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Abstract

We study the effect of interference between the Standard Model Higgs boson resonance and the

continuum background in the process γγ → H → bb̄ at a photon collider. Taking into account

virtual gluon exchange between the final-state quarks, we calculate the leading corrections to the

height of the resonance for the case of a light (mH < 160 GeV) Higgs boson. We find that the

interference is destructive and around 0.1–0.2% of the peak height, depending on the mass of the

Higgs and the scattering angle. This suppression is smaller by an order of magnitude than the

anticipated experimental accuracy at a photon collider. However, the fractional suppression can be

significantly larger if the Higgs coupling to b quarks is increased by physics beyond the Standard

Model.

PACS numbers: 14.80.Bn, 13.66.Fg, 14.80.Cp
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The Standard Model of Particle Physics (SM) has been very successful in describing a wide

range of elementary particles phenomena to high accuracy. A key ingredient of the model is

the scalar Higgs field, responsible for electroweak symmetry breaking and for generating the

masses of essentially all massive elementary particles [1–3]. Similar fields exist in extensions

of the SM, such as the Minimal Supersymmetric Standard Model (MSSM). In the SM, the

Higgs boson is the only particle that remains undiscovered, and its properties are determined

by its mass. It is a main goal of current and future high energy physics experiments to

identify the Higgs boson and explore the details of the Higgs sector. In particular, the

discovery of the Higgs boson could take place at Run II of the Tevatron at Fermilab; if

not there, then at the Large Hadron Collider (LHC) at CERN. Precise measurements of

its properties will be one of the tasks of the proposed International Linear Collider (ILC).

There is an option to use the ILC as a photon collider, by backscattering laser light off of

the high energy electron beams. The high energy, highly polarized photons produced in this

way can be used to study the various Higgs couplings to very high accuracy [4–9].

The mass of the Higgs boson in the SM and MSSM has already been constrained by

experiment to a range well within the reach of the aforementioned designed machines. Pre-

cision electroweak measurements have put an upper bound on the allowed values for its

mass, mH . 170 GeV at 95% confidence level in the SM [10, 11]. In the MSSM the Higgs

boson mass obeys the bound mH ≤ mZ at tree level; radiative corrections increase this limit

to about 135 GeV [12–14]. The mass of the Higgs boson has also been bounded from below

via the Higgs-strahlung process e+e− → HZ at LEP2, with mH & 114.1 GeV in the SM

and mH & 91.0 GeV in the MSSM [15–20].

At a photon collider, among the two possible modes, γγ and eγ, the former is especially

useful for Higgs physics. For mH < 140 GeV, the most important channel involves Higgs

production via photon fusion, γγ → H, followed by the decay H → bb̄ [21, 22]. The

advantage of this channel is that the amplitude for the continuum γγ → bb̄ background to

the Higgs signal is suppressed by a factor of O
(

mb/
√
sγγ

)

when the initial-state photons are

in a Jz = 0 state. The production of a light SM Higgs boson through this process has been

studied in a series of papers, including the radiative QCD corrections to the signal and to

the backgrounds [23–36]. The anticipated experimental uncertainty in the measurement of

the partial Higgs width, Γ(H → γγ) × Br(H → bb̄), assuming an integrated luminosity of

80 fb−1 in the high energy peak, is about 2% for mH < 140 GeV [6, 33, 34, 37–43].
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It is important to know that no other effect can contaminate the bb̄ signal at the 1%

level. A possible concern studied in this paper is the interference between the resonant Higgs

amplitude γγ → H → bb̄, and the continuum γγ → bb̄ process. Similar effects have been

studied previously in gg → H → tt̄ at a hadron collider [44], and in γγ → H → W+W−,

ZZ and tt̄ at a photon collider [45–47]. These studies assumed a Higgs boson sufficiently

heavy that its width was at the GeV scale due to on-shell decays to W +W−, ZZ and tt̄. In

the MSSM, interference effects in γγ → H → bb̄, as well as in decays to several other final

states, were taken into account, including also Sudakov resummation [48, 49]. However,

explicit results separating out the interference contributions in the SM were not presented.

The significance of such interference effects in CP asymmetries for various channels of MSSM

Higgs production and decay at a photon collider has also been explored [50]. In the case of

a light SM Higgs boson, with an MeV-scale width, the interference in gg → H → γγ was

considered at the LHC [51]. Resonance-continuum interference effects are usually negligible

for a narrow resonance, and for mH < 150 GeV the width ΓH is less than 17 MeV in the SM.1

However, the γγ → H → bb̄ resonance is also rather weak, since it consists of a one-loop

production amplitude. Therefore a tree-level, or even one-loop, continuum amplitude can

potentially compete with it, especially since the tree-level O
(

mb/
√
sγγ

)

suppression of the

γγ → bb̄ continuum amplitude is absent at one loop. In the analogous case of gg → H → γγ,

a suppression of ∼ 5% was found due to continuum interference [51].

In the SM, the production amplitude γγ → H proceeds at one loop and is dominated by a

W boson in the loop, with some top quark contribution as well. The decay H → bb̄ and the

continuum γγ → bb̄ amplitudes proceed at tree level. For mH < 160 GeV, the Higgs boson

is below the tt̄ and WW thresholds, so the resonant amplitude is predominantly real (i.e.,

has no absorptive part), apart from the relativistic Breit-Wigner factor. The full γγ → bb̄

amplitude is a sum of resonance and continuum terms,

Atotal =
−Aγγ→HAH→bb̄

s−m2
H + imHΓH

+Aγγ→bb̄ , (1)

where s = sγγ is the photon-photon invariant mass. The interference term in the cross

1 In the MSSM, the widths of light Higgs bosons may be GeV-scale if tanβ is large, e.g. as considered in

ref. [50].
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FIG. 1: Feynman diagrams contributing to the interference of γγ → H → bb̄ (upper row) with the

continuum background (lower row) up to order O (αs). Only one diagram is shown at each loop

order, for each amplitude. The blob contains W and t loops, and small contributions from lighter

charged fermions.

section is given by

δσγγ→H→bb̄ =− 2(s−m2
H)

Re
{

A∗
γγ→HA∗

H→bb̄
Aγγ→bb̄

}

(s−m2
H)2 +m2

HΓ2
H

+ 2mHΓH

Im
{

A∗
γγ→HA∗

H→bb̄
Aγγ→bb̄

}

(s−m2
H)2 +m2

HΓ2
H

.

(2)

Since the intrinsic Higgs width ΓH is much narrower than the spread of the luminosity

spectrum in
√
s [9] and the experimental resolution δmH ∼ 0.5 GeV [8], the observable

interference effect is the integral over s across the entire linewidth. Neglecting the tiny s-

dependence of Re
{

A∗
γγ→HA∗

H→bb̄
Aγγ→bb̄

}

, the integral of the first “real” term vanishes, as

it is an odd function of s around m2
H . The second “imaginary” term is an even function of

s around m2
H and therefore survives the integration. However, it requires a relative phase

between the resonant and continuum amplitudes. As described above, in the SM the resonant

amplitude is mainly real, apart from the Breit-Wigner factor. The tree level continuum

γγ → bb̄ amplitude is also real. The imaginary parts of the H → bb̄ and γγ → bb̄ amplitudes

arise at one loop, when we include the exchange of a gluon between the b and b̄ quarks.

These contributions are shown schematically in fig. 1. In fact, each amplitude individually

has an infrared divergence from the soft-gluon exchange that builds up the Coulomb phase.

However, the divergence cancels in the relative phase entering Im
{

A∗
γγ→HA∗

H→bb̄
Aγγ→bb̄

}

.
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Thus we are left with a finite contribution to δσγγ→H→bb̄ in eq. (2). To compute the fractional

interference correction to the resonance, we divide eq. (2) for δσγγ→H→bb̄ by the square of

the resonant amplitude in eq. (1). We then expand all the amplitudes in αs, obtaining

δ ≡ δσγγ→H→bb̄

σγγ→H→bb̄

= 2mHΓH Im

{

Atree
γγ→bb̄

A(1)
γγ→HAtree

H→bb̄

[

1 +
A(1)

γγ→bb̄

Atree
γγ→bb̄

−
A(2)

γγ→H

A(1)
γγ→H

− A
(1)

H→bb̄

Atree
H→bb̄

]}

, (3)

where the superscript (l) denotes the number of loops (l = 1, 2) for each term in the expan-

sion, e.g. Aγγ→H = A(1)
γγ→H +A(2)

γγ→H + . . ..

Taking into account that the tree amplitude Atree
H→bb̄

has no absorptive part, we can rewrite

δ as

δ =
2mHΓH
∣

∣Atree
H→bb̄

∣

∣

2 Im

{

1

A(1)
γγ→H

[

Atree
γγ→bb̄A

∗tree
H→bb̄ +A∗tree

H→bb̄A
(1)

γγ→bb̄

−Atree
γγ→bb̄

A∗tree
H→bb̄

A(2)
γγ→H

A(1)
γγ→H

−Atree
γγ→bb̄

A∗(1)

H→bb̄

]}

.

(4)

We neglect the two-loop amplitude A(2)
γγ→H , because in the SM it is dominantly real for

mH < 2mW , like A(1)
γγ→H , up to small contributions from loops of lighter fermions. We

also separate out the contribution from the small imaginary part of A(1)
γγ→H , obtaining the

expression

δ =
2mHΓH
∣

∣Atree
H→bb̄

∣

∣

2

[

−
Atree

γγ→bb̄
A∗tree

H→bb̄
∣

∣

∣
A(1)

γγ→H

∣

∣

∣

2 Im
{

A(1)
γγ→H

}

+
1

Re
{

A(1)
γγ→H

} Im
{

A∗tree
H→bb̄A

(1)

γγ→bb̄
−Atree

γγ→bb̄A
∗(1)

H→bb̄

}

]

.

(5)

The two photons in eq. (5) are taken to have identical helicity in all amplitudes, so that

Jz = 0 as required for interference with the production of the scalar Higgs boson.

We determine the imaginary parts of the two terms in the braces in the second line

of eq. (5) by analyzing the unitarity cuts of the diagram in fig. 2. The first term,

Im
{

A∗tree
H→bb̄
A(1)

γγ→bb̄

}

, comes from interpreting the b quarks crossing the left cut as the actual

final-state b quarks, emerging at a fixed scattering angle θ. The imaginary part of the tensor

box integral to the right of the left cut is associated with b-quark rescattering; thus one in-

tegrates over the b momenta crossing the right cut. The second term, −Im
{

Atree
γγ→bb̄

A∗(1)

H→bb̄

}

,

comes from exchanging the roles of the left and right cuts.
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FIG. 2: Feynman diagram for the calculation of the interference of γγ → H → bb̄ with the

continuum background up to order O (αs). The unitarity cuts indicated by dashed vertical lines

are used to compute the imaginary parts of the various amplitudes.

We use FORM [52] for symbolic manipulations, and the decomposition of the scalar box

integral into a six-dimensional scalar box plus scalar triangle integrals [53]. In the expressions

below, we use the same notation as in ref. [53]; primed quantities correspond to particular

tensor integrals. After cancelling the divergent parts arising from both terms (associated

with the scalar triangle integral I
(2)
3 [1]), the finite imaginary parts are given by

Im
{

A∗tree
H→bb̄
A(1) fin

γγ→bb̄

}

=
8Q2

bααsmb

m2
Hv

[

2mbm
2
H

(

m4
H − 6m2

bm
2
H + 8m4

b

)

Im {I4 [1]}

− 8m3
bm

2
H Im

{

I
(4)
3 [1]

}

− 4mb

(

m2
H − 4m2

b

)

Im
{

I
(2)′
3

}

]

+
(

cos θ → − cos θ
)

, (6)

Im
{

Atree
γγ→bb̄

A∗(1) fin

H→bb̄

}

=
8Q2

bααsmb

m2
Hv

[

− 4mbm
2
HIm

{

I
(2)′
3

}

+
4mb

t−m2
b

[

2t2 + (m2
H − 4m2

b)t +m2
bm

2
H + 2m4

b

]

Im
{

I
(2,4)
2 [1]

}

]

+
(

cos θ → − cos θ
)

, (7)

where

Im {I4 [1]} =
1

2

[

c4 Im
{

I
(4)
3 [1]

}

− c0 Im
{

ID=6−2ε
4 [1]

}

]

, (8)

Im
{

I
(4)
3 [1]

}

=
π

m2
H

ln

(

1 + β

1− β

)

, (9)
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Im
{

I
(2)′
3

}

= π

[

β +
2 (t+m2

b)

βm2
H

]

, (10)

Im
{

I
(2,4)
2 [1]

}

= πβ , (11)

and

Im
{

ID=6−2ε
4 [1]

}

= π

[

(1 + β) ln
[

m2

H
(1+β)

2(m2

b
−t)

]

m2
H (1 + β) + 2 (t−m2

b)
−

(1− β) ln
[

m2

H
(1−β)

2(m2

b
−t)

]

m2
H (1− β) + 2 (t−m2

b)

]

, (12)

c4 =
2m2

H (t +m2
b)

(t−m2
b)

2
(4m2

b −m2
H)

, (13)

c0 = 4
t2 + t (m2

H − 2m2
b) +m4

b

(t−m2
b)

2
(4m2

b −m2
H)

. (14)

In the expressions above,

β ≡
√

1− 4m2
b

m2
H

, (15)

and

t = m2
b −

m2
H

2
(1 + β cos θ) , (16)

where θ is the γγ → bb̄ center-of-mass scattering angle. The terms in eqs. (6) and (7) that

are obtained by substituting cos θ → − cos θ (or, equivalently, t→ 2m2
b −m2

H − t) arise from

a diagram like that in fig. 2, but with the two photons exchanged.

It is worth noting that the absence of bubble integrals from eq. (6) is due to a cancellation

among the scalar and tensor bubble terms, and that the tensor triangle contribution in eq. (7)

has been expressed in terms of the tensor triangle integral I
(2)′
3 appearing in eq. (6). After

adding the terms with cos θ → − cos θ, the contributions from I
(2)′
3 drop out. Simplifying,

we get

Im
{

A∗tree
H→bb̄A

(1)

γγ→bb̄
−Atree

γγ→bb̄A
∗(1)

H→bb̄

}

= 32πQ2
bααs

m2
b

v

{

(m2
H − 2m2

b)

[

1 +
m2

Ht

(m2
b − t)2

]





(1 + β) ln
[

m2

H
(1+β)

2(m2

b
−t)

]

m2
H(1 + β) + 2(t−m2

b)
−

(1− β) ln
[

m2

H
(1−β)

2(m2

b
−t)

]

m2
H(1− β) + 2(t−m2

b)





−
[

(m2
H − 2m2

b)(t+m2
b)

2(m2
b − t)2

+
2m2

b

m2
H

]

ln

(

1 + β

1− β

)

+
2βm2

b

m2
b − t

}

+
(

cos θ → − cos θ
)

. (17)
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To evaluate eq. (5), we also need the one-loop amplitude for H → γγ [54, 55],

A(1)
γγ→H =

αm2
H

4πv

[

3
∑

q=t,b,c

Q2
qA

H
q

(

4m2
q

m2
H

)

+ AH
q

(

4m2
τ

m2
H

)

+ AH
W

(

4m2
W

m2
H

)

]

, (18)

with

AH
q (x) = 2x [1 + (1− x) f (x)] , (19)

AH
W (x) = −x

[

3 +
2

x
+ 3 (2− x) f (x)

]

, (20)

f (x) =







arcsin2
(

1√
x

)

, x > 1 ,

−1
4

[

ln
(

1+
√

1−x

1−
√

1−x

)

− iπ
]2

, x < 1 ,
(21)

and the tree amplitudes [21]

Atree
H→bb̄

=
√

6
mb

v

√

m2
H − 4m2

b , (22)

Atree
γγ→bb̄

= 8
√

6παQ2
b

√

1− β4

1− β2 cos2 θ
. (23)

Here we note that the color factors have been included in eqns. (6), (7), (22) and (23); the

respective “amplitudes” are really the square roots of cross sections, summed over the b

quark colors and spins, for identical-helicity photons.

In the limit of small mb, we can expand the contribution to δ coming from the A(1)

γγ→bb̄

and A(1)

H→bb̄
phases around mb = 0. This approximation is excellent for almost all scattering

angles, because mb �√sγγ . We obtain the following formula,

δ ≈ 128πQ2
bααsmHΓH

v
m2

b

2 ln
(

mH

2mb

)

+ 2 ln (sin θ) + ln
(

1−cos θ
1+cos θ

)

cos θ

sin2 θ
∣

∣Atree
H→bb̄

∣

∣

2
Re

{

A(1)
γγ→H

}

+ O
(

m4
b

)

. (24)

We evaluate δ by letting α = 1/137.036, αs = 0.119, v = 246 GeV, mt = 171.2 GeV,

mb = 4.24 GeV, mc = 1.2 GeV, mτ = 1.78 GeV, and mW = 80.4 GeV. The total Higgs

width ΓH is computed numerically for different values of mH , with results in agreement with

HDECAY [56, 57].

In fig. 3 we plot δ as a function of mH , for θ = 45◦. We see that the interference effect is

stronger for a heavier Higgs boson, and that it reaches −0.4% for mH ' 150 GeV. This mass

value is close to the region in which there may be sizable contributions to the phase from

W boson pairs, one on-shell and one off-shell in the H → γγ amplitude; so the plot cannot

be extrapolated much further without performing this computation. In general, though, the
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γ γ → b–b and H → b–b 1-loop phase

FIG. 3: The percentage reduction of the SM Higgs signal as a function of the Higgs boson mass,

for center-of-mass scattering angle θ = 45◦. The solid curve represents the result with all phases

turned on; the dashed curves turn on different component phases each time. The effect is stronger

for a higher mass Higgs boson.

dominant contribution to δ for a light Higgs boson comes from the one-loop γγ → bb̄ and

H → bb̄ amplitudes.

In fig. 4 we plot δ as a function of the scattering angle θ, for mH = 130 GeV. Note that

the small-mass approximation formula (24) for δ diverges for small angles. This behavior

can be understood as coming from the γγ → bb̄ continuum amplitude, which exhibits a

similar angular dependence. Keeping the exact b-quark mass dependence, using eq. (17),

the divergence is regulated. We find that for mH = 130 GeV, δ = 18% at θ = 3◦, and

that it rolls off to a constant δ ≈ 35% for θ < 0.5◦. Of course it would be very challenging

experimentally to search for b jets in this far-forward region, and the reason δ is increasing

is because the continuum bb̄ background is increasing. Away from the forward region, the

interference effect has the opposite sign, negative, and its magnitude becomes maximum for
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FIG. 4: The percentage reduction of the SM Higgs signal as a function of the scattering angle for

mH = 130 GeV. The solid curve represents the result with all phases turned on; the dashed curves

turn on different component phases each time. The total effect is maximized close to θ ' 35◦.

θ ' 35◦, with δ ' −0.18%. Again, the phase arising from the one-loop γγ → bb̄ and H → bb̄

amplitudes almost solely determines the size of the correction.

In models beyond the SM, such as the MSSM, the coupling of a Higgs boson to b quarks

and to photons is modified. How does the interference effect depend on these couplings?

Looking at eq. (24), we see that the two powers of the Yukawa coupling λb ≡ mb/v from
∣

∣Atree
H→bb̄

∣

∣

2
cancel against the ones contained in ΓH (which for most of the relevant range of

mH is dominated by the H → bb̄ decay). There is one extra power of λb = mb/v coming

from the H → bb̄ amplitude in the numerator in eq. (5), so the dominant contribution to δ

is linear in λb. The subdominant contribution from Im{A(1)
γγ→H} includes one more factor of

λb, so it is quadratic in λb.

At a photon collider, the unperturbed peak height is proportional to the product Γ(H →
γγ) × Br(H → bb̄). The H → γγ width does not depend strongly on λb until it gets very
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large. The H → bb̄ branching ratio is ≈ 1, getting even closer to 1 as λb increases. Thus

the unperturbed peak height does not change dramatically, but the fractional shift δ can

increase considerably as λb grows. In particular for the MSSM, the Yukawa coupling to

the lightest Higgs h is (mb/v) × (sinα/ cosβ), where α is a Higgs mixing angle and the

ratio of vacuum expectation values of Hu and Hd is tanβ. If the heavier Higgs bosons are

not decoupled, and tanβ is large (perhaps as large as ∼ 50), as in the so-called “intense

coupling regime” [58, 59], then δ can receive a big enhancement. As an example, we have

computed δ assuming a factor of 20 increase in λb over the SM value; we obtain δ ≈ −4% for

mH = 130 GeV and θ = 45◦, with a significant contribution now from Im{A(1)
γγ→H}. (In the

very-strong-coupling regime one might also wish to compute corrections to δ due to phases

from rescattering via t-channel Higgs exchange between the b quarks, but we have not done

so.)

From eq. (24), δ is inversely proportional to the Hγγ coupling, given by eq. (18). This

means that an enhancement in δ could also come from a decrease ofA(1)
γγ→H , e.g. by opposite-

sign contributions from extra particles in the loop. However, such a decrease will also affect

Γ(H → γγ), and consequently reduce the total number of events, leading to low statistics

in the measurement of the Higgs partial width in the γγ → H → bb̄ channel.

In conclusion, we have presented results for the resonance–continuum interference effect

in the γγ → H → bb̄ channel at a photon collider, focusing on a low-mass (mH < 160 GeV)

Higgs boson. We obtained our results by computing the relative phase arising from one-

loop QCD corrections, exploiting the unitarity properties of the corresponding diagrams.

We found that the dominant contribution comes from the one-loop γγ → bb̄ and H → bb̄

amplitudes, and that the magnitude of the effect in the SM is mostly within the range of

0.1–0.2%. This indicates that such an interference effect is negligible for the determination

of the properties of the Higgs sector in the SM, and probably negligible in most regions of

MSSM parameter space, aside from “intense coupling” regions. The SM effect is an order

of magnitude smaller than the experimental precision achievable at a photon collider, and

therefore poses no worry for the measurement of the Higgs partial width at such a machine.
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