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INTRODUCTION: WHY STUDY EXTRA DIMENSIONS?

Most particle physicists agree that some form of New Physics (NP) must exist beyond
the Standard Model(SM)–we simply don’t know what it is yet. Though there are many
prejudices based on preconceived ideas about the form this NP may take, it will be
up to experiments at future colliders, such as the LHC and the ILC, to reveal its true
nature. While we are all familiar with the list of these theoretical possibilities one must
keep in mind that nature may prove to be more creative than we are and that something
completely unexpected may be discovered. After all, we certainly have not yet explored
more than a fraction of the theory landscape. With the turn on of the LHC at 7 TeV
in a matter of days we may hope to finally get some answers to at least some of our
questions.

One now much-discussed possibility is that extra spatial dimensions will begin to
show themselves at or near the TeV scale. Only a dozen years or so ago not many of
us would have thought this was even a remote possibility, yet the discovery of extra
dimensions(EDs) would produce a fundamental change in how we view the universe.
The study of the physics of TeV-scale EDs that has taken place over the past dozen
years has its origins in the ground breaking work of Arkani-Hamed, Dimopoulos and
Dvali(ADD)[1]. Since that time EDs has evolved from a single idea to a new general
paradigm with many authors employing EDs as a tool to address the large number of
outstanding issues that remain unanswerable within the SM context. This in turn has
lead to other phenomenological implications which should be testable at colliders and
elsewhere. A partial and (very) incomplete list of some of these ideas includes, e.g.,

• addressing the hierarchy problem[1, 2]
• producing electroweak symmetry breaking without a Higgs boson[3]
• the generation of the ordinary fermion and neutrino mass hierarchy, the CKM

matrix and new sources of CP violation[4]



• TeV scale grand unification or unification without SUSY while suppressing proton
decay[5]

• new Dark Matter candidates and a new cosmological perspective[6, 7]
• black hole production at future colliders as a window on quantum gravity[8]

This list hardly does justice to the wide range of issues that have been considered in the
ED context. Clearly a discussion of all these ideas is beyond the scope of the present
introduction and only some of them will be briefly considered in the text which follows.
However it is clear from this list that ED ideas have found their way into essentially
every area of interest in high energy physics which certainly makes them worthy of
detailed study.

Of course for many the real reason to study extra dimensions is that they are fun to
think about and almost always lead to some surprising and unanticipated results.

THINKING ABOUT EXTRA DIMENSIONS

Most analyses of EDs are within the context of quantum field theory. We might first
ask if we can learn anything about EDs from purely ‘classical’ considerations and some
general principles without going into the complexities of field theory. Consider a single
massless particle moving in 5D ‘Cartesian’ co-ordinates and assume that 5D Lorentz
invariance holds. Then the square of the 5D momentum for this particle is given by
p2 = 0 = gABpApB = p2

0−p2 ± p2
5 where I employ gAB = diag(1,−1,−1,−1,±1) as the

5D metric tensor (i.e., defined by the invariant interval ds2 = gABdxAdxB), p0 can be
identified as the usual particle energy, p2 is the square of the particle 3-momentum and
p5 is its momentum along the 5th dimension. (Note that here the indices A,B run over
all 5D. We will sometimes denote the 5th dimension as x5 and sometimes just as y.)
The ‘zero’ in the equality above arises from the fact that the particle is assumed to be
massless in 5D. Note that, a priori, we do not know the sign of the metric tensor for the
5th dimension but as we will now see that some basic physics dictates a preference; the
choice of the +(-) sign corresponds to either a time- or space-like ED. We can re-write the
equation above in a more traditional particle physics form as p2

0−p2 = pμ pμ =∓p2
5 and

we recall, for all the familiar particles we know of which satisfy 4D Lorentz invariance,
that pμ pμ = m2, which is just the square of the particle mass. (Note that Greek indices
will be assumed to run only over 4D here.) Notice that if we choose the sign for a
time-like extra dimension that the corresponding sign of the square of the mass of the
particle will appear to be negative, i.e., the particle is a tachyon! Tachyons are well
known to be very dangerous in most theories, even classically, as they can cause severe
causality problems[9]–something we’d like to avoid in any theory–provided they interact
with SM particles. This seems to imply that we should only pick the space-like solution.
Generally, it turns out that to avoid tachyons appearing in our ED theory we must always
choose EDs to be space-like and therefore we assume there will always be only one time
dimension even though we could all use some extra time.1.

1 See, however, [10] for a discussion of time-like EDs.



Now lets think about the simplest quantum field, i.e., a real massless scalar field
in a flat 5D-space (assuming a space-like ED!) which is a solution of the 5D Klein-
Gordon equation: (∂A∂ A)Φ = (∂μ∂ μ −∂ 2

y )Φ(x,y) = 0, where y here represents the extra
dimension. We can do a fast and dirty trick by performing something like separation of
variables, e.g., take Φ = ∑n χn(y)φn(x) and plug it into the Klein-Gordon equation above
giving us ∑n(χn∂μ∂ μ φn−φn∂ 2

y χn) = 0. Now we note that if ∂ 2
y χn = −m2

nχn, we obtain
a set of equations that appears like ∑n χn(∂μ ∂ μ +m2

n)φn = 0 which looks similar to an
infinite set of equations for a collection of distinct 4D scalar fields φn with masses mn.
This collection of states with different masses is called a Kaluza-Klein(KK) tower. Note
that we labeled the states by the set of integers (n) so that the levels are discrete; we could
just as well have replaced the sum by an integral and treat n as a continuous variable.
The difference between these two possibilities and the link to the nature of the 5D space
with the associated boundary conditions will be made clear below by considering the
action for the 5D scalar field.

Now we have pulled a bit of a fast one in performing this quick and dirty analysis
so let us return and do a somewhat better job; we will still assume, however, that n is
a distinct integer label for reasons to be clarified below. Let us start from the action
(i.e., the 5D volume integral of the Lagrangian) for the massless 5D scalar assuming y is
constrained to an interval y1 ≤ y ≤ y2 with y1,2 for now treated as arbitrary:

S =
∫

d4x
∫ y2

y1

dy
1
2

∂AΦ∂ AΦ . (1)

Now we recall ∂AΦ∂ AΦ = ∂μΦ∂ μ Φ−∂yΦ∂yΦ and substitute this as well as the decom-
position Φ = ∑n χn(y)φn(x) as we did above. Then the integrand of the action becomes
a double sum proportional to ∑nm[χnχm∂μφn∂ μ φm − φnφm∂yχn∂yχm]. This appears to
be a mess but we can ‘diagonalize’ this equation in a few steps. First if we choose to
orthonormalize the χn such that

∫ y2

y1

dy χnχm = δnm , (2)

then the kinetic term of the φn (the first one in the bracket above) reduces to a single sum
after the y integration becoming simply ∑n ∂μ φn∂ μ φn. This is essentially just sum of the
kinetic terms for an infinite set of distinct 4D scalars. To handle the second term in the
brackets we integrate by-parts and note that if we take the boundary conditions to be of
the form

χm∂yχn|y2
y1

= 0 , (3)

and also require that the χn satisfy

∂ 2
y χn = −m2

nχn , (4)

as above, we can then integrate the entire action over y and obtain an effective 4D theory:

S =
∫

d4x
1
2 ∑

n
[∂μφn∂ μ φn−m2

nφ 2
n ] , (5)



which is just the (infinite) sum of the actions of the independent 4D scalars labeled
by n with masses mn, i.e., the KK tower states. One sees that in this derivation it was
important for the above boundary conditions(BCs) to hold in order to obtain this result.
It is important to note that in fact the various masses that we observe in 4D correspond
to (apparently) quantized values of 5D momentum py for the different φn.

The fields χn can be thought of as the wave functions of the various KK states in the
5th dimension and in this simple, flat 5D scenario are most generally simple harmonic
functions: χn = Aneimny +Bne−imny. What are the mn? What are An and Bn? To say more
we must discuss the BCs a bit further. In thinking about BCs in this kind of model it
is good to recall one’s experience with one-dimensional Quantum Mechanics(QM) that
we all learned (too) many years ago.

First recall the Schrödinger Equation for a free particle moving along the Cartesian
x direction. It has the same form as Eq.4 above and since the x direction is infinite in
extent, i.e., noncompact, the solution is just ψ ∼ A′eipx +B′e−ipx where p is the particle
momentum which can take on an infinite set of continuous eigenvalues. We say that in
this case the momentum p is not quantized and this is due to the fact that the space
is noncompact. Now let us consider a slightly different problem, a particle in a box,
i.e., a situation where the ‘potential’ is zero for 0 ≤ y ≤ πL but is infinite elsewhere
so that the wavefunction vanishes outside this region confining the states to a finite
interval. Since the physical region is of a finite size, i.e., volume, this is called a compact
dimension. We know that the solution inside the box takes the same general form as does
the case of a free particle or χn above but it must also vanish at the boundaries. These
BCs tell us A′ and B′ so that the solutions actually takes the unique form ∼ sinny/L
and that the momenta are quantized, i.e., p = n/L with n = 1,2, .... Clearly these two
situations are completely analogous to having a 5th dimension which is either infinite
(i.e., noncompact) or finite (i.e., compact) in size. Under almost all circumstances we
will assume that extra dimensions are compact in our discussions below. For a flat 5th
dimension of length πL the analysis above tells us that the KK masses are just given
by mn = n/L, i.e., the masses are clearly large if the size of the extra dimension is very
small. Perhaps it is natural to think that the reason that we have not seen EDs is that they
are very small and the corresponding KK states are then too massive to be produced
at any of the existing colliders (except for the LHC!). In fact, the observation of KK
excitations is the hallmark of EDs. It is interesting to observe that there are no solutions
in the ‘particle in a box’ example corresponding to massless particles, i.e., those with
n = 0, the so-called zero modes.

There are other sorts of BCs that can be important. In introductory QM we also
examine the case of a particle moving on a circle of radius R where we find that
angular momentum is quantized. In the 5D case we can, by analogy, imagine that the
5th dimension is curled up into a circle, S1–a one dimensional sphere of radius R–so that
the points y = −πR and y = πR are identified as the same, i.e., we then have periodic
boundary conditions. Here the KK masses are found to be given by mn = n/R so that
we still see the correlation between the KK masses and the inverse size of the extra
dimensions but the solutions now will take the form of An cosny/R + Bn sinny/R with
n = 0,1,2, .... Note that here a massless mode does exist due to the periodicity of the
BCs. We can change this solution slightly by imagining defining a parity operation on
the interval −πR ≤ y ≤ πR which maps y → −y. There are now 2 special points on



this interval, call the fixed points, which are left invariant by this discrete Z2 operation
when combined with the translation y → y+2πR and the periodicity property; these are
the points y = 0,πR. (Note that ±πR are already identified as the same point due to
periodicity.) The eigenfunctions of our ‘wave equation’ must now respect the discrete,
Z2, parity symmetry so that our solutions can only be either Z2-even, ∼ cosny/R or Z2-
odd, ∼ sinny/R. Note that only Z2-even states will have a zero-mode amongst them.
This geometry is called S1/Z2 and is the simplest example of an orbifold, a manifold
with a discrete symmetry that identifies different points in the manifold, here y and −y.
The S1/Z2 orbifold is of particular interest in model building as we will see below. By
the way, we note that all of the BCs of interest to us above are such as to satisfy the
conditions following from Eq.3.

So far we have seen that a 5D scalar field decomposes into a tower of 4D scalars
when going from the 5D to 4D framework. What about other 5D fields? In a way we
have encountered a somewhat similar question before when we first learned Special
Relativity, i.e., how do 3-vectors and scalars get embedded into 4D fields? Just as a 4-
vector contains a 3-vector and a 3-scalar, one finds that, e.g., a 5D massless gauge field
(which has 3 polarization states!) contains two KK towers, one corresponding to a 4D
gauge field (with 2 polarization states) and the other to a 4D scalar field. In fact in (4+n)-
dimensions a gauge field will decompose into a 4D gauge KK tower plus n distinct scalar
towers.

At this point a subtlety exists. We know from our previous discussion that KK tower
states above the zero mode are massive. How can there be massive 4D gauge fields
with only 2 transverse polarization states? Consider for simplicity the 5D case. It turns
out that due to gauge invariance (that we assume from the beginning) we can make a
gauge transformation to eliminate the scalar KK tower fields and have them ‘eaten’ by
the gauge field–in a manner similar to the Higgs-Goldstone mechanism–thus becoming
their longitudinal components. In a way this is a geometric Goldstone mechanism. The
scalar KK tower is then identified to be just the set of Goldstone bosons eaten by the
gauge fields to acquire masses. Thus in the unitary or physical gauge the massless 5D
gauge field becomes a massive tower of 4D gauge fields. In (4+n)-dimensions only one
linear combination of the scalars is eaten so that a massless (4+n)-dimensional gauge
field produces a massive tower of 4D gauge fields together with n− 1 scalar towers in
the unitary gauge. Note, however, that the zero mode gauge field does not necessarily
eat its corresponding scalar partner. This depends on the BC that are applied.

To see how this 5D decomposition for gauge fields works in practice consider a
massless 5D gauge field with the 5th dimension compactified on S1/Z2. In the first
step in the KK decomposition one can show that the 2-component vector KK’s are Z2-
even with 5D wavefunctions like ∼ cosny/R, whereas the KK scalars are Z2-odd with
wavefunctions like ∼ sinny/R. Note the absence of an n = 0 scalar mode due to the
Z2 orbifold symmetry. Once we employ the KK version of the Higgs-Goldstone trick
all the n > 0 gauge KK tower fields become massive 3-component gauge fields with
mn = n/R, having eaten their scalar partners. However, the zero mode remains massless,
i.e., there was no Goldstone boson for it to eat. In 4D the masslessness of the zero mode
tells us that gauge invariance has not been broken. We see that orbifold BCs are useful
at generating massless zero modes and maintaining gauge invariance. One can translate
these orbifold BCs for the gauge fields into the simple relations ∂yA

μ
n | = 0, A5

n| = 0 for



all n and where ‘|’ stands for a boundary.
Interestingly the physics changes completely if we change the BCs in this case.

Instead of an orbifold, consider compactifying on a line segment or interval, 0≤ y≤ πR,
and taking as BCs Aμ

n = ∂yA5
n = 0 at y = 0 and ∂yA

μ
n = A5

n = 0 at y = πR. Here one now
finds that Aμ ∼ sinmny/R and no massless zero mode exists. After the Higgs-Goldstone
trick all the 4D gauge KK tower fields become massive (leaving no remaining scalars)
with mn = (n+1/2)/R thus implying that gauge invariance is now broken. Here we see
a simple example that demonstrates that we can use BCs to break gauge symmetries. The
possibility that such techniques can be successfully employed to break the symmetries of
the SM without the introduction of fundamental Higgs fields has been quite extensively
discussed in the literature[3].

How do other higher dimensional fields correspondingly decompose? As the simplest
example consider the gravitational field in 5D, represented as by symmetric tensor hAB

which decomposes as hAB → (hμν ,hμ5,h55)n when going to 4D; as before we’ll use n as
a KK tower index. If we compactify on S1/Z2 to keep the zero mode hμν

0 massless (and
which we will identify as the ordinary graviton of General Relativity) then for n > 0 all
of the hμ5

n and h55
n fields get eaten to generate a massive KK graviton tower with fields

that have 5 polarization states (as they should). For n = 0 there is no hμ5
0 to eat due

to the orbifold symmetry yet a massless h55 scalar remains in addition to the massless
graviton. This field is the radion, which corresponds to an fluctuation of the size of the
extra dimension, and whose vacuum value must be stabilized by other new physics to
keep radius the extra dimension stable[11] against perturbations. The physical spectrum
is then just the radion and the graviton KK tower in this case which, as we will see
below, corresponds to what happens in the RS model.

In terms of manifolds on which to compactify higher dimensional fields it is easy to
imagine that as we go to higher and higher dimensions the types of manifolds and the
complexity of the possible orbifold symmetries grows rapidly. Typical manifolds that
are most commonly considered are torii, T n, which are simply products of circles, and
spheres, Sn.

Let us now turn to two important representative ED models.

LARGE EXTRA DIMENSIONS

The Large Extra Dimensions scenario of Arkani-Hamed, Dimopoulos and
Dvali(ADD)[1] was proposed as a potential solution to the hierarchy problem, i.e.,
the question of why the (reduced) Planck scale, MPl � 2.4 ·1018 GeV, is so much larger
than the weak scale ∼ 1 TeV. ADD propose that we (and all other SM particles!) live
on an assumed to be rigid 4D hypersurface (sometimes called a wall or brane). On the
other hand gravity is allowed to propagate in a (4+n)-dimensional ‘bulk’ which is, e.g.,
an n−torus, T n. This 4D brane is conveniently located at the origin in the EDs, i.e.,
y=0. Gauss’ Law then tells us that the Planck scale we measure in 4D, MPl , is related
to the (4+n)-dimensional fundamental scale, M∗, that appears in the higher dimensional
General Relativistic action, via the relation

M
2
Pl = VnMn+2

∗ , (6)



where Vn is the volume of the n-dimensional compactified space. M∗ (sometimes denoted
as MD in the literature up to an O(1) factor) can be thought of as the true Planck scale
since it appears in the higher dimensional action which is assumed to describe ‘ordinary’
General Relativity but extended to (4+n)-dimensions. We then can ask if is possible
that M∗ could be as small as ∼ a few TeV thus essentially ‘eliminating’ the hierarchy
problem? Could we have been fooled in our extrapolation of the behavior of gravity
from what we know up to the TeV scale and beyond and that gravity, becomes strong at
M∗ and not at MPl? To get an idea whether this unusually sounding scenario can work
at all we need to get some idea about the size of Vn, the volume of the compactified
space. As a simple example, and the one most often considered in the literature, imagine
that this space is a torus T n all of whose radii are equal to R. Then it is easy to see that
Vn = (2πR)n; knowing the value of MPl and assuming M∗ ∼ a few TeV we can estimate
the value of R. Before we do this, however, we need to think about how gravity behaves
in EDs.

FIGURE 1. Regions in the α −λ plane excluded by table top searches for deviations from Newtonian
gravity from Adelberger et al.[12]. The ADD prediction with n = 2 and M ∗ = 1 TeV is also shown.

If one considers two masses separated by a distance r in (n+4)-dimensions the force
of attraction will now depend on the relative magnitudes of r and the compactification
radius R. To see this first imagine r >> R; in this case the extra dimensions are es-
sentially invisible and to all appearances the space looks to be 4D. Then we know that
Fgrav ∼ 1/r2 thanks to Newton. However, in the opposite limit r << R the effects of
being in a full (4+n)-dimensional space will become obvious; at such small distances



we don’t even realize that the ED is compactified. Either via Gauss’ Law or by recalling
the nature of the solution to the inhomogeneous Laplace’s equation in EDs one finds
that now Fgrav ∼ 1/r2+n. Clearly one will start to see significant deviations from con-
ventional Newtonian gravity once r ∼ R so that R cannot be very large. Let’s assume
n = 1; then we can solve the equation above and obtain R ∼ 108 m. This is a scale of
order the Earth-Moon distance over which we know Newton’s Law holds very well;
thus n = 1 is excluded. Fortunately for us the size of R decreases rapidly as n increases;
amazingly, for n = 2 one obtains R ∼ 100μm which is close to the limit of current table
top experimental searches[12] for deviations from Newton’s Law of Gravity. These are
summarized in Fig. 1 from the work of Adelberger et al.[12]. Note that these deviations
from Newtonian gravity are conventionally parameterized by adding a Yukawa-type in-
teraction of relative strength α and scale length λ to the usual Newtonian potential. In
the figure the deviations expected in the n = 2 scenario are shown assuming M∗ = 1 TeV;
the bounds from the data tell us that M∗ > a few TeV in this case.

If n is further increased R becomes much too small to probe for direct deviations
from the 1/r2 Newton’s Law. It is interesting to note that for n = 2, which is already
being constrained by table top measurements, R−1 ∼ 10−4 eV telling us that we have
not probed gravity directly beyond energy scales of this magnitude. This ignorance
is rather amazing but it is what allows the large parameter space in which the ADD
model successfully functions. From this discussion it appears that the ADD model will
‘work’ so long as n ≥ 2 with n = 2 being somewhat close to the boundary of the
excluded regime. It turns out that the naive n = 2 case is somewhat disfavored by other
measurements though larger values of n are much more weakly constrained. How large
can n be? If we believe in superstring theory at high scales then we can expect that n≤ 6
or 7. A priori, however, there is no reason not to consider larger values in a bottom-up
approach. It is curious to note that when n � 30 one has M∗R ∼ 1 which is perhaps what
we might expect based on naturalness assumptions; for any n∼ 15 or less, R−1 << M∗ ∼
a few TeV. This point is important for several reasons. (i) One may ask why we required
that the SM fields remain on the brane. If the SM or any part thereof were in the bulk,
those fields would have KK towers associated with them. Since the masses of these KK
fields would be of order ∼ 1/R as discussed above and we have not experimentally
observed any KKs of the SM particles at any collider so far, we must have 1/R ≥ 100
GeV or so. For any n ≤ 10 it is clear that this condition cannot be satisfied. So if we
believe in strings the SM fields must remain on the wall. (ii) Since the gravitons are
bulk fields their KK masses are given by m2

KK = ∑n
i=1 l2

i /R2 where li is a integer labeling
the KK momenta for the ith ED. As we noted above, for not too large values of n these
masses are generally very small compared to the 1 TeV or even 100 GeV scale. This will
have important phenomenological implications below.

If n = 6 or 7 in string theory why don’t we just assume this value when discussing the
ADD model? Consider a small variation on the above theme. So far we have assumed
that all of the ED compactification radii are equal; this need not be the case, of course.
Assume there are n EDs but let n− p of them have radius R1 and the remaining p of
them radius R2. Then from the discussion above we must have

M
2
Pl = (2π)nR(n−p)

1 Rp
2M(n+2)

∗ . (7)



Now imagine that R−1
2 ∼ M∗; then we’d have instead

M
2
Pl ∼ (2π)nR(n−p)

1 M(n−p)+2
∗ , (8)

i.e., it would appear that we really only have n− p large dimensions. The keyword here
is ‘large’; the p dimensions are actually ‘small’ of order ∼ TeV−1 and not far from the
fundamental scale in size. Thus there could be, e.g., 7 EDs as suggested by strings but
only 4 of them are large. If any SM field lived only in these p small EDs that would be
(at least superficially) experimentally acceptable since their KK masses would be ∼ TeV
and as of yet these KKs would be unobserved at colliders. Since the SM fields can live
in these TeV size EDs this possibility is quite popular[18] for model building purposes.

To proceed further we need to know what these KK graviton states do, i.e., how they
interact with the usual SM fields confined on the wall. A derivation of the Feynman rules
for the ADD model is beyond the scope of the present talk but can be found in Ref.[13]
with some elementary applications discussed in Ref.[14]. A glance at the Feynman rules
tells us several things: (i) all of the states in the graviton KK tower couple to SM matter
on the wall with the same strength as does the ordinary zero-mode graviton, i.e., to
lowest order in the coupling

L = − 1

MPl
∑
n

Gμν
n Tμν , (9)

where Gμν
n are the KK graviton fields in the unitary gauge and Tμν is the stress-energy

tensor of the SM wall fields. (ii) Since there are at least 2 EDs we might expect that the
vector fields (or some remaining combination of them) Gμi

n , where i = 1, ...,n, would
couple to the SM particles. It turns out that such couplings are absent by symmetry
arguments since the SM fields reside at y=0. (iii) Similarly we might expect that some
combination of the scalar fields Gi j

n to couple to the SM. Here in fact one KK tower of
scalars does couple to ∼ T μ

μ /MPl . However, since T μ
μ = 0 for massless particles (except

for anomalies) this coupling is rather small for most SM fields except for top quarks
and massive gauge bosons. Thus, under most circumstances, these scalar contributions
to various processes are rather small. (iv) Though each of the Gμν

n are rather weakly
coupled there are a lot of them and their density of states is closely packed compared
to the TeV scale. This is very important when performing sums over the graviton KK
tower as we will see below.

How would ADD EDs appear at colliders? Essentially, there are two important signa-
tures for ADD EDs and there has been an enormous amount of work on the phenomenol-
ogy of the ADD model in the literature [For a review see [16]]. The first signature is the
emission of graviton KK tower states during the collision of two SM particles. Consider,
e.g., either the collision of qq̄ to make a gluon or an e+e− pair to make a photon and
during either process have the SM fields emit a tower KK graviton states. Note that since
each of the graviton KKs is very weakly coupled this cross section is quite small for any
given KK state. Also, once emitted, the graviton interacts so weakly it will not scatter or
decay in the detector and will thus appear only as missing energy or transverse momen-
tum. Now apart from their individual masses all graviton KK states will yield the same
cross section as far as this final state is concerned, i.e., a jet or photon plus missing en-
ergy; thus we should sum up all the contributions of the KK states that are kinematically



accessible. For example, at an e+e− collider this means we sum over the contributions of
all KK states with masses less than

√
s. This is a lot of states and, since these states are

closely packed, we can replace the usual the sum with an integral over the appropriate
density of states. While no one individual KK graviton state yields a large cross section
the resulting sum over so many KKs does yield a potentially large rate for either of the
processes above. These resulting rates then only depend on the values of n and M∗. Both
the Tevatron and LEPII have looked for such signatures with no luck and have placed
bounds on the ADD model parameters[16]. Clearly it is up to searches at future colliders
such as the LHC to find these signals if they exist.

Fig. 2 from Vacavant and Hinchliffe[19] shows the missing ET spectrum at the 14
TeV LHC assuming an integrated luminosity of 100 fb−1 for the process pp → jet plus
missing energy in the SM and the excess induced by ADD graviton emission assuming
different values of n = δ and M∗ = MD. Once the rather large SM backgrounds are well
understood this excess will be clearly visible. The more difficult question to address is
whether such an excess if observed at the LHC would naturally be interpreted as arising
from ADD EDs as other new physics can lead to the same apparent final state. Clearly
the LHC will not be running at these energies or luminosities for some time. At the
initial 7 TeV energy with a ∼ 1 f b−1 size integrated luminosity a substantial extension
beyond the limits obtained from the Tevatron are certainly to be expected once the SM
backgrounds become well understood. This can be seen in Fig. 3.

FIGURE 2. Missing transverse energy spectrum for the monojet plus missing E T signature at the LHC
assuming an integrated luminosity of 100 fb−1 from Ref[19]. Both the SM backgrounds and the signal
excesses from graviton emission in the ADD model are shown. Here MD = M∗ and δ = n.

At the 0.5-1 TeV ILC, the backgrounds for the photon plus missing energy process are



FIGURE 3. Same as the previous figure but now for the 7 TeV LHC assuming an integrated luminosity
of 1 fb−1 with the SM background as the dotted histogram. ADD expectations are for n = 2,3, .. from top
to bottom and assuming MD = 2 TeV.

far simpler and better understood, essentially arising from the ν ν̄ + γ final state. These
backgrounds can be measured directly by modifying the electron (and positron) beam
polarization(s) since the W +W− intermediate state gives the dominant contribution to
this process. Measuring the excess event cross section at two different center of mass
energies allows us to determine both M∗ and n = δ as shown in Fig. 4 from the TESLA
TDR[20]. If fitting the data taken at different center of mass energies results in a poor
χ2 using these parameters we will know that the photon plus missing energy excess is
due to some other new physics source and not to ADD EDs.

These is another way to see, at least indirectly, the effect of graviton KKs in the ADD
model: gravitons can be exchanged between colliding SM particles. This means that
processes such as qq̄ → gg or e+e− → μ+μ− can proceed through graviton KK tower
exchange as well as through the usual SM fields. As before, the amplitude for one KK
intermediate state is quite tiny but we must again sum over all their exchanges (of which
there are very many) thus obtaining a potentially large result. Unlike the case of graviton
emission where the KK sum was cut off by the kinematics here there is no obvious cutoff
and, in principle, the KK sum should include all the tower states. Furthermore, note that
here the KK sum occurs at the amplitude level, i.e., it is a coherent sum. One problem
with this is that this KK sum is divergent once n > 1 as is the case here. (In fact the
sum is log divergent for n = 2 and power law divergent for larger n.) The conventional
approach to this problem is to remember that once we pass the mass scale ∼ M∗ the
gravitons in the ADD model become strongly coupled and we can no longer rely on
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FIGURE 4. Signal cross section for the γ plus missing energy final state at the ILC in the ADD model
as a function of

√
s for various δ = n from Ref.[20] normalized to a common value at

√
s = 500 GeV.

Combining measurements at two distinct values of
√

s one can extract both the values of n and M∗ for the
ADD model.

perturbation theory so perhaps we should cut off the sum near M∗ since the theory is
not well-defined above that scale. There are several ways to implement this or even
circumvent this entire problem[21] described in the literature[13, 14]. In all cases the
effect of graviton exchange is to produce a set of dimension-8 operators containing SM
fields, e.g., in the notation of Hewett[14]

L =
4λ
Λ4

H

T i
μνT μν

f , (10)

where ΛH ∼ M∗ is the cutoff scale, λ =±1 and T μν
i, f are the stress energy tensors for the

SM fields in the initial and final state, respectively. This is just a contact interaction albeit
of dimension-8 and with an unconventional tensor structure owing to the spin-2 nature
of the gravitons being exchanged. Graviton exchange contributions to SM processes can
lead to substantial deviations from conventional expectations; Fig 5 shows the effects of
graviton KK exchange on the process e+e− → bb̄ at the ILC. Note that the differential
cross section as well as the left-right polarization asymmetry, ALR, are both altered from
the usual SM predictions.

Fig. 6 shows the corresponding expectations for these ADD-induced contact inter-
actions at the 7 TeV LHC assuming an integrated luminosity of 1 f b−1 in the Drell-



FIGURE 5. Deviations in the process e+e− → bb̄ at the ILC due to graviton KK tower exchange in
the ADD model from Hewett[14]. The left panel is the angular distribution while the right panel is the
left-right polarization asymmetry. Here

√
s = 500 GeV and ΛH = 1.5 TeV. The histograms are the SM

predictions while the ‘data’ points are for the ADD model with λ = ±1. An integrated luminosity of 75
fb−1 has been assumed.

Yan channel. The present limit from the Tevatron and LEPII are roughly given by
ΛH ∼ 1−1.5 TeV.

Can the effects of graviton exchange be uniquely identified, i.e., separated from other
new physics which induces contact interaction-like effects, such as Z ′ exchange? This
has been addressed by several groups of authors[15]. For example, by taking moments
of the e+e− → f f̄ ,W+W− angular distributions and employing polarized beams it is
possible to uniquely identify the spin-2 nature of the graviton KK exchange up to ∼ 6
TeV at a

√
s = 1 TeV ILC with an integrated luminosity of 1 ab−1. This is about

half of the discovery reach at the ILC for ADD EDs: ΛH � 10− 11
√

s for reasonable
luminosities. If both beams could be polarized this could be improved somewhat by also
employing transverse polarization asymmetries.

It is possible to constrain the ADD model in other ways, e.g., the emission of ADD
KK gravitons can be constrained by astrophysical processes as reviewed in Ref.[16].
These essentially disfavor values of M∗ less than several hundred TeV for n = 2 but
yield significantly weaker bounds as n increases.

Before turning to a different model let us briefly discuss the dirty little secret of the
ADD model. The purpose of this model was to eliminate the hierarchy problem, i.e.,
remove the large ratio between the weak scale and the true fundamental scale, hence
the requirement that M∗ ∼ a few TeV. However, if we look carefully we see that this
large ratio has been eliminated in terms of another large ratio, i.e., RM∗ ∼ (M2

Pl/M2∗)1/n,
which for smallish n is a very large number–as large as the hierarchy we wanted to avoid.
Thus we see that ADD really only trades one large ratio for another and does not really
eliminate the hierarchy problem. The next model we will discuss does a much better job
in that regard.



FIGURE 6. Deviations from the SM (solid) expectations for the invariant mass distribution of the
dilepton pair for the Drell-Yan process, pp → e+e− + X , at the 7 TeV LHC assuming an integrated
luminosity of 1 f b−1. The colored histograms, from top to bottom, correspond to Λ H = 1, 1.5, 2 and
2.5 TeV, respectively.

WARPED EXTRA DIMENSIONS

The Warped Extra Dimensions scenario was created by Randall and Sundrum(RS)[2]
and is quite different and more flexible than the ADD model. The RS model assumes
the existence of only one ED which is compactified on the now-familiar S1/Z2 orbifold
discussed above. In this setup there are two branes, one at y = 0 (called the Planck brane)
while the other is at y = πrc (called the TeV or SM brane) which are the two orbifold
fixed points. What makes this model special is the metric:

ds2 = e−2σ(y)ημνdxμdxν −dy2 , (11)

where ημν = diag(1,−1,−1,−1) is the usual Minkowski metric and σ(y) is some a
priori unknown function. This type of geometry is called ‘non-factorizable’ because the
metric of the 4D subspace is y−dependent. In the simplest version of the RS model (i.e.,
the original RS I) it is assumed, like in the ADD case, that the SM fields live on the
so-called TeV brane while gravity lives everywhere. Unlike in the ADD case, however,
there is a ‘cosmological’ constant in the 5D bulk and both branes have distinct tensions.
2 Solving the 5D Einstein’s equations provides a unique solution for these quantities and

2 More complex versions of this model are possible with SM bulk matter fields but we will limit our
discussion here to this more simple case.



also determines that σ = k|y|, where k is a dimensionful parameter. A basic assumption
of this model is that there are no large mass hierarchies present so that very roughly we
expect that k ∼M∗, the 5D fundamental or Planck scale. In fact, once we solve Einstein’s
Equations and plug the solutions back into the original action and integrate over y we
find that

M
2
Pl =

M3∗
k

(1− e−2πkrc) . (12)

As we will see below the warp factor e−πkrc will be a very small quantity which
implies that MPl ,M∗ and k have essentially comparable magnitudes following from the
assumption that no hierarchies exist. If we calculate the Ricci curvature invariant for the
5D bulk space we find it is a constant, i.e., R5 = −20k2 and thus k is a measure of the
constant curvature of this space. A space with constant negative curvature is called an
Anti-DeSitter space and so this 5D version is called AdS5. Due to the presence of the
exponential warp factor this space is also called a warped space. On the other hand, a
space with a constant metric is called ‘flat’; the ADD model is an example of flat EDs
when compactified on T n as has been assumed here. (The T n spaces are flat since one
can make a conformal transformation to a metric with only constant coefficients.)

Before going further we note that if the scale of curvature is too small, e.g., if the
inverse radius of curvature becomes larger than the 5D Planck scale, then higher cur-
vature/quantum gravity effects can dominate our discussion and the whole RS scenario
may break down since we are studying the model in its ‘classical’, i.e., non-quantum
limit. This essentially means that we must require |R5| ≤ M2∗ which further implies a
bound that k/MPl ≤ 0.1 or so, which is not much of a hierarchy. It is, of course, possi-
ble to formulate a version of the RS model including higher curvature terms where this
assumption can be dropped.

Now for the magic of the RS model. In fitting in with the RS philosophy it will be
assumed that all dimensionful parameters in the action will have their mass scale set by
M∗ ∼ MPl ∼ k so that there is no fine-tuning. However, the warp factor rescales them
as one moves about in y so that, in particular, all masses will appear to be of order the
TeV scale on the SM brane, i.e., to us. This means that if there is some mass parameter,
m, in the action which is order MPl , we on the TeV brane will measure it to be reduced
by the warp factor, i.e., me−πkrc . Note that if krc ∼ 11 (adain, a small hierarchy) this
exponential suppression reduces a mass of order 1018 GeV to only 1 TeV. Thus the ratio
of the weak scale to MPl is explained through an exponential factor and no large ratios
appear anywhere else in the model. It has been shown by Goldberger and Wise[11] that
values of krc ∼ 11 are indeed natural and can be provided by a stable configuration.
Hence we have obtained a true solution to the hierarchy problem.

How does this ‘warping’ really work? Let’s discuss a simple example by considering
the action for the SM Higgs field on the TeV brane:

S =
∫

d4xdy
√−g

(
gμν ∂μH†∂νH −λ (H2 − v2

0)
2) δ (y−πrc) , (13)

where g is the determinant of the metric tensor, λ is the usual quartic coupling and v0 is
the Higgs vev, which, keeping with the RS philosophy, is assumed to be of order MPland
not at the TeV scale. Now

√−g = e−4k|y| and gμν = e2k|y|ημν so that we can trivially



FIGURE 7. Graviton resonance production in Drell-Yan at the LHC(top) and at the ILC in μ +μ− in
the original RS I model from Ref[23]. The different curves correspond to various choices of k/M Pl and
m1 as described in the text. The ever widening resonances correspond to increasing the value of k/M Pl .

integrate over y due to the delta-function. This yields

S =
∫

d4x
(
e−2πkrcημν ∂μH†∂νH −λe−4πkrc(H2 − v2

0)
2) . (14)

Now to get a canonically normalized Higgs field (one with no extra constants in front of
the kinetic term) we rescale the field by letting H → eπkrch which now gives us

S =
∫

d4x
(
∂ μh†∂μh−λ (h2 − v2

0e−2πkrc)2) , (15)

where we have contracted the indices using η μν . Here we see that the vev that we
observe on the SM brane is not v0 but the warped down quantity v0e−πkrc which is
of order the TeV scale. Thus, in the end, the Higgs gets a TeV scale vev even though the
parameters we started with in the action are all of order MPl! The Hierarchy Problem is
solved. This warping effect is a general result of the RS model.

This result can be a curse as well as a blessing. Since this warping effects all scales
and no scale is larger than M∗ it is difficult to suppress dangerous higher dimensional
operators that can induce proton decay or flavor changing neutral currents in the original
RS model. This motivates taking the SM fermions and gauge fields into the bulk while
keeping the Higgs on or near the TeV brane. A discussion of such possibilities is,
however, beyond the scope of the current introductory notes.

What do the KK gravitons look like in this model? Even though gravitons are spin-2
it turns out that their masses and wave functions are identical to the case of a scalar field
in the RS bulk[22] which is far simpler to analyze. Let us return to the Klein-Gordon
equation above but now in the case of curved space; one obtains

(
√−g)−1∂A

(√−ggAB∂BΦ
)

= 0 . (16)

‘Separation of variables’ via the KK decomposition then yields

−e2ky∂y
(
e−2ky∂yχn

)
= m2

nχn , (17)



FIGURE 8. Allowed region in the RS model parameter space implied by various theoretical and
experimental constraints from Ref.[23]. The regions to the left of the horizontal lines are excluded by
direct searches at colliders. The dashed(solid) line for the 14 TeV LHC corresponds to an integrated
luminosity of 10(100) fb−1. The present anticipated parameter space is inside the triangular shaped region.

which reduces to the result above for a space of zero constant curvature, i.e., when k→ 0.
The solutions to this equation for the χn wave functions yield linear combinations of the
J2,Y2 Bessel functions and not sines and cosines as in the flat space case and the masses
of the KK states are given by

mn = xnke−πkrc , (18)

where the xn are roots of J1(xn) = 0. Here xn = 0, 3.8317.., 7.0155.., 10.173.., .. etc.
Since ke−πkrc is maybe ∼ a few hundred GeV, we see that the KK graviton masses are of
a similar magnitude with comparable, but unequal, spacing, i.e., the KK gravitons have
approximately TeV scale masses. This is quite different than in the ADD model.

Returning to the 5D Einstein action we can insert the wavefunctions for the KK states
and determine how they couple to SM fields on the TeV brane; one finds that

L = −
(Gμν

0

MPl
+ ∑

n>0

Gμν
n

Λπ

)
Tμν , (19)

where Λπ = MPle−πkrc is of order TeV. Here we see that the ordinary graviton zero
mode couples as it does in the ADD model as it should but all the higher KK modes
have couplings that are exponentially larger due to the common warp factor. We thus
have weak scale graviton KKs with weak scale couplings that should be produced as
spin-2 resonances at colliders. Due to the universality of gravity these KK graviton res-
onances should be observable in many processes. There are no table top or astrophysical



constraints on this scenario unlike in the ADD model. It is interesting to note that this
model also has only 2 free parameters which we can conveniently take to be the mass of
the lightest KK excitation, m1, and the ratio k/MPl; given these parameters as input all
other masses and couplings can be determined. As we will see k/MPl essentially con-
trols the KK resonance width for a fixed value of the resonance mass. The RS model in
its simplest form is thus highly predictive.
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FIGURE 9. Results from Refs.[24, 23] showing that the spin of the KK graviton in the RS model can
be determined at either the LHC(left) or ILC(right) from the angular distribution of final state dilepton
pairs. Fitting the dilepton data to different spin hypotheses is relatively straightforward.

At this point one may wonder why in the RS model the zero-mode coupling is so weak
while the couplings of all the other KK tower states are so much stronger. The strength of
the graviton KK coupling to any SM state on the TeV brane is proportional to the value
of its 5D wavefunction at y = πrc. In the flat space cases discussed above the typical
wavefunctions for KK gravitons were ∼ cosny/R and so took on essentially the same
O(1) value at the location of the SM fields for all n. Here the relevant combinations of
the J2,Y2 Bessel functions behave quite differently when xn = 0, i.e., for the zero mode,
versus the case when xn takes on a non-zero value as it does for the KK excitations. For
the zero mode the 5D wavefunction is highly peaked near the Planck brane and so its
value is very small near the TeV brane where we are; the opposite is true for the other
KK states. Thus it is the strong peaking of the graviton wavefunctions that determine the
strength of the gravitational interactions of the KK states with us.

What will these graviton KK states look like at a collider? Fig. 7 shows the production
of graviton resonances at the LHC in the Drell-Yan channel and in μ-pairs at the ILC for
different values of m1 and k/MPl[22, 23]. Note that the width of the resonance grows
as ∼ (k/MPl)2 so that the resonance appears rather like a spike when this ratio is small.
Also note that due to the nonrenormalizable coupling of the graviton KK states to the
SM fields the resonance width also grows as Γ ∼ m3

n as we go up the KK tower. Hence
heavier states are rather wide; for any reasonable fixed value of k/MPl at some point
as one goes up the KK tower one reaches states which are quite wide with Γ � mn
signaling the existence of the strongly interaction sector of the theory. Examining the
k/MPl −m1 parameter space and making some simple assumptions one sees that the 14



TeV LHC has a very good chance of covering all of it once 100 fb−1 or so of integrated
luminosity have been accumulated. Part of the present constraints on RS follow from the
requirement that k/MPl ≤ 0.1, as discussed above, and how large we are willing to let
Λπ be before we start worrying about fine tuning again. Given these considerations we
see that the 14 TeV LHC has excellent RS parameter space coverage as seen in Fig. 8.

Once we discover a new resonance at the LHC or ILC we’d like to know whether
or not it is a graviton KK state. The first thing to do is to determine the spin of
the state; Fig. 9 shows that differentiating spin-2 from other possibilities is relatively
straightforward[24, 23] at either machine. To truly identify these spin-2 resonances as
gravitons, however, we need to demonstrate that they couple universally as expected
from General Relativity. The only way to do this is to measure the various final state
branching fractions and this is most easily done at the ILC. Fig. 10 shows the expected
branching fractions for a graviton KK as a function of its mass assuming only decays
to SM particles with a Higgs mass of 120 GeV. One unique test [23] is based on the
fact that Γ(Gn → γγ) = 2Γ(Gn → �+�−) both of which can be easily measured at either
collider.

FIGURE 10. Branching fractions for the RS graviton KK state as a function of its mass from Ref.[23].
From top to bottom on the right hand side of the figure the curves correspond to the following final states:
j j, W+W−, ZZ, tt̄, �+�−, and hh, respectively.

Before concluding this section we should note that this simple RS model scenario is
barely the tip of the iceberg and has been extended in many ways to help with various
model building efforts. A few possibilities that have been considered (with limited
references!) are

• Extend to 3 or more branes[25]
• Extend to 6 or more dimensions[26]



• Put the SM gauge fields and fermions in the bulk[27] with or without localized
brane term interactions[28]. This is very active are of current research.

TEV-SCALE BLACK HOLES

Since gravity becomes strong at the M∗ scale it is natural to imagine that black holes
may form in TeV collisions at the LHC[8, 31]. We then imagine that in the collision
of any 2 partons, above some mass threshold, λM∗, some large fraction of their total
energy, ε

√
ŝ, will go into the formation of a BH with the rest being lost as gravitational

radiation. Thus, at the parton level we expect a cross section of the approximate form

σ̂ = FnπR2
s (n,M = ε

√
ŝ) Θ(

√
ŝ−λM∗) , (20)

where n is the number of extra dimensions, Fn are an O(1) geometric factors to account
for possible geometric and angular momentum effects in the collision process and Rs is
the Schwarzschild radius for a BH of mass M given by

M
M∗

= c(M∗Rs)n+1 , (21)

with

c =
(n+2)π(n+3)/2

Γ(n+3
2 )

. (22)

Note that in the above cross section expression it is assumed that the mass threshold is a
simple step function which is unlikely to be realistic in a complete model. Furthmore
it has been assumed that the SM fields are localized as in ADD or the original RS
model and that the size of the BH, Rs, is much smaller than the compactification radius,
Rc, of any of the extra dimensions. In order to obtain the predicted cross section for
the LHC we must multiply σ̂ by the appropriate parton densities and then perform the
necessary integrations. Fig. 11 shows a sample result of this calculation for the 7 TeV
LHC assuming for purposes of demonstration that M∗ = 1 TeV, ε = 0.7 and taking the
Fn as given in Ref.[32]. Here we see that these cross sections may be potentially quite
large even if we assume a minimum BH mass of 3 TeV. We note that we can expect
‘refinements’ to the above cross section estimate if any of our assumptions that we made
above prove not to be valid. Of course, to have a complete picture of this BH production
possibility we require a quantum theory of gravity.

Once the BH is produced it, approximately, decays as a blackbody with a Hawking
temperature (in the absence of angular momentum) given by TH = (n + 1)/4πRs as
can be seen in Fig. 12. However, there are many corrections to this approximation
including (i) spin effects, (ii) so called ‘grey body’ factors (to account for quantum
effects associated with the wave functions of the emitted particles), (iii) non-spherical
emission of particles, (iv) the cooling of the BH as particles are emitted (i.e., canonical
vs. microcanonical statistical treatment), (v) the emission of gravitons into the bulk, (vi)
the recoil of the BH during the emission process and (vii) the possibility that a Planck
scale mass remnant would be the final result of the evaporation process. Many of these



FIGURE 11. Black hole production cross section as a function of the minimum BH mass at the 7 TeV
LHC for (from bottom to top) n =2 to 7 assuming M∗ = 1 TeV with ε = 0.7 as discussed in the text.

FIGURE 12. Scaled BH Hawking temperature for n=0,1,2,... (from bottom to top) extra dimensions as
a function of the angular momentum parameter a ∗ = (n+2)J/2MRh with R−h being the horizon radius.



effects combine to significantly lengthen the BH lifetime in comparison to the most naive
calculations and not all of these effects have been considered in a single simultaneous
treatment. Crudely, the BH final state is one consisting of a high multiplicity of various
SM states that are emitted in a roughly spherical pattern around the collision point, a
signal which is very hard to fake in the SM. Again, a complete picture describing this
decay process will require a quantum theory of gravity.

SUMMARY AND CONCLUSION

The subject of EDs has become a huge research area over the last dozen years and we
have hardly scratched the surface in the present discussion. As one can see there are at
present an immense number of ideas and models floating around connected to EDs and
we certainly can expect there to be many more in the future. EDs can lead to a wide
range of new phenomena (Dark Matter, collider signatures, BH, etc) that will be sought
over the coming decade. Of course, only experiment can tell us if EDs have anything to
do with reality and, if they do exist, what their nature may be. The discovery of EDs will
certainly radically alter our view of the universe on the very small and very large scales.
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