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Abstract

We identify an invariant light-front coordinate { which allows the separation
of the dynamics of quark and gluon binding from the kinematics of constituent
spin and internal orbital angular momentum. The result is a single-variable
light-front Schrodinger equation for QCD which determines the eigenspectrum
and the light-front wavefunctions of hadrons for general spin and orbital angu-
lar momentum. This frame-independent light-front wave equation is equivalent
to the equations of motion which describe the propagation of spin-J modes
on anti-de Sitter (AdS) space. Light-front holography is a remarkable feature
of AdS/CFT: it allows hadronic amplitudes in the AdS fifth dimension to be
mapped to frame-independent light-front wavefunctions of hadrons in physical
space-time, thus providing a relativistic description of hadrons at the amplitude
level. In principle, the model can be systematically improved by diagonaliz-
ing the full QCD light-front Hamiltonian on the AdS/QCD basis. Quark and
gluon hadronization can be computed at the amplitude level by convoluting the
off-shell T" matrix calculated from the QCD light-front Hamiltonian with the
hadronic light-front wavefunctions. We also note the distinction between static
observables such as the probability distributions computed from the square of
the light-front wavefunctions versus dynamical observables such as the struc-
ture functions and the leading-twist single-spin asymmetries measured in deep
inelastic scattering which include the effects of initial and final-state interac-
tions.
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1 Introduction

One of the most important theoretical tools in atomic physics is the Schrodinger
equation, which describes the quantum-mechanical structure of atomic systems at the
amplitude level. Light-front wavefunctions (LFWFs) play a similar role in quantum
chromodynamics (QCD), providing a fundamental description of the structure and
internal dynamics of hadrons in terms of their constituent quarks and gluons. The
natural concept of a wavefunction for relativistic quantum field theories such as QCD
is the light-front wavefunction ¥, (x;,k ;, A;) which specifies the n quark and gluon
constituents of a hadron’s Fock state as a function of the light-cone fractions x; =
kt /Pt = (k° + k%) /(P° + P3) transverse momenta k ; and spin projections )\;. The
light-front wavefunctions of bound states in QCD are relativistic generalizations of
the Schrodinger wavefunctions of atomic physics, but they are determined at fixed
light-cone time 7 =t + z /¢ — the “front form” introduced by Dirac [I] — rather than
at fixed ordinary time t.

When a flash from a camera illuminates a scene, each object is illuminated along
the light-front of the flash; i.e., at a given 7. In contrast, setting the initial condition
using conventional instant time t requires simultaneous scattering of photons on each
constituent. Thus it is natural to set boundary conditions at fixed 7 and then evolve
the system using the light-front Hamiltonian P = P° — P3 = id/dr. The invariant
Hamiltonian Hyp = PTP — P? then has eigenvalues M? where M is the phys-
ical mass. Its eigenfunctions are the light-front (LF) eigenstates whose Fock state
projections define the light-front wavefunctions.

A remarkable feature of LEFWFs is the fact that they are frame independent;
i.e., the form of the LEFWF is independent of the hadron’s total momentum Pt =
P° + P3 and P . The light-front formalism for gauge theories in light-cone gauge
At = 0 is particularly useful in that there are no ghosts and the gluon polarization
is purely transverse: S; = +1. Thus one has a direct physical interpretation of
orbital angular momentum. The constituent spin and orbital angular momentum
properties of the hadrons are also encoded in the LEWFs. For example, the internal
spin and orbital angular momentum is conserved for each n-particle LF Fock state:
S SF4+ 3" N LE = J?, since there are n — 1 relative orbital angular momentum.
Since the plus momenta are conserved and positive, the vacuum in front form is trivial
except for kT zero modes. For example, in the case of the Higgs theory, a c-number
LF zero mode constant [2] replaces the vacuum condensate of the instant form. The
simple structure of the light-front vacuum allows an unambiguous definition of the
partonic content of a hadron.

Light-front wavefunctions are the fundamental process-independent amplitudes
which encode hadron properties in terms of their quark and gluon degrees of freedom,
predicting dynamical quantities such as spin correlations, form factors, structure func-
tions, generalized parton distributions, and exclusive scattering amplitudes. Meson
and baryon light-front wavefunctions can be measured in diffractive di-jet and tri-jet



reactions, respectively. One of the most important advantages of the light-front for-
malism is that spacelike form factors can be represented as simple overlap integrals
of the LF Fock state wavefunctions v,, and ¢, with n = n; i.e., the Drell-Yan-West
formula. This is in dramatic contrast to the usual instant form result which requires
the inclusion of contributions where the current couples to vacuum processes. Thus
knowing the wavefunction of a hadron at fixed time ¢ is not sufficient to determine
the form factors and other properties of the hadron. In addition, one must also
be able to compute the boosted instant form wavefunction, which requires solving
a complex dynamical problem. In fact, boosted wavefunctions are only known at
weak coupling and even then are more complicated than the product of Melosh or
Wigner transformations of the individual constituent spinors. In contrast, the light-
front wavefunctions of a hadron are independent of the momentum of the hadron,
and they are thus boost invariant. The generalized parton distributions measured
in deep inelastic Compton scattering v (¢)p — ~(k)p in the handbag approximation
can be written as the overlap of light-front wavefunctions [3].

2 A Single-Variable Light-Front Schrodinger Equa-
tion for QCD [4]

A key step in the analysis of an atomic system such as positronium is the introduc-
tion of the spherical coordinates r,6,¢ which separates the dynamics of Coulomb
binding from the kinematical effects of the quantized orbital angular momentum L.
The essential dynamics of the atom is specified by the radial Schrodinger equation
whose eigensolutions ), 1, (r) determine the bound-state wavefunction and eigenspec-
trum. Here we show that there is an analogous invariant light-front coordinate (
which allows one to separate the essential dynamics of quark and gluon binding from
the kinematical physics of constituent spin and internal orbital angular momentum.
The result is a single-variable light-front Schrodinger equation for QCD which deter-
mines the eigenspectrum and the light-front wavefunctions of hadrons for general spin
and orbital angular momentum. Conversely, this analysis can be applied to atomic
physics, providing an elegant formalism for relativistic atoms.

The connection between light-front QCD and the description of hadronic modes
on AdS space is physically compelling and phenomenologically successful. To a first
approximation light-front QCD is formally equivalent to an effective gravity theory
on AdSs. To prove this, we show that the LF Hamiltonian equations of motion of
QCD lead to an effective LF wave equation for physical modes ¢(¢) which encode the
hadronic properties. This LF wave equations carry the orbital angular momentum
quantum numbers and are equivalent to the equations of motion which describe the
propagation of spin-J modes on AdS space. This allows us to formally establish a
gauge/gravity correspondence between an effective gravity theory defined on AdSs
and light front QCD at its asymptotic boundary.



To simplify the discussion we will consider a two-parton hadronic bound state.
In the case of massless constituents the LF Hamiltonian equation of motion of QCD
leads to the equation

d*k k2
/ /16 3 W)(l",k )|2-|—interactions
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— /0 m/d b ¢ (z,b )(—Vbu) Y(z,b )+ interactions. (1)

The functional dependence for a glven Fock state is given in terms of the invariant
2
mass M2 = (ZZ:l kfj) = Za . (11&:3) , the measure of the off-mass shell

energy M? — M?2. Similarly in impact space the relevant variable for a two-parton
state is (* = x(1 — z)b?. Thus, to first approximation LF dynamics depend only
on the boost invariant variable M, or ¢ and hadronic properties are encoded in
the hadronic mode ¢(¢): ¥ (x,k ) — ¢(¢). We choose the normalization of the
LF mode ¢(¢) = (¢|¢) with (¢l¢) = [d(|(C]P)|* = 1. Comparing with the LFWF

normalization, we find the functional relation: %2 = m(l ) W(x b )|, which is the
same result found in [5] 6] from the mapping of transition matrix elements for arbitrary

values of the momentum transfer.
We can write the Laplacian operator in circular cylindrical coordinates ¢ = ((, ¢)

with 5 = o(l—2)b : V2 = CdC (C%) + 4%86—;, and factor out the angular de-
pendence of the modes in terms of the SO(2) Casimir representation L? of orbital
angular momentum in the transverse plane: ¢((, @) ~ e 9¢(¢). We find

2 _ & Ld L) 60
M= [aco Ve (- 1o+ 5 ) B+ [aco uis)

- [ico (0 (-1 - 1aE +U0) 960 ©)

where all the complexity of the interaction terms in the QCD Lagrangian is summed
up in the effective potential U(¢). The light-front eigenvalue equation Hpp|p) =
M?| ) is thus a light-front wave equation for ¢

>  1—4L2 9
( a2 4—€2+U(C)) $(¢) = M7¢(¢), (3)
an effective single-variable light-front Schrodinger equation which is relativistic, co-
variant and analytically tractable. One can readily generalize the equations to allow
for the kinetic energy of massive quarks [7].

As the simplest example we consider a bag-like model [8] where the partons are
free inside the hadron and the interaction terms will effectively build confinement.

The effective potential is a hard wall: U({) = 0 if ¢ < AQch and U(¢) = oo if
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¢ > AQch. However, unlike the standard bag model [§], boundary conditions are
imposed on the boost-invariant variable {, not on the bag radius at fixed time. If
L? > 0 the LF Hamiltonian is positive definite (¢|Hpp|¢) > 0 and thus M? > 0. If
L? < 0 the LF Hamiltonian is unbounded from below and the particle “falls towards
the center”. The critical value corresponds to L = 0. The mode spectrum follows
from the boundary conditions ¢(¢ = 1/Aqep) = 0, and is given in terms of the roots
of Bessel functions: M7, = B xAqcp. Since in the conformal limit U(¢) — 0, Eq.
is equivalent to an AdS wave equation, the hard-wall LF model discussed here is
equivalent to the hard wall model of Ref. [9]. Likewise a two-dimensional transverse
oscillator with effective potential U(¢) ~ ¢? is equivalent to the soft-wall model of
Ref. [T0] which reproduce the usual linear Regge trajectories.

3 Light-Front Holography

Our analysis follows from recent developments in light-front QCD [4, 5] 6l [7] which
have been inspired by the AdS/CFT correspondence [II] between string states in
anti-de Sitter (AdS) space and conformal field theories (CFT) in physical space-time.
The application of AdS space and conformal methods to QCD can be motivated from
the empirical evidence [12] and theoretical arguments [I3] that the QCD coupling
as(Q?) has an infrared fixed point at low Q2. The AdS/CFT correspondence has led
to insights into the confining dynamics of QCD and the analytic form of hadronic
light-front wavefunctions. As we have shown recently, there is a remarkable map-
ping between the description of hadronic modes in AdS space and the Hamiltonian
formulation of QCD in physical space-time quantized on the light-front. This pro-
cedure allows string modes ®(z) in the AdS holographic variable z to be precisely
mapped to the light-front wave functions of hadrons in physical space-time in terms
of a specific light-front variable { which measures the separation of the quark and
gluonic constituents within the hadron (see fig. 1). The coordinate ¢ also specifies
the light-front kinetic energy and invariant mass of constituents. This mapping was
originally obtained by matching the expression for electromagnetic current matrix
elements in AdS space with the corresponding expression for the current matrix el-
ement using light-front theory in physical space time [5 [6]. More recently we have
shown that one obtains the identical holographic mapping using the matrix elements
of the energy-momentum tensor [I4], thus providing an important consistency test
and verification of holographic mapping from AdS to physical observables defined on
the light front. The resulting wavefunction [see fig. 2 (a)] displays confinement at
large interquark separation and conformal symmetry at short distances, reproducing
dimensional counting rules for hard exclusive amplitudes. The predictions for the
spacelike pion form factor for the hard-wall and soft-wall models is shown in fig. 2
(b).

The use of the invariant coordinate ¢ in light-front QCD allows the separation
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Figure 1: Light-front holography for meson wavefunctions: ¢(z,b ) = ome
This mapping is derived from the equality of the LF and AdS formulae for current

matrix elements.
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(a) Pion light-front wavefunction ¢ (x,b ) for the AdS/QCD soft wall

Figure 2:
(k = 0.375 GeV) model. (b) Holographic prediction the space-like pion form factor:
(blue) hard wall (Agep = 0.32 GeV) and (red) soft wall (x = 0.375 GeV) models.



of the dynamics of quark and gluon binding from the kinematics of constituent spin
and internal orbital angular momentum. The result is a single-variable light-front
Schrodinger equation which determines the eigenspectrum and the light-front wave-
functions of hadrons for general spin and orbital angular momentum. This light-front
wave equation serves as a first approximation to QCD and is equivalent to the equa-
tions of motion which describe the propagation of spin-J modes on anti-de Sitter
(AdS) space. Remarkably the AdS equations correspond to the kinetic energy terms
of the partons inside a hadron, whereas the interaction terms build confinement and
correspond to the truncation of AdS space [4]. As in this approximation there are
no interactions up to the confining scale, there are no anomalous dimensions. This
may explain the experimental success of power-law scaling in hard exclusive reactions
where there are no indication of the effects of anomalous dimensions. For the same
reason we also expect little effect of anomalous dimensions on the gravity side for
J > 2. This also explains why physical hadrons lying on Regge trajectories with
J > 2 are not incompatible with a string description. In the hard wall model there is
a total decoupling of the internal orbital angular momentum from the total hadronic
spin J, and thus the light-front excitation spectrum of hadrons depend only on the
orbital and principal quantum numbers. In the hard-wall holographic model the de-
pendence is linear: M,, ~ 2n+ L. In the soft-wall model the usual Regge behavior is
found M? ~ n + L. One can systematically improve the AdS/QCD approximation
by diagonalizing the QCD LF Hamiltonian on the AdS/QCD basis or by generalizing
the variational and other systematic methods used in chemistry and nuclear physics.
The action of the non-diagonal terms in the QCD interaction Hamiltonian generates
the form of the higher Fock state structure of hadronic LEFWFs. We emphasize, that
in contrast with the original AdS/CFT correspondence, the large No limit is not
required to connect light-front QCD to an effective dual gravity approximation.

4 Hadronization at the Amplitude Level

The conversion of quark and gluon partons is usually discussed in terms of on-shell
hard-scattering cross sections convoluted with ad hoc probability distributions. The
LF Hamiltonian formulation of quantum field theory provides a natural formalism
to compute hadronization at the amplitude level. In this case one uses light-front
time-ordered perturbation theory for the QCD light-front Hamiltonian to generate
the off-shell quark and gluon T-matrix helicity amplitude using the LF generalization
of the Lippmann-Schwinger formalism:

1
T g NS
M%nitial - M?ntermediate + €
Here M2, cdine = Son, (K2, +m2)/a; is the invariant mass squared of the inter-

mediate state and HFF is the set of interactions of the QCD LF Hamiltonian in the
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P(z, kL, i)

Figure 3: Illustration of an event amplitude generator for ete — v — X for

hadronization processes at the amplitude level. Capture occurs if (? = z(1 — z)b? >
2

1/A3cp in the AdS/QCD hard wall model of confinement; i.e. if M?* = <

- z(1 o)

2

ghost-free light-cone gauge [I5]. The TH -matrix element is evaluated between the
out and in eigenstates of HgFD. The event amplitude generator is illustrated for
ete —~v — X in fig. . The LEWFS of AdS/QCD can be used as the interpolat-
ing amplitudes between the off-shell quark and gluons and the bound-state hadrons.
Specifically, if at any stage a set of color-singlet partons has light-front kinetic en-
ergy >, k?;/x; < Ajep, then one coalesces the virtual partons into a hadron state
using the AdS/QCD LFWFs. This provides a specific scheme for determining the
factorization scale which matches perturbative and nonperturbative physics.

This scheme has a number of important computational advantages: (a) Since
propagation in LF Hamiltonian theory only proceeds as 7 increases, all particles
propagate as forward-moving partons with k; > 0. There are thus relatively few
contributing T—ordered diagrams. (b) The computer implementation can be highly
efficient: an amplitude of order g” for a given process only needs to be computed once.
(c) Each amplitude can be renormalized using the “alternate denominator” countert-
erm method [I6], rendering all amplitudes UV finite. (d) The renormalization scale
in a given renormalization scheme can be determined for each skeleton graph even
if there are multiple physical scales. (e) The TXf-matrix computation allows for the
effects of initial and final state interactions of the active and spectator partons. This
allows for leading-twist phenomena such as diffractive DIS, the Sivers spin asymme-
try and the breakdown of the PQCD Lam-Tung relation in Drell-Yan processes. (f)
ERBL and DGLAP evolution are naturally incorporated, including the quenching of
DGLAP evolution at large z; where the partons are far off-shell. (g) Color confine-
ment can be incorporated at every stage by limiting the maximum wavelength of the
propagating quark and gluons [13].



5 Conclusions

We have identified an invariant light-front coordinate ¢ which allows the separation
of the dynamics of quark and gluon binding from the kinematics of constituent spin
and internal orbital angular momentum. The result is a single-variable light-front
Schrodinger equation for QCD which determines the eigenspectrum and the light-
front wavefunctions of hadrons for general spin and orbital angular momentum. This
frame-independent light-front wave equation is equivalent to the equations of motion
which describe the propagation of spin-J modes on anti-de Sitter (AdS) space [4].
Light-Front Holography is one of the most remarkable features of AdS/CFT. It al-
lows one to project the functional dependence of the wavefunction ®(z) computed in
the AdS fifth dimension to the hadronic frame-independent light-front wavefunction
¥(x;,b ;) in 3 + 1 physical space-time. The variable z maps to ((z;,b ;). To prove
this, we have shown that there exists a correspondence between the matrix elements
of the energy-momentum tensor of the fundamental hadronic constituents in QCD
with the transition amplitudes describing the interaction of string modes in anti-de
Sitter space with an external graviton field which propagates in the AdS interior [14].
The agreement of the results for both electromagnetic and gravitational hadronic
transition amplitudes provides an important consistency test and verification of holo-
graphic mapping from AdS to physical observables defined on the light-front. The
transverse coordinate ( is related to the invariant mass squared of the constituents
in the LFWF and its off-shellness in the light-front kinetic energy, and it is thus the
natural variable to characterize the hadronic wavefunction.

It is interesting to note that the form of the nonperturbative pion distribution
amplitude ¢.(z) obtained from integrating the ¢g valence LFWF ¢ (z,k ) over k |
has a quite different x-behavior than the asymptotic distribution amplitude predicted
from the PQCD evolution [17] of the pion distribution amplitude. The AdS prediction
bx(x) = V3 frr/x(1 — z) has a broader distribution than expected from solving the
ERBL evolution equation in perturbative QQCD. This observation appears to be con-
sistent with the results of the Fermilab diffractive dijet experiment [18], the moments
obtained from lattice QCD [7] and pion form factor data [19].

Nonzero quark masses are naturally incorporated into the AdS predictions [7]
by including them explicitly in the LF kinetic energy >, (k?*; + m?)/xz;. Given the
nonpertubative LEFWF's one can predict many interesting phenomenological quantities
such as heavy quark decays, generalized parton distributions and parton structure
functions. The AdS/QCD model is semiclassical and thus only predicts the lowest
valence Fock state structure of the hadron LEWF. In principle, the model can be
systematically improved by diagonalizing the full QCD light-front Hamiltonian on
the AdS/QCD basis.

Color confinement and its implementation in AdS/QCD implies a maximal wave-
length for confined quarks and gluons and thus a finite IR fixed point for the QCD
coupling [I3]. This strengthens our understanding of the narrow widths of the J/
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® Square of Target LFWFs Modified by Rescattering: ISI & FSI
® No Wilson Line Contains Wilson Line, Phases
® Probability Distributions No Probabilistic Interpretation
® Process-Independent Process-Dependent - From Collision
® T-even Observables T-Odd (Sivers, Boer-Mulders, etc.)

No Shadowing, Anti-Shadowing [ Shadowing, Anti-Shadowing, Saturation

Sum Rules: Momentum and J* Not Proven

DGLAP Evolution; mod. at large x | DGLAP Evolution

No Diffractive DIS Hard Pomeron and Odderon: DDIS

Figure 4: Dynamic versus static observables.

and Y. A new perspective on the nature of quark and gluon condensates in quan-
tum chromodynamics is presented in [20]: the spatial support of QCD condensates
is restricted to the interior of hadrons, since they arise due to the interactions of
confined quarks and gluons. Chiral symmetry is thus broken in a limited domain of
size 1/m,, in analogy to the limited physical extent of superconductor phases. This
picture explains recent results which find no significant signal for the vacuum gluon
condensate.

We also note the importance of distinguishing between static observables such as
the probability distributions computed from the square of the light-front wavefunc-
tions versus dynamical observables such as the structure functions and the leading
twist single-spin asymmetries measured in deep inelastic scattering which include the
effects of final state interactions. This distinction is summarized in fig. [4
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