstrom, ${ }^{14}$ C. H. Cheng, ${ }^{15}$ D. A. Doll, ${ }^{15}$ B. Echenard, ${ }^{15}$ D. G. Hitlin, ${ }^{15}$ P. Ongmongkolkul, ${ }^{15}$ F. C. Porter, ${ }^{15}$ A. Y. Rakitin, ${ }^{15}$ R. Andreassen, ${ }^{16}$ M. S. Dubrovin, ${ }^{16}$ G. Mancinelli, ${ }^{16}$ B. T. Meadows, ${ }^{16}$ M. D. Sokoloff, ${ }^{16}$ P. C. Bloom, ${ }^{17}$ W. T. Ford, ${ }^{17}$ A. Gaz,,${ }^{17}$ J. F. Hirschauer, ${ }^{17}$ M. Nagel, ${ }^{17}$ U. Nauenberg, ${ }^{17}$ J. G. Smith, ${ }^{17}$ S. R. Wagner, ${ }^{17}$ R. Ayad, ${ }^{18, *}$ W. H. Toki, ${ }^{18}$ T. M. Karbach, ${ }^{19}$ J. Merkel, ${ }^{19}$ A. Petzold, ${ }^{19}$ B. Spaan, ${ }^{19}$ K. Wacker, ${ }^{19}$ M. J. Kobel, ${ }^{20}$ K. R. Schubert, ${ }^{20}$ R. Schwierz, ${ }^{20}$ D. Bernard, ${ }^{21}$ M. Verderi, ${ }^{21}$ P. J. Clark,,22 S. Playfer, ${ }^{22}$ J. E. Watson, ${ }^{22}$ M. Andreotti ${ }^{a b},{ }^{23}$ D. Bettoni ${ }^{a},{ }^{23}$ C. Bozzi ${ }^{a},{ }^{23}$ R. Calabrese ${ }^{a b},{ }^{23}$ A. Cecchi ${ }^{a b},{ }^{23}$ G. Cibinetto ${ }^{a b},{ }^{23}$ E. Fioravanti ${ }^{a b},{ }^{23}$ P. Franchini ${ }^{a b},{ }^{23}$ E. Luppi ${ }^{a b},{ }^{23}$ M. Munerato ${ }^{a b},{ }^{23}$ M. Negrini ${ }^{a b}$, ${ }^{23}$ A. Petrella ${ }^{a b},{ }^{23}$ L. Piemontese ${ }^{a},{ }^{23}$ R. Baldini-Ferroli, ${ }^{24}$ A. Calcaterra, ${ }^{24}$ R. de Sangro, ${ }^{24}$ G. Finocchiaro, ${ }^{24}$ M. Nicolaci, ${ }^{24}$ S. Pacetti,,24 P. Patteri, ${ }^{24}$ I. M. Peruzzi, ${ }^{24, \dagger}$ M. Piccolo, ${ }^{24}$ M. Rama, ${ }^{24}$ A. Zallo, ${ }^{24}$ R. Contri ${ }^{a b},{ }^{25}$ E. Guido ${ }^{a b},{ }^{25}$ M. Lo Vetere ${ }^{a b},{ }^{25}$ M. R. Monge ${ }^{a b},{ }^{25}$ S. Passaggio ${ }^{a},{ }^{25}$ C. Patrignani ${ }^{a b},{ }^{25}$ E. Robutti ${ }^{a},{ }^{25}$ S. Tosi ${ }^{a b},{ }^{25}$ B. Bhuyan, ${ }^{26}$ M. Morii, ${ }^{27}$ A. Adametz, ${ }^{28}$ J. Marks, ${ }^{28}$ S. Schenk, ${ }^{28}$ U. Uwer, ${ }^{28}$ F. U. Bernlochner, ${ }^{29}$ H. M. Lacker, ${ }^{29}$ T. Lueck, ${ }^{29}$ A. Volk, ${ }^{29}$ P. D. Dauncey, ${ }^{30}$ M. Tibbetts, ${ }^{30}$ P. K. Behera, ${ }^{31}$ U. Mallik, ${ }^{31}$ C. Chen, ${ }^{32}$ J. Cochran, ${ }^{32}$ H. B. Crawley, ${ }^{32}$ L. Dong, ${ }^{32}$ W. T. Meyer, ${ }^{32}$ S. Prell, ${ }^{32}$ E. I. Rosenberg, ${ }^{32}$ A. E. Rubin, ${ }^{32}$ Y. Y. Gao, ${ }^{33}$ A. V. Gritsan, ${ }^{33}$ Z. J. Guo, ${ }^{33}$ N. Arnaud, ${ }^{34}$ M. Davier, ${ }^{34}$ D. Derkach, ${ }^{34}$ J. Firmino da Costa, ${ }^{34}$ G. Grosdidier, ${ }^{34}$ F. Le Diberder, ${ }^{34}$ A. M. Lutz, ${ }^{34}$ B. Malaescu, ${ }^{34}$ A. Perez, ${ }^{34}$ P. Roudeau, ${ }^{34}$ M. H. Schune, ${ }^{34}$ J. Serrano, ${ }^{34}$ V. Sordini, ${ }^{34, \ddagger}$ A. Stocchi, ${ }^{34}$ L. Wang, ${ }^{34}$ G. Wormser, ${ }^{34}$ D. J. Lange, ${ }^{35}$ D. M. Wright, ${ }^{35}$ I. Bingham, ${ }^{36}$ J. P. Burke, ${ }^{36}$ C. A. Chavez, ${ }^{36}$ J. P. Coleman, ${ }^{36}$ J. R. Fry, ${ }^{36}$ E. Gabathuler, ${ }^{36}$ R. Gamet, ${ }^{36}$ D. E. Hutchcroft, ${ }^{36}$ D. J. Payne, ${ }^{36}$ C. Touramanis, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ F. Di Lodovico, ${ }^{37}$ R. Sacco, ${ }^{37}$ M. Sigamani, ${ }^{37}$ G. Cowan, ${ }^{38}$ S. Paramesvaran, ${ }^{38}$ A. C. Wren, ${ }^{38}$ D. N. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ A. G. Denig, ${ }^{40}$ M. Fritsch, ${ }^{40}$ W. Gradl, ${ }^{40}$ A. Hafner, ${ }^{40}$ K. E. Alwyn, ${ }^{41}$ D. Bailey, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ G. Jackson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ T. J. West, ${ }^{41}$ J. Anderson, ${ }^{42}$ R. Cenci, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Simi, ${ }^{42}$ J. M. Tuggle, ${ }^{42}$ C. Dallapiccola, ${ }^{43}$ E. Salvati, ${ }^{43}$ R. Cowan, ${ }^{44}$ D. Dujmic, ${ }^{44}$ P. H. Fisher, ${ }^{44}$ G. Sciolla, ${ }^{44}$ M. Zhao, ${ }^{44}$ D. Lindemann, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ M. Schram, ${ }^{45}$ P. Biassoni ${ }^{a b},{ }^{46}$ A. Lazzaro ${ }^{a b},{ }^{46}$ V. Lombardo ${ }^{a},{ }^{46}$ F. Palombo ${ }^{a b},{ }^{46}$ S. Stracka ${ }^{a b},{ }^{46}$ L. Cremaldi, ${ }^{47}$ R. Godang, ${ }^{47,}{ }^{\S}$ R. Kroeger, ${ }^{47}$ P. Sonnek, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ X. Nguyen, ${ }^{48}$ M. Simard, ${ }^{48}$ P. Taras, ${ }^{48}$ G. De Nardo ${ }^{a b},{ }^{49}$ D. Monorchio ${ }^{a b},{ }^{49}$ G. Onorato ${ }^{a b},{ }^{49}$ C. Sciacca ${ }^{a b},{ }^{49}$ G. Raven, ${ }^{50}$ H. L. Snoek, ${ }^{50}$ C. P. Jessop, ${ }^{51}$ K. J. Knoepfel, ${ }^{51}$ J. M. LoSecco, ${ }^{51}$ W. F. Wang, ${ }^{51}$ L. A. Corwin, ${ }^{52}$ K. Honscheid,,${ }^{52}$ R. Kass, ${ }^{52}$ J. P. Morris,,${ }^{52}$ A. M. Rahimi, ${ }^{52}$ N. L. Blount,,${ }^{53}$ J. Brau, ${ }^{53}$ R. Frey, ${ }^{53}$ O. Igonkina,,${ }^{53}$ J. A. Kolb,,${ }^{53}$ R. Rahmat, ${ }^{53}$ N. B. Sinev, ${ }^{53}$ D. Strom, ${ }^{53}$ J. Strube, ${ }^{53}$ E. Torrence, ${ }^{53}$ G. Castelli ${ }^{a b}$, ${ }^{54}$ E. Feltresi ${ }^{a b},{ }^{54}$ N. Gagliardi ${ }^{a b},{ }^{54}$ M. Margoni ${ }^{a b},{ }^{54}$ M. Morandin ${ }^{a},{ }^{54}$ M. Posocco ${ }^{a},{ }^{54}$ M. Rotondo ${ }^{a},{ }^{54}$ F. Simonetto ${ }^{a b},{ }^{54}$ R. Stroili ${ }^{a b},{ }^{54}$ E. Ben-Haim,,${ }^{55}$ G. R. Bonneaud, ${ }^{55}$ H. Briand, ${ }^{55}$ G. Calderini, ${ }^{55}$ J. Chauveau, ${ }^{55}$ O. Hamon, ${ }^{55}$ Ph. Leruste, ${ }^{55}$ G. Marchiori, ${ }^{55}$ J. Ocariz, ${ }^{55}$ J. Prendki, ${ }^{55}$ S. Sitt, ${ }^{55}$ M. Biasini ${ }^{a b},{ }^{56}$ E. Manoni ${ }^{a b},{ }^{56}$ C. Angelini ${ }^{a b},{ }^{57}$ G. Batignani ${ }^{a b},{ }^{57}$ S. Bettarini ${ }^{a b},{ }^{57}$ M. Carpinelli ${ }^{a b},{ }^{57}, ~ \llbracket ~$
G. Casarosa ${ }^{a b},{ }^{57}$ A. Cervelli ${ }^{a b},{ }^{57}$ F. Forti ${ }^{a b},{ }^{57}$ M. A. Giorgi ${ }^{a b},{ }^{57}$ A. Lusiani ${ }^{a c},{ }^{57}$ N. Neri ${ }^{a b},{ }^{57}$ E. Paoloni ${ }^{a b},{ }^{57}$ G. Rizzo ${ }^{a b},{ }^{57}$ J. J. Walsh ${ }^{a},{ }^{57}$ D. Lopes Pegna, ${ }^{58}$ C. Lu, ${ }^{58}$ J. Olsen, ${ }^{58}$ A. J. S. Smith, ${ }^{58}$ A. V. Telnov, ${ }^{58}$ F. Anulli ${ }^{a},{ }^{59}$ E. Baracchini ${ }^{a b},{ }^{59}$ G. Cavoto ${ }^{a},{ }^{59}$ R. Faccini ${ }^{a b},{ }^{59}$ F. Ferrarotto ${ }^{a},{ }^{59}$ F. Ferroni ${ }^{a b},{ }^{59}$ M. Gaspero ${ }^{a b},{ }^{59}$ L. Li Gioi ${ }^{a},{ }^{59}$ M. A. Mazzoni ${ }^{a},{ }^{59}$ G. Piredda ${ }^{a},{ }^{59}$ F. Renga ${ }^{a b},{ }^{59}$ M. Ebert, ${ }^{60}$ T. Hartmann, ${ }^{60}$ T. Leddig, ${ }^{60}$ H. Schröder, ${ }^{60}$ R. Waldi, ${ }^{60}$ T. Adye, ${ }^{61}$ B. Franek, ${ }^{61}$ E. O. Olaiya, ${ }^{61}$ F. F. Wilson, ${ }^{61}$ S. Emery, ${ }^{62}$ G. Hamel de Monchenault, ${ }^{62}$ G. Vasseur, ${ }^{62}$ Ch. Yèche, ${ }^{62}$ M. Zito, ${ }^{62}$ M. T. Allen, ${ }^{63}$ D. Aston, ${ }^{63}$ D. J. Bard, ${ }^{63}$ R. Bartoldus, ${ }^{63}$ J. F. Benitez, ${ }^{63}$ C. Cartaro, ${ }^{63}$ M. R. Convery, ${ }^{63}$ J. Dorfan, ${ }^{63}$ G. P. Dubois-Felsmann, ${ }^{63}$ W. Dunwoodie, ${ }^{63}$ R. C. Field, ${ }^{63}$ M. Franco Sevilla, ${ }^{63}$ B. G. Fulsom, ${ }^{63}$ A. M. Gabareen, ${ }^{63}$ M. T. Graham, ${ }^{63}$ P. Grenier, ${ }^{63}$ C. Hast, ${ }^{63}$ W. R. Innes, ${ }^{63}$ M. H. Kelsey, ${ }^{63}$ H. Kim, ${ }^{63}$ P. Kim, ${ }^{63}$ M. L. Kocian, ${ }^{63}$ D. W. G. S. Leith, ${ }^{63}$ S. Li, ${ }^{63}$ B. Lindquist, ${ }^{63}$ S. Luitz, ${ }^{63}$
V. Luth, ${ }^{63}$ H. L. Lynch, ${ }^{63}$ D. B. MacFarlane, ${ }^{63}$ H. Marsiske, ${ }^{63}$ D. R. Muller, ${ }^{63}$ H. Neal,,${ }^{63}$ S. Nelson,,${ }^{63}$
C. P. O'Grady, ${ }^{63}$ I. Ofte, ${ }^{63}$ M. Perl, ${ }^{63}$ T. Pulliam, ${ }^{63}$ B. N. Ratcliff, ${ }^{63}$ A. Roodman, ${ }^{63}$ A. A. Salnikov, ${ }^{63}$ V. Santoro, ${ }^{63}$ R. H. Schindler, ${ }^{63}$ J. Schwiening, ${ }^{63}$ A. Snyder, ${ }^{63}$ D. Su, ${ }^{63}$ M. K. Sullivan, ${ }^{63}$ S. Sun, ${ }^{63}$ K. Suzuki, ${ }^{63}$ J. M. Thompson, ${ }^{63}$ J. Va'vra, ${ }^{63}$ A. P. Wagner, ${ }^{63}$ M. Weaver, ${ }^{63}$ C. A. West, ${ }^{63}$ W. J. Wisniewski, ${ }^{63}$ M. Wittgen, ${ }^{63}$ D. H. Wright, ${ }^{63}$ H. W. Wulsin, ${ }^{63}$ A. K. Yarritu, ${ }^{63}$ C. C. Young, ${ }^{63}$ V. Ziegler, ${ }^{63}$ X. R. Chen, ${ }^{64}$ W. Park, ${ }^{64}$ M. V. Purohit, ${ }^{64}$ R. M. White, ${ }^{64}$ J. R. Wilson, ${ }^{64}$ S. J. Sekula, ${ }^{65}$ M. Bellis, ${ }^{66}$ P. R. Burchat, ${ }^{66}$ A. J. Edwards, ${ }^{66}$ T. S. Miyashita, ${ }^{66}$ S. Ahmed, ${ }^{67}$ M. S. Alam, ${ }^{67}$ J. A. Ernst, ${ }^{67}$ B. Pan, ${ }^{67}$ M. A. Saeed, ${ }^{67}$ S. B. Zain, ${ }^{67}$ N. Guttman, ${ }^{68}$ A. Soffer, ${ }^{68}$ P. Lund,,69 S. M. Spanier, ${ }^{69}$ R. Eckmann, ${ }^{70}$ J. L. Ritchie, ${ }^{70}$ A. M. Ruland, ${ }^{70}$ C. J. Schilling, ${ }^{70}$ R. F. Schwitters, ${ }^{70}$ B. C. Wray, ${ }^{70}$ J. M. Izen, ${ }^{71}$ X. C. Lou, ${ }^{71}$ F. Bianchi ${ }^{a b},{ }^{72}$ D. Gamba ${ }^{a b},{ }^{72}$ M. Pelliccioni ${ }^{a b},{ }^{72}$ M. Bomben ${ }^{a b},{ }^{73}$ L. Lanceri ${ }^{a b},{ }^{73}$ L. Vitale ${ }^{a b},{ }^{73}$ N. Lopez-March, ${ }^{74}$ F. Martinez-Vidal, ${ }^{74}$ D. A. Milanes, ${ }^{74}$ A. Oyanguren, ${ }^{74}$ J. Albert, ${ }^{75}$ Sw. Banerjee, ${ }^{75}$ H. H. F. Choi, ${ }^{75}$ K. Hamano, ${ }^{75}$ G. J. King, ${ }^{75}$ R. Kowalewski, ${ }^{75}$ M. J. Lewczuk, ${ }^{75}$ I. M. Nugent, ${ }^{75}$ J. M. Roney, ${ }^{75}$ R. J. Sobie, ${ }^{75}$ T. J. Gershon, ${ }^{76}$ P. F. Harrison, ${ }^{76}$ J. Ilic, ${ }^{76}$ T. E. Latham, ${ }^{76}$ E. M. T. Puccio, ${ }^{76}$ H. R. Band, ${ }^{77}$ X. Chen, ${ }^{77}$ S. Dasu, ${ }^{77}$ K. T. Flood, ${ }^{77}$ Y. Pan, ${ }^{77}$ R. Prepost, ${ }^{77}$ C. O. Vuosalo, ${ }^{77}$ and S. L. Wu ${ }^{77}$ (The BABAR Collaboration)
${ }^{1}$ Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ INFN Sezione di Bari ${ }^{a}$; Dipartimento di Fisica, Università di Bari ${ }^{b}$, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{9}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{10}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{11}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{12}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{13}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{14}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{15}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{16}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{17}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{18}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{19}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
${ }^{20}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{21}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France ${ }^{22}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{23}$ INFN Sezione di Ferrara ${ }^{a}$; Dipartimento di Fisica, Università di Ferrara ${ }^{b}$, I-44100 Ferrara, Italy
${ }^{24}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{25}$ INFN Sezione di Genova ${ }^{a}$; Dipartimento di Fisica, Università di Genova ${ }^{b}$, I-16146 Genova, Italy
${ }^{26}$ Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India

[^0]${ }^{76}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{77}$ University of Wisconsin, Madison, Wisconsin 53706, USA

Abstract

Based on $122 \times 10^{6} \Upsilon(3 S)$ events collected with the BABAR detector, we have observed the $\Upsilon\left(1^{3} D_{J}\right)$ bottomonium state through the $\Upsilon(3 S) \rightarrow \gamma \gamma \Upsilon\left(1^{3} D_{J}\right) \rightarrow \gamma \gamma \pi^{+} \pi^{-} \Upsilon(1 S)$ decay chain. The significance is 6.2 standard deviations including systematic uncertainties. The mass of the $J=2$ member of the $\Upsilon\left(1^{3} D_{J}\right)$ triplet is determined to be 10164.5 ± 0.8 (stat.) ± 0.5 (syst.) MeV / c^{2}. We use the $\pi^{+} \pi^{-}$invariant mass and decay angular distributions to confirm the consistency of the observed state with the orbital angular momentum and parity assignments of the $\Upsilon\left(1^{3} D_{J}\right)$.

PACS numbers: $13.25 . \mathrm{Hw}, 14.40 . \mathrm{Nd}$, 14.65.Fy

Heavy quark bound states below open flavor thresholds provide a key probe of the interactions between quarks. The mass spectrum and branching fractions of these states can be described by potential models and quantum chromodynamics $[1-3] . S$-wave and P-wave bottomonium $(b \bar{b})$ states were first observed in the 1970s and 1980s. Only recently [4] has a D-wave bottomonium state, the triplet $\Upsilon\left(1^{3} D_{J}\right)$ [5], been observed, where $J=1,2,3$. The separation between the members of the triplet (intrinsic widths about $30 \mathrm{keV} / c^{2}$) is predicted to be on the order of $10 \mathrm{MeV} / c^{2}$ [2]. A single state, interpreted to be the $J=2$ member of the $\Upsilon\left(1^{3} D_{J}\right)$ triplet, was observed [4] by the CLEO Collaboration in the radiative $\Upsilon\left(1^{3} D_{2}\right) \rightarrow \gamma \gamma \Upsilon(1 S)$ decay channel, but the quantum numbers $L, J[5]$ and parity P were not verified.

In this Letter, we report the observation of the $\Upsilon\left(1^{3} D_{J}\right)$ in the hadronic $\pi^{+} \pi^{-} \Upsilon(1 S)$ decay channel. The $\Upsilon(1 S)$ is reconstructed through its decays to $\ell^{+} \ell^{-}(\ell=e$, $\mu)$. The hadronic decay provides better $\Upsilon\left(1^{3} D_{J}\right)$ mass resolution than the radiative decay and allows L, J, and P to be tested through measurement of the angular distributions of the $\pi^{ \pm}$and $\ell^{ \pm}$. The only previous result for the $\Upsilon\left(1^{3} D_{J}\right) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$ channel is the 90% confidence level (CL) branching fraction upper limit $\mathcal{B}_{\Upsilon(3 S) \rightarrow \gamma \gamma \Upsilon\left(1^{3} D_{J}\right)} \times \mathcal{B}_{\Upsilon\left(1^{3} D_{J}\right) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)} \times$ $\mathcal{B}_{\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}}<6.6 \times 10^{-6}[4]$.

The analysis is based on a sample of $(121.8 \pm 1.2) \times 10^{6}$ $\Upsilon(3 S)$ decays collected with the $B A B A R$ detector at the PEP-II asymmetric-energy $e^{+} e^{-}$storage rings at the SLAC National Accelerator Laboratory, corresponding to an integrated luminosity of $28.6 \mathrm{fb}^{-1}$. The $B A B A R$ detector is described elsewhere [6]. Monte Carlo (MC) event samples that include simulation of the detector response are used to determine the signal and background characteristics, optimize selection criteria, and evaluate efficiencies. Pure electric-dipole transitions [7] are assumed when generating radiative decays.

The $\Upsilon\left(1^{3} D_{J}\right)$ in our study are produced through
$\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P) \rightarrow \gamma \gamma \Upsilon\left(1^{3} D_{J}\right)$ transitions, with $J^{\prime}=0,1,2$. To reconstruct the $\Upsilon(3 S) \rightarrow \gamma \gamma \pi^{+} \pi^{-} \ell^{+} \ell^{-}$ final states, we require exactly four charged tracks in an event, two of which are identified as pions with opposite charge and the other two as either an $e^{+} e^{-}$or $\mu^{+} \mu^{-}$ pair. Pion candidates must not be identified as electrons. To reject Bhabha events with bremsstrahlung followed by γ conversions, we require the cosine of the polar angle of the electron with respect to the e^{-}beam direction to satisfy $\cos \theta_{e^{-}}<0.8$ in the laboratory frame. To improve the $e^{ \pm}$energy measurements, up to three photons are combined with $e^{ \pm}$candidates to partially recover bremsstrahlung [8]. The $\Upsilon(1 S)$ candidate is selected by requiring $-0.35<m_{e^{+} e^{-}}-m_{\Upsilon(1 S)}<0.2 \mathrm{GeV} / c^{2}$ or $\left|m_{\mu^{+} \mu^{-}}-m_{\Upsilon(1 S)}\right|<0.2 \mathrm{GeV} / \mathrm{c}^{2}$, where the invariant mass of the lepton pair $m_{\ell^{+} \ell^{-}}$is then constrained to the nominal $\Upsilon(1 S)$ mass value [9]. The pion pair is combined with the $\Upsilon(1 S)$ candidate to form a $\Upsilon\left(1^{3} D_{J}\right)$ candidate (mass resolution $3 \mathrm{MeV} / c^{2}$). To eliminate background from $\gamma \rightarrow e^{+} e^{-}$conversions in which both the e^{+}and e^{-} are misidentified as pions, we reject events with a laboratory $\pi^{+} \pi^{-}$opening angle $\cos \theta_{\pi^{+}, \pi^{-}}$greater than 0.95 if the converted $e^{+} e^{-}$mass is less than $50 \mathrm{MeV} / c^{2}$, and events with a laboratory angle between the $\pi^{+} \pi^{-}$pair and $\ell^{ \pm}$that satisfies $\cos \theta_{\pi^{+} \pi^{-}, \ell^{ \pm}}>0.98$.

Photons from $\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P) \quad\left(\chi_{b J^{\prime}}(2 P) \rightarrow\right.$ $\left.\gamma \Upsilon\left(1^{3} D_{J}\right)\right)$ have energies between 86 and 122 MeV [9] (80 and $117 \mathrm{MeV}[2]$) in the $\Upsilon(3 S)$ center-of-mass (CM) frame, depending on the member of the $\chi_{b J^{\prime}}(2 P)$ (and $\Upsilon\left(1^{3} D_{J}\right)$) triplet. Our resolution for 80 MeV photons is about 6.6 MeV . We require at least two photons in an event: one (the other) with CM energy larger than $70 \mathrm{MeV}(60 \mathrm{MeV})$. Photons from final-state radiation (FSR) are rejected by requiring the cosines of the laboratory angles between the cascade photons and leptons to satisfy $\cos \theta_{\ell, \gamma}<0.98$. In case of multiple cascade photon combinations, we choose the combination that minimizes $\chi^{2}=\sum_{i}\left(E_{\gamma}^{i}-E_{\exp }^{i}\right)^{2} / \sigma_{E_{\gamma}^{i}}^{2}(i=1,2)$, where $E_{\exp }^{i}$ are
the nominal [9] (for $\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P)$) or expected [2] (for $\chi_{b J^{\prime}}(2 P) \rightarrow \gamma \Upsilon\left(1^{3} D_{J}\right)$) photon energies that correspond to one of the six possible $\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P) \rightarrow$ $\gamma \gamma \Upsilon\left(1^{3} D_{J}\right)$ transition paths allowed by angular momentum conservation, with E_{γ}^{i} and $\sigma_{E_{\gamma}^{i}}$ the measured energies and resolutions. The requirements placed on the $\Upsilon(3 S)$ candidate are very loose, so that the final results are not sensitive to the choice of $E_{\exp }^{i}$ within a wide range.

The $\Upsilon\left(1^{3} D_{J}\right)$ candidate is combined with the two photons to form a $\Upsilon(3 S)$ candidate, whose CM momentum is required to be less than $0.3 \mathrm{GeV} / c$. The $\Upsilon(3 S)$ mass is then constrained to its nominal value [9]. The $\Upsilon(3 S)$ laboratory energy (resolution 25 MeV) is required to equal the summed e^{+}and e^{-}beam energies to within 0.1 GeV .

We identify four background categories within our fit interval $10.11<m_{\pi^{+} \pi^{-} \ell^{+} \ell^{-}}<10.28 \mathrm{GeV} / c^{2}: \Upsilon(3 S)$ decays to (I) $\gamma \chi_{b J^{\prime}}(2 P)$ with $\chi_{b J^{\prime}}(2 P) \rightarrow \omega \Upsilon(1 S)$ and $\omega \rightarrow \pi^{+} \pi^{-}\left(\pi^{0}\right)$, (II) $\pi^{+} \pi^{-} \Upsilon(1 S)$ with FSR, (III) $\eta \Upsilon(1 S)$ with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}(\gamma)$, and (IV) $\gamma \gamma \Upsilon(2 S)$ or $\pi^{0} \pi^{0} \Upsilon(2 S)$ with $\Upsilon(2 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$. Categories I and II are the main backgrounds.

An extended unbinned maximum likelihood (ML) fit is applied to the sample of 263 selected events that fall within the fit interval. The ML fit has a component for each of the three $\Upsilon\left(1^{3} D_{J}\right)$ signal states and four background categories. The likelihood function has the form $\mathcal{L}=\exp \left(-\sum_{j} n_{j}\right) \prod_{i=1}^{N}\left[\sum_{j} n_{j} \mathcal{P}_{j}\left(m_{i}\right)\right]$, with N the number of events, n_{j} the yield of component j, \mathcal{P}_{j} the probability density function (PDF) for component j, and m the $\pi^{+} \pi^{-} \ell^{+} \ell^{-}$invariant mass.

The PDFs are derived from MC simulations. Each signal PDF is parameterized by the sum of two Gaussians and a Crystal Ball (CB) function [10]. For background category I, we use the sum of a CB function, which describes the $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events, and two Gaussians, which model the two peaks from $\chi_{b 1,2}(2 P)$ decays to $\omega \Upsilon(1 S)$ with $\omega \rightarrow \pi^{+} \pi^{-}$. A bifurcated Gaussian, a high statistics histogram, and a Gaussian, model the PDFs for background categories II, III, and IV, respectively. A data control sample of $\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P) \rightarrow \gamma \gamma \Upsilon(2 S)$ events with $\Upsilon(2 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$ and $\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}$is used to verify the simulation of the reconstructed $\Upsilon(2 S)$ mass and its resolution and the $\Upsilon(3 S)$ energy. We find the reconstructed $\Upsilon(2 S)$ mass to be shifted downwards by 0.70 ± 0.15 (stat.) MeV / c^{2} compared to its nominal value [9]. We apply this shift as a correction to the fitted $\Upsilon\left(1^{3} D_{J}\right)$ mass results presented below.

Eleven parameters are determined in the fit: the three

FIG. 1: The $\pi^{+} \pi^{-} \ell^{+} \ell^{-}$mass spectrum and fit results. The two peaks near $10.25 \mathrm{GeV} / c^{2}$ arise from $\chi_{b J^{\prime}}(2 P) \rightarrow \omega \Upsilon(1 S)$ background events with $\omega \rightarrow \pi^{+} \pi^{-}$.
signal yields and three masses, the yields of background categories I and II, and - within background category I the $\chi_{b 1}(2 P)$ mass and the relative yields of the $\chi_{b 1}(2 P)$ and $\chi_{b 2}(2 P)$ peaks from $\omega \rightarrow \pi^{+} \pi^{-}$decays. The mass difference between the $\chi_{b 1}(2 P)$ and $\chi_{b 2}(2 P)$ peaks is fixed to its measured value [9]. The yields of background categories III and IV are fixed to their expected values based on the measured branching fractions [9, 11].

Figure 1 shows the $\pi^{+} \pi^{-} \ell^{+} \ell^{-}$mass distribution and fit results. We find $10.6_{-4.9}^{+5.7} \Upsilon\left(1^{3} D_{1}\right), 33.9_{-7.5}^{+8.2} \Upsilon\left(1^{3} D_{2}\right)$, and $9.4_{-5.2}^{+6.2} \Upsilon\left(1^{3} D_{3}\right)$ events, corresponding to $53.8_{-9.5}^{+10.2}$ summed $\Upsilon\left(1^{3} D_{J}\right)$ events. The two fitted background yields agree with MC expectations. The fitted $\chi_{b 1}(2 P)$ mass of 10255.0 ± 0.7 (stat.) MeV / c^{2} agrees with its nominal value [9]. The statistical significance of each $\Upsilon\left(1^{3} D_{J}\right)$ state is given by the square root of the difference between the value of $-2 \ln \mathcal{L}$ for zero signal events and the value at its minimum, with the masses of the other two states held at their fit values. These results are validated with frequentist techniques. Systematics (see below) are included by convoluting \mathcal{L} with a Gaussian whose standard deviation (σ) equals the total systematic uncertainty. The significances of the $\Upsilon\left(1^{3} D_{1}\right), \Upsilon\left(1^{3} D_{2}\right), \Upsilon\left(1^{3} D_{3}\right)$, and summed $\Upsilon\left(1^{3} D_{J}\right)$ observations are 2.0 (1.8), 6.5 (5.8), 1.7 (1.6), and 7.6 (6.2) σ without (with) systematics included, respectively. The significance for the sum of the $J=1$ and 3 states is 2.6 (2.4) σ.

Potential fit biases are evaluated by applying the ML fit to an ensemble of 2000 simulated experiments constructed by randomly extracting events from MC samples, where the numbers of signal and background events and the $\Upsilon\left(1^{3} D_{J}\right)$ masses correspond to those of the fit.

The biases are found to be $1.6 \pm 0.1,-1.8 \pm 0.2,1.0 \pm 0.1$, and 0.7 ± 0.2 events for the $\Upsilon\left(1^{3} D_{1}\right), \Upsilon\left(1^{3} D_{2}\right), \Upsilon\left(1^{3} D_{3}\right)$, and summed $\Upsilon\left(1^{3} D_{J}\right)$ yields, respectively. The fit biases on the masses are negligible. We correct the signal yields by subtracting these biases.

The branching fractions are derived by dividing the bias-corrected signal yields by the selection efficiencies and number $N_{\Upsilon(3 S)}$ of $\Upsilon(3 S)$ events in the initial sample. The efficiencies for the six allowed $\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P) \rightarrow$ $\gamma \gamma \Upsilon\left(1^{3} D_{J}\right)$ paths differ by up to 7.5% and therefore do not factorize, leaving six unknown branching fractions but only three measured signal yields. However, 91.4% of the $\Upsilon(3 S) \rightarrow \gamma \gamma \Upsilon\left(1^{3} D_{1}\right)$ and 88.7% of the $\Upsilon(3 S) \rightarrow \gamma \gamma \Upsilon\left(1^{3} D_{2}\right)$ transitions are predicted [2] to proceed through the $\chi_{b 1}(2 P)$ state, while $\Upsilon(3 S) \rightarrow$ $\gamma \gamma \Upsilon\left(1^{3} D_{3}\right)$ transitions can only proceed through the $\chi_{b 2}(2 P)$. Therefore, we evaluate the branching fractions for the dominant modes only, using the predicted ratios of the branching fractions to account for the non-dominant transitions. The efficiencies of the dominant modes, averaged over the $\Upsilon(1 S) \rightarrow e^{+} e^{-}$and $\mu^{+} \mu^{-}$final states, are $26.7 \pm 0.1 \%, 26.7 \pm 0.1 \%$, and $25.7 \pm 0.2 \%$ for the $\Upsilon\left(1^{3} D_{1}\right), \Upsilon\left(1^{3} D_{2}\right)$, and $\Upsilon\left(1^{3} D_{3}\right)$, respectively.

Multiplicative systematic uncertainties arise from the uncertainty in $N_{\Upsilon(3 S)}(1.0 \%)$ and in the reconstruction efficiencies for tracks (1.4\%), photons (3.0\%), and particle identification (2.0\%). Additive systematic uncertainties originate from the signal PDFs, evaluated by varying the PDF parameters within their uncertainties, background yields, evaluated by varying the background category IV (III) yield by its uncertainties (by $\pm 100 \%$), the fit bias, and the mass calibration based on $\Upsilon(2 S)$ events. The fit bias uncertainties are defined as the quadratic sum of half the biases and their statistical uncertainties. The mass calibration uncertainty is taken to be half the $\Upsilon(2 S)$ mass shift added in quadrature with the $\Upsilon(2 S)$ mass uncertainty [9]. The overall additive uncertainties for the signal yields (masses) are $1.5-2.0$ events ($0.48 \mathrm{MeV} / c^{2}$) and are dominated by the contribution from the background yields ($\Upsilon(2 S)$ mass calibration).

The branching fraction products for the dominant modes $\mathcal{B}_{J^{\prime} J} \equiv \mathcal{B}_{\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P)} \times \mathcal{B}_{\chi_{b J^{\prime}}(2 P) \rightarrow \gamma \Upsilon\left(1^{3} D_{J}\right)} \times$ $\mathcal{B}_{\Upsilon\left(1^{3} D_{J}\right) \rightarrow \pi \pi \Upsilon(1 S)} \times \mathcal{B}_{\Upsilon(1 S) \rightarrow \ell \ell}$ (or the upper limits at 90% CL with systematics included) are, in units of 10^{-7}, $\mathcal{B}_{11}=1.27_{-0.69}^{+0.81} \pm 0.28(<2.50), \mathcal{B}_{12}=4.9_{-1.0}^{+1.1} \pm 0.3$, and $\mathcal{B}_{23}=1.34_{-0.83}^{+0.99} \pm 0.24(<2.80)$.

We determine the $\Upsilon\left(1^{3} D_{2}\right)$ mass to be $10164.5 \pm 0.8 \pm$ $0.5 \mathrm{MeV} / c^{2}$, which is consistent with, and more precise

FIG. 2: (a) The $\pi^{+} \pi^{-}$mass spectrum in the $\Upsilon\left(1^{3} D_{J}\right)$ signal region. The area under each curve equals the number of events. (b,c) Distributions in the $\Upsilon\left(1^{3} D_{2}\right)$ signal region of (b) the angle χ between the $\pi^{+} \pi^{-}$and $\ell^{+} \ell^{-}$planes, and (c) the π^{+}helicity angle. The uncertainties include both statistical and systematic terms.
than, the result 10161.1 ± 0.6 (stat.) ± 1.6 (syst.) $\mathrm{MeV} / \mathrm{c}^{2}$ from CLEO [4]. For completeness, we also report the corresponding mass values for the $\Upsilon\left(1^{3} D_{1}\right)$ and $\Upsilon\left(1^{3} D_{3}\right)$ peaks in our fit, which are $10151.6_{-1.4}^{+1.3} \pm 0.5$ and $10172.9 \pm$ $1.7 \pm 0.5 \mathrm{MeV} / c^{2}$, respectively.

From the $\Upsilon(3 S) \rightarrow \gamma \chi_{b J^{\prime}}(2 P)$ branching fractions and uncertainties [9] and $\chi_{b J^{\prime}}(2 P) \rightarrow \gamma \Upsilon\left(1^{3} D_{J}\right)$ branching fraction predictions [2] we determine $\mathcal{B}\left[\Upsilon\left(1^{3} D_{J}\right) \rightarrow\right.$ $\left.\pi^{+} \pi^{-} \Upsilon(1 S)\right]$ (or 90% CL upper limits including systematics) to be $0.42_{-0.23}^{+0.27} \pm 0.10 \%(<0.82 \%)$ for the $\Upsilon\left(1^{3} D_{1}\right)$, $0.66{ }_{-0.14}^{+0.15} \pm 0.06 \%$ for the $\Upsilon\left(1^{3} D_{2}\right)$, and $0.29_{-0.18}^{+0.22} \pm 0.06 \%$ $(<0.62 \%)$ for the $\Upsilon\left(1^{3} D_{3}\right)$.

Figure 2(a) shows the $\pi^{+} \pi^{-}$mass distribution for events in the $\Upsilon\left(1^{3} D_{J}\right)$ signal region $10.140<$ $m_{\pi^{+} \pi^{-} \ell^{+} \ell^{-}}<10.178 \mathrm{GeV} / c^{2}$ after subtraction of the backgrounds using the estimates from the ML fit. The data are corrected for mass-dependent efficiency variations. Shown in comparison are the expectations for the decay of a $D[12], S[12]$, or ${ }^{1} P_{1}[13]$ bottomonium state to $\pi^{+} \pi^{-} \Upsilon(1 S)$. The resulting χ^{2} probabilities of 84.6%, 3.1%, and 0.3%, respectively, strongly favor the D state.

The distribution of the angle χ between the $\ell^{+} \ell^{-}$and $\pi^{+} \pi^{-}$planes in the $\Upsilon\left(1^{3} D_{J}\right)$ rest frame, for events in the $\Upsilon\left(1^{3} D_{2}\right)$ signal region $10.155<m_{\pi^{+} \pi^{-} \ell^{+} \ell^{-}}<10.168$ GeV / c^{2}, is shown in Fig. 2(b). The data are corrected for background and efficiency. The χ distribution is expected to have the form $1+\beta \cos 2 \chi$ with $\operatorname{sign}(\beta)=(-1)^{J} P[14]$, where P is the parity. A fit to the data yields $\beta=-0.41 \pm$ 0.29 (stat.) ± 0.10 (syst.), consistent with the expected assignments $J=2$ and $P=-1$.

The background-subtracted, efficiency-corrected distribution of the helicity angle θ_{π}, for events in the $\Upsilon\left(1^{3} D_{2}\right)$ signal region, is shown in Fig. 2(c), where θ_{π}
is the angle of the π^{+}in the $\pi^{+} \pi^{-}$rest frame with respect to the boost from the $\Upsilon\left(1^{3} D_{2}\right)$ frame. For D-state decays to $\pi^{+} \pi^{-} \Upsilon(1 S), \theta_{\pi}$ follows a $1+\frac{\xi}{2}\left(3 \cos ^{2} \theta_{\pi}-1\right)$ distribution, where ξ is a dynamical parameter to be determined experimentally. For S-state decays, the θ_{π} distribution is flat $(\xi=0)$. A fit to data yields $\xi=$ -1.0 ± 0.4 (stat.) ± 0.1 (syst.), disfavoring the S state.

In summary, we have observed the $\Upsilon\left(1^{3} D_{J}\right)$ bottomonium states through decays to $\pi^{+} \pi^{-} \Upsilon(1 S)$. The significance is 6.2σ. We improve the measurement of the $\Upsilon\left(1^{3} D_{2}\right)$ mass and determine the $\Upsilon\left(1^{3} D_{J}\right) \rightarrow$ $\pi^{+} \pi^{-} \Upsilon(1 S)$ branching fractions or set upper limits. We use the $\pi^{+} \pi^{-}$invariant mass, the angle between the $\pi^{+} \pi^{-}$and $\ell^{+} \ell^{-}$planes, and the π^{+}helicity angle, to confirm the consistency of the observed state with $L=2$ for the $\Upsilon\left(1^{3} D_{J}\right)$, and $J=2$ and parity $P=-1$ for the dominant member of the triplet $\Upsilon\left(1^{3} D_{2}\right)$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[^1]\dagger Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\ddagger Also with Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{\S}$ Now at University of South Alabama, Mobile, Alabama 36688, USA
ฯ Also with Università di Sassari, Sassari, Italy
[1] N. Brambilla et al., arXiv:hep-ph/0412158; Y.-P. Kuang, Front. Phys. China 1, 19 (2006).
[2] W. Kwong and J. L. Rosner, Phys. Rev. D 38, 279 (1988).
[3] C. T. H. Davies et al., Phys. Rev. Lett. 92, 022001 (2004); C. T. H. Davies et al., arXiv:0810.3548.
[4] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 70, 032001 (2004).
[5] Fermion-antifermion bound states are denoted $n^{2 S+1} L_{J}$, where n, S, L, and J are the radial, spin, orbital angular momentum, and total angular momentum quantum numbers of the pair.
[6] B. Aubert et. al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[7] G. Karl, S. Meshkov, and J. L. Rosner, Phys. Rev. D 13, 1203 (1976); J. L. Rosner, Phys. Rev. D 78, 114011 (2008) and private communications.
[8] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 66, 032003 (2002).
[9] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
[10] M. J. Oreglia, SLAC-R-236 (1980); J. E. Gaiser, SLAC-R-255 (1982); T. Skwarnicki, DESY F31-86-02 (1986).
[11] Q. He et al. (CLEO Collaboration), Phys. Rev. Lett. 101, 192001 (2008).
[12] T.-M. Yan, Phys. Rev. D 22, 1652 (1980).
[13] Y.-P. Kuang, S.-F. Tuan, and T.-M. Yan, Phys. Rev. D 37, 1210 (1988).
[14] J. R. Dell'Aquila and C. A. Nelson, Phys. Rev. D 33, 80 (1986); Y.-P. Kuang, private communication.

[^0]: ${ }^{27}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{28}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{29}$ Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
 ${ }^{30}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{31}$ University of Iowa, Iowa City, Iowa 52242, USA
 ${ }^{32}$ Iowa State University, Ames, Iowa 50011-3160, USA
 ${ }^{33}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
 ${ }^{34}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
 Centre Scientifique d'Orsay, B. P. 34, F-91898 Orsay Cedex, France
 ${ }^{35}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 ${ }^{36}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
 ${ }^{37}$ Queen Mary, University of London, London, E1 4 NS, United Kingdom
 ${ }^{38}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 OEX, United Kingdom ${ }^{39}$ University of Louisville, Louisville, Kentucky 40292, USA
 ${ }^{40}$ Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
 ${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
 ${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
 ${ }^{45}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
 ${ }^{46}$ INFN Sezione di Milano ${ }^{a}$; Dipartimento di Fisica, Università di Milano ${ }^{b}$, I-20133 Milano, Italy
 ${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{48}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
 ${ }^{49}$ INFN Sezione di Napoli ${ }^{a}$; Dipartimento di Scienze Fisiche, Università di Napoli Federico $I I^{b}$, I-80126 Napoli, Italy
 ${ }^{50}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{51}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{52}$ Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{53}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{54}$ INFN Sezione di Padova ${ }^{a}$; Dipartimento di Fisica, Università di Padova ${ }^{b}$, I- 35131 Padova, Italy
 ${ }^{55}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
 ${ }^{56}$ INFN Sezione di Perugia ${ }^{a}$; Dipartimento di Fisica, Università di Perugia ${ }^{b}$, I-06100 Perugia, Italy ${ }^{57}$ INFN Sezione di Pisa ${ }^{a}$; Dipartimento di Fisica, Università di Pisa ${ }^{b}$; Scuola Normale Superiore di Pisa ${ }^{c}$, I-56127 Pisa, Italy
 ${ }^{58}$ Princeton University, Princeton, New Jersey 08544, USA ${ }^{59}$ INFN Sezione di Roma ${ }^{a}$; Dipartimento di Fisica, Università di Roma La Sapienza ${ }^{b}$, I-00185 Roma, Italy ${ }^{60}$ Universität Rostock, D-18051 Rostock, Germany ${ }^{61}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom ${ }^{62}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{63}$ SLAC National Accelerator Laboratory, Stanford, California 94309 USA
 ${ }^{64}$ University of South Carolina, Columbia, South Carolina 29208, USA
 ${ }^{65}$ Southern Methodist University, Dallas, Texas 75275, USA
 ${ }^{66}$ Stanford University, Stanford, California 94305-4060, USA
 ${ }^{67}$ State University of New York, Albany, New York 12222, USA
 ${ }^{68}$ Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
 ${ }^{69}$ University of Tennessee, Knoxville, Tennessee 37996, USA
 ${ }^{70}$ University of Texas at Austin, Austin, Texas 78712, USA
 ${ }^{{ }^{11}}$ University of Texas at Dallas, Richardson, Texas 75083, USA
 ${ }^{72}$ INFN Sezione di Torino ${ }^{a}$; Dipartimento di Fisica Sperimentale, Università di Torino ${ }^{b}$, I-10125 Torino, Italy
 ${ }^{73}$ INFN Sezione di Trieste ${ }^{a}$; Dipartimento di Fisica, Università di Trieste ${ }^{b}$, I-34127 Trieste, Italy
 ${ }^{{ }^{4}}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
 ${ }^{75}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6

[^1]: * Now at Temple University, Philadelphia, Pennsylvania 19122, USA

