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Abstract

It is well-known that seeding can be used to produce narrow-bandwidth and fully-coherent x-

ray free-electron lasers. Self-seeding, which uses an extra undulator to generate the seed pulse, is

perhaps one of the most promising methods to accomplish this. In the hard x-ray regime with high-

energy electrons, this method requires a large magnetic chicane to match the path length delay of

the x-ray monochromator that selects a narrow bandwidth of radiation. Such a chicane not only

takes large footprint to build, but also may degrade the electron beam qualities through incoherent

and coherent synchrotron radiation. In this paper, we present an alternative two-bunch self-seeding

scheme. The two bunches are precisely separated to match the x-ray delay of the monochromator

and eliminate the need for a long, complex magnetic chicane. The spectrally filtered SASE x-ray

pulse produced by the first bunch is combined with the second electron bunch at the entrance of the

second undulator and then amplified to the saturation level. We present start-to-end simulation

results based on the LCLS hard x-ray FEL and show that this method can produce a nearly fully

coherent x-ray pulse at a few GW power level.

PACS numbers: 41.60.Cr
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I. INTRODUCTION

The successful commissioning and operation of the linac coherent light source (LCLS) [1]

has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of

x-ray sources are poised to revolutionize the ultrafast x-ray sciences. The LCLS and other

hard x-ray FELs under construction are based on the principle of self-amplified spontaneous

emission (SASE) [2–5]). Although SASE FELs have excellent transverse coherence, the tem-

poral coherence is very limited because the FEL process starts from random shot noise. To

improve the temporal coherence of SASE FELs, various types of seeding have been proposed

over the past years. Since a proper coherent seed does not exist at x-ray wavelengths, a seed

laser at a much longer wavelength can be used to initiate the modulation which can be

frequency upshifted through a process called high-gain harmonic generation [6]. Recently,

a more efficient harmonic generation process called echo-enabled harmonic generation has

been proposed [7, 8]. These two laser seeding schemes are expected to be used in extreme

ultraviolet and soft x-ray FEL facilities. Instead of seeding with an external laser, the self-

seeding approach [9] makes use of an x-ray monochromator to spectrally filter SASE light

produced from a first undulator, which can then be used to seed an unmodulated electron

bunch passing through a second undulator to produce an amplified narrow-bandwidth x-ray

FEL pulse. In principle, the self-seeding scheme is applicable to arbitrary wavelengths in-

cluding the hard x-ray wavelength range [10, 11]. Other methods to achieve full longitudinal

coherence include the use of x-ray cavities and multiple bunches of electrons to form either

an x-ray regenerative amplifier [12] or an x-ray FEL oscillator [13].

Among these seeding schemes, self-seeding is relatively straightforward to implement for

a single-pass high-gain FEL. It consists of two sequential undulators, and an x-ray mono-

chromator and electron bypass chicane located between them. After the first undulator, the

x-ray beam enters the monochromator that spectrally filters the SASE radiation. A bypass

chicane removes the electron density modulation and matches the x-ray delay introduced by

the monochromator. The electron beam can then amplify the narrow-bandwidth radiation

to saturation in the second undulator.

Nevertheless, there are several technical challenges which must be addressed to realize the

self-seeding. For Angstrom-wavelength FELs such as the LCLS, the x-ray monochromator

that filters the SASE radiation also introduces a path-length delay of about 1 cm. To delay
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FIG. 1: (Color) Schematic of the two-bunch self-seeding scheme with a weak chicane and a crystal

monochromator between two undulator sections.

a very high-energy (10-20 GeV) electron beam by this amount, a large magnetic chicane

40-50 m long is necessary [10, 11]. Such a complex chicane not only takes a large footprint

to build but also generates incoherent and coherent synchrotron radiation (CSR) that may

degrade the beam quality of the short electron bunch. An example of CSR studies in the

self-seeding scheme for the FLASH soft x-ray FEL is given in Ref. [14].

Motivated by these considerations, we propose an alternative two-bunch self-seeding

scheme. The two bunches are precisely separated and matched to the x-ray delay of the

monochromator which can be increased easily to allow for a convenient bunch spacing. The

electron-beam chicane serves to avoid the x-ray optics of the x-ray chicane and can be

accomplished with very small offsets and modest magnets. The weak chicane still has a

sufficient momentum compaction to smear out the Angstrom-scale microbunching of the

electron beam. The spectrally filtered SASE light produced by the first bunch is combined

with the second bunch at the entrance of the second undulator and can then be amplified

to the saturation level. In Sec. II, we briefly describe methods and issues of generating two

electron bunches with controllable delays. In Sec. III, we use an idealized bunch and a more

realistic LCLS bunch to demonstrate the feasibility of the proposed scheme.

II. TWO-BUNCH GENERATION

The key to making two-bunch self-seeding work is to produce two electron bunches at

precise distances with respect to each other, and then to accelerate them and compress them

so that the beam energy and position are nearly identical as they follow each other through

both undulators. The most straightforward way to create two pulses which are identical but

delayed with respect to each other is to split the ultraviolet laser pulse which illuminates

the cathode, delay one of the pulses, and then recombine the pulses on the same trajectory
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FIG. 2: (Color) Schematic of a method to produce two laser pulses that creates two electron

bunches with a variable delay on the photocathode.

heading towards the RF gun. One method for accomplishing this is shown in Fig. 2. A

circularly polarized laser pulse is split in a polarizing beam splitter which transmits one

linear polarization, but reflects the other polarization. These beams follow a path similar

to that used for a Michelson interferometer except for two key differences: a quarter wave

plate (QWP) is inserted into each path. This causes the linearly polarized light after retro-

reflection to be transmitted (reflected) in the reflected (transmitted) arms. In addition, one

of the arms is longer than the other by one half the desired total path length difference.

Similar pulse stacking methods have been discussed in the literature [15].

Three-bunch mode was used in the SLAC linac to accelerate two bunches, electrons and

positrons, for collisions at the SLAC Linear Collider, and a third electron bunch to create

positions for the next cycle. Routine operation with ∼6 nC per bunch and ∼60 ns spacing

was achieved [16]. For the two-bunch self-seeding discussed here, the beam loading of the

linac RF is less than 0.1%, which will require an essentially flat RF amplitude between

bunches. The estimated long-range wake-field effects are very small for LCLS operating

charges (between 250 pC and 20 pC); however, careful simulation studies will be required
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for this specific implementation.

III. FEL SIMULATIONS

We use GENESIS FEL code [17] with the LCLS hard x-ray beam parameters to demon-

strate the feasibility of the two-bunch self-seeding method. The main parameters used in the

simualtions are based on the LCLS commissioning results [1] and are described in Table I.

The length of the first and the second undulators (U1 and U2) is the total longitudinal

distance including the magnetic length and the break length between undulator sections.

TABLE I: Main parameters for the two-bunch self-seeding scheme.

Parameter Symbol Uniform beam LCLS beam Unit

X-ray photon energy h̄ω 8 8 keV

X-ray wavelength λ0 1.55 1.55 Å

Electron energy E 13.4 13.4 GeV

Bunch charge Q 250 250 pC

Peak Current Ip 3 3 kA

Slice energy spread σE 1.4 1.4 MeV

Slice emittance γε0 0.6 ∼ 0.4 µm

Electron bunch length (fw) Tb 50 80 fs

Separation of two bunches ∆T ∼ 10 ∼ 10 ns

U1 length L1 52 60 m

U2 length L2 72 72 m

Bypass chicane R56 ∼200 ∼200 µm

Monochromator crystala Dia (133) Si (113)

Bragg angle at 8 keV θ 71.3 28.2 deg

Rel. bandwidth at 8 keV ∆ω/ω 5× 10−6 3× 10−5

aDia is abbreviated for Diamond, and Si for Silicon.
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A. Uniform Beam

We first illustrate the method by using uniform electron bunches, i.e., the current and

energy distribution along each bunch is uniform, and the wakefield effects from the undulator

chamber are ignored. The main parameters are shown in Table I. Four Diamond (133)

crystals are used to make a chicane-like monochromator after U1. The reflectivity curve of

Diamond (133) at 8 keV is shown in Fig. 3 (red solid line), and the relative bandwidth is

5×10−6. After the SASE x-ray pulse is generated from the first bunch in U1, we multiple the

SASE field by the reflectivity curve four times to represent the effect of the monochromator.

Since Diamond (133) has a bandwidth narrower than the typical width of the SASE spectral

spikes, only a single SASE spectral spike is selected. The filtered x-ray pulse is stretched to

about 80 fs (fwhm), and the relative x-ray energy fluctuation is at 100%. Delayed by this

monochromator by a path length difference of 3 m relative to the electron bunch, the filtered

x-ray signal overlaps with the second electron bunch (arriving at the undulator about 10

ns later than the first bunch) and is amplified in U2 to saturation. The FEL gain curve in

both U1 and U2 is shown in Fig. 4, which is based on an average of the x-ray power from

40 independent runs. The break between U1 and U2 is about 4 m long and can be used to

install the weak electron-beam chicane and the crystal monochromator. Figure 5 shows a

typical x-ray power profile and its spectrum right after U2. Note that the bunch head is to

the right in all figures related to time in this paper. We can see from the radiation power

spectrum that the amplified seeding signal is much larger than the SASE background, and

the relative bandwidth is about 9 × 10−6 for the central spike. The statistical FEL energy

fluctuation is reduced to ∼18% due to FEL saturation.

B. LCLS Beam

A typical LCLS beam after acceleration and compression is usually not as simple as

the case that we discussed for the uniform beam, especially for normal conducting linacs

where there are significant wakefield effects. For example, the LCLS beam operated at

the under-compression mode has a double-horn current distribution, which can introduce

additional energy modulation on the bunch due to wakefield effects in the undulator chamber.

The bunch profile and the short-range resistive-wall energy loss in the LCLS undulator
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FIG. 3: (Color) The reflectivity curve of a single Diamond (133) crystal (red solid line) and a single

Silicon (113) crystal (blue dashed line) around 8 keV photon energy. The relative bandwidth is

5× 10−6 for Diamond (133), and 3× 10−5 for Silicon (113).
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FIG. 4: (Color) Average FEL power in U1 (red curve) and U2 (blue curve) using a uniform beam,

with a monochromator composed of four Diamond (133) crystals between 52–56 m.

chamber [18] are shown in Fig. 6(a). This wake loss will introduce additional modulation on

the electron energy profile. We show the energy profiles at the entrance of U1 (blue curve)

and U2 (red curve) in Fig. 6(b). The difference between the red and blue curves is from

the wake loss in the undulator chamber. As a result, the seeded FEL bandwidth will be

broadened due to this energy modulation. We address this effect in the following numerical

studies.

Based on the LCLS start-to-end simulated beam with 250 pC charge, we optimized the
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FIG. 5: (Color) A typical FEL power profile and spectrum after U2. The relative fwhm power

spectrum bandwidth is about 9× 10−6. The bunch head is to the right in (a).
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FIG. 6: (Color) (a) Simulated electron bunch current profile at the nominal LCLS operation (green

dashed line) and wake loss (blue solid curve) from resistive wall of the undulator chamber; (b) The

energy distribution at the entrance of the U1 and U2, and the difference is due to wake loss in U1.

self-seeding setup by choosing the length of U1 and the monochcromator materials after U1

and U2. The length of U1 in this case is 60 m (15 LCLS undulator sections). A four-dipole

chicane with R56 = 200 µm can occupy a total length of only 4 m (see Fig. 7). After passing

through the chicane, the slice energy spread of the electron bunch (1 × 10−4 at 13 GeV) is

converted to a time shear through the chicane R56, which is sufficient to wash out the noisy

microbunching at 1.5 Å developed in U1. Silicon (113) is chosen here to form a four-bounce
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FIG. 7: (Color) Schematic of the two-bunch self-seeding scheme that may be implemented at the

LCLS. The total x-ray delay introduced by the monochromator is about 3 m (10 ns.) (see Sec. III B

for details).
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FIG. 8: (Color) A typical FEL power profile after U1 and Silicon (113) monochcromator based

on the LCLS electron beam. This will be used as a seed in U2, and the green part represents the

length of the electron bunch.

x-ray monochromator (see Fig. 7). Its reflectivity curve is shown in Fig. 3 (blue dashed

line), with a net bandwidth of ∼ 3×10−5 at 8 keV. This bandwidth is somewhat larger than

the spectral width of the SASE spike, and is chosen to accommodate the wakefield effect in

U2. Thus, a typical x-ray pulse after this monochromator still has a few temporal spikes as

shown in Fig. 8.

We performed 30 statistical runs with simulated electron shot noise in U1. After pass-

ing the Si (113) monochromator, this narrow-bandwidth seed will be further amplified by

the second electron bunch in U2. The power gain curve is shown in Fig. 9 from the two
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FIG. 9: (Color) Average FEL power in U1 (red curve) and U2 (blue curve) using a LCLS beam,

with a monochromator composed of four Silicon (113) between 60–64 m.

undulators. In Fig. 10, we show a typical power profile and FEL spectrum just following

U2. Although the average power of the whole bunch shown in Fig. 9 still increases near

the end of U2, the amplified seeding signals (the highlighted part in Fig. 10(a)) already

reaches saturation by the end of U2. Compared with the ideal case, where almost all the

electrons radiate within the seed bandwidth, here we have strong SASE signals outside this

bandwidth due to the double-horn current profile and electron energy modulation generated

by the undulator wakefield. Nevertheless, we can use another pair of Silicon (113) after U2

to filter out the SASE signal (see Fig. 7). As shown in Fig. 11(a), a fully coherent x-ray

pulse with a peak power of 3 GW can then be generated with a fwhm of ∼ 18 fs after a pair

of Silicon (113). Since the bandwidth is broadened due to the electron energy modulation,

we can use a larger bandwidth monochromator here to obtain more power for the seeded

pulse. For example, if we replace Silicon (113) after U2 by Silicon (111) (with a relative

bandwidth 1.4× 10−4 at 8 keV), the filtered FEL power profile is then given by Fig. 11(b).

The FWHM x-ray pulse duration is reduced to 10 fs, and the peak power is about 10 GW.

The statistical fluctuation of the narrow-bandwidth x-ray pulse energy at U2 length of 72

m is about 15%.

In addition to the longitudinally coherent pulse, we also have two SASE pulses. One of

them is the SASE radiation from the first bunch in U2, while the other is the leaked SASE

signal from the second bunch after the first Silicon crystal of the second monochromator.

Figure 12 shows a typical leaked SASE power profile after one Silicon (111) at the end of U2.
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FIG. 10: (Color) A typical FEL power profile and spectrum right after U2 based on the LCLS

electron bunch. The highlighted part with dashed line in (a) is the amplified signal from the seed.

The power spectrum contains an amplified seed signal (with a relative bandwidth ∼ 2.3 × 10−5)

and a wider band SASE signal.
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FIG. 11: (Color) The filtered FEL power profile after a pair of Silicon (113) (a) and Silicon (111)

(b) at the end of U2. The vertical bars show the rms fluctuation level of the power.

Compared with Fig. 10(a), we can see the central spike amplified from the seed is taken out.

The SASE pulses can be separated from the seeded pulse by the post-U2 monochromator

as shown in Fig. 7.

Since the LCLS electron bunch develops an energy chirp by the undulator wakefield,

only a fraction of the bunch radiates within the narrow bandwidth of the monochromatic

11



0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

t (fs)

Po
w

er
 (

G
W

)

FIG. 12: (Color) A typical leaked out SASE power profile after passing through one Silicon (111)

crystal placed at the end of U2.

seed. This leads to a shorter x-ray pulse as shown above. In addition, the energy chirp may

help reduce the seeded FEL energy fluctuations due to incoming electron energy jitter. An

energy-chirped beam also leads to a slight shift of the FEL central wavelength at the end

of U2 compared with the seeding wavelength due to a slight compression by U2. The shift

in wavelength can be accounted for by slightly adjusting the angle of the post-undulator

monochromator.

In addition to the nominal operating charge of 250 pC, a low-charge mode of operation

(20 pC) has been developed at the LCLS, which can produce x-ray pulses with duration

less than 10 fs (fwhm) [19]. At this low-charge, a typical hard x-ray pulse at 1.5 Å contains

about 10 SASE spikes from simulations. We can also apply this method to the low-charge

mode with Silicon (111) monochromator to obtain a fully coherent, sub-10-fs hard x-ray

pulse. The wakefield effects from the linac and the undulator vacuum chamber are much

reduced at such a low charge, although the timing requirement between the seed signal and

the second low-charge bunch is more stringent.

IV. CONCLUSIONS

The two-bunch self-seeding scheme proposed here takes advantage of two electron bunches

to eliminate the timing constraint from the single-bunch self-seeding. Using an ideal elec-

tron bunch as well as a more realistic bunch from the LCLS start-to-end simulations, we
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demonstrate that the two-bunch self-seeding can produce a temporally coherent x-ray pulse

with the pulse duration in the range of 10-100 femtoseconds. This technique is perhaps the

most straightforward type of seeding to use with hard x-ray FELs. It can also be easily

incorporated in an existing SASE FEL facility with only a very modest amount of modifi-

cations to the machine layout. Finally, this method could be used with a train of bunches

with each bunch seeding the one behind it. This would produce a train of narrow band,

short x-ray pulses at precise spacing. [†]
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