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Abstract

We consider a 6D extension of the Randall-Sundrum (RS) model, RS6, where the Standard

Model (SM) gauge fields are allowed to propagate in an additional dimension, compactified on S1

or S1/Z2. In a minimal scenario, fermions propagate in the 5D RS subspace and their localization

provides a model of flavor. New Kaluza-Klein (KK) states, corresponding to excitations of the

gauge fields along the 6th dimension, appear near the TeV scale. The new gauge KK modes behave

differently from those in the 5D warped models. These RS6 states have couplings with strong

dependence on 5D field localization and, within the SM, only interact with heavy fermions and the

Higgs sector, to a very good approximation. Thus, the collider phenomenology of the new gauge

KK states sensitively depends on the 5D fermion geography. We briefly discuss inclusion of SM

fermions in all 6 dimensions, as well as the possibility of going beyond 6D.
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I. INTRODUCTION

The Randall-Sundrum (RS) model [1] has been extensively discussed as a resolution of

the hierarchy between the O(TeV) weak scale in the Standard Model (SM) and the scale

MP ∼ 1019 GeV of 4D gravity. The original model [1] was based on a slice of AdS5, bounded

by two 4D Minkowski branes. This model only addressed the weak-MP hierarchy, using the

exponentially warped 5D spacetime, with 4D SM fields localized at the TeV (IR) brane and

the 4D gravity localized near the Planck (UV) brane. It was later shown that extending

the SM content to all 5 dimensions [2, 3, 4, 5] still allows one to address the hierarchy, as

long as the Higgs sector is localized near the TeV brane. An interesting consequence of this

extension is that 5D fermion masses allow one to localize the zero modes of these fields along

the 5th dimension [4] and provide a predictive model of flavor [4, 5].

Various extensions of the RS model have been considered in the literature. Much of the

discussion has been concerned with expanding the bulk field content and extensions of 5D

gauged symmetries, in order to enhance the agreement of the of the model with low energy

data. In comparison, less attention has been devoted to extending the geometrical basis of

warped models.

The RS model can be considered to be an effective theory, emerging from a string theoretic

construction. Also, the AdS/CFT correspondence [6] has been very helpful in relating the

geometric results in the RS picture to those arising from 4D strong dynamics [7, 8]. These

theoretical aspects are generally contained in a larger picture with more than 5 dimensions.

Viewed in this way, it is natural to consider adding additional dimensions to the RS geometry

and studying their potential observable consequences. Some work along this direction can be

found in Refs. [9, 10, 11, 12], where dimensions beyond the original 5D have been considered.

However, these works, by and large, have concentrated on the gravitational sector and its

phenomenology.

In this paper, we consider extending RS-type models with additional non-warped dimen-

sions, where the gauge sector of the SM is also allowed to propagate in all dimensions. We

adopt a minimal setup, where SM fermions are only allowed to travel in the original warped

5D spacetime, in order to address flavor physics, but some or all gauge fields are allowed to

reside in 6 dimensions. We will consider an S1 or S1/Z2 compactification for the 6th dimen-

sion and refer to this extended geometry as RS6. We concentrate on a 6 dimensional SU(3)c
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sector and show that new Kaluza-Klein (KK) fields emerge at the TeV scale, with couplings

very different from those that arise in the usual 5D picture [5, 13]. The couplings of these

new modes to 5D fermion fields are shown to be exponentially sensitive to localization along

the 5th dimension. We then begin to consider the collider phenomenology of these new KK

modes at the LHC and their potential for discovery.

In the next section, we derive the KK equation of motion and the spectrum, for a gauge

field in RS6 . We also briefly discuss extensions to higher dimensional spheres. In section

III, we derive the couplings of these KK modes to 5D fermions. In section IV, we discuss the

LHC phenomenology of this model and outline its discovery prospects. We will also briefly

discuss possible extensions of our minimal RS6 model to RSn, n > 6, as well as scenarios

with fermions in more than 5 dimension. We will conclude in section V. The appendix

provides some relevant expressions for the RS7 case with an S2 compactification.

II. KK SPECTRUM AND WAVEFUNCTIONS

Lets us consider the RS6 metric GMN , M, N = 0, 1, . . . , 5; x4 = rcφ, x5 = Rθ, with an

extra dimension compactified on S1:

ds2 = e−2σημνdxμdxν − r2
cdφ2 − R2dθ2, (1)

where, as usual σ(φ) = krc|φ|, k is the scale of curvature and rc is the radius of compacti-

fication of the AdS5 slice; φ ∈ [−π, π] and a Z2 orbifolded 5th dimension is assumed. Here,

R is the radius of S1 and θ ∈ [0, 2π]; in the absence of fine-tuning, it is natural to imagine

that, e.g., kR ∼ 1. The choice of the 6D energy momentum tensor consistent with this

background has been discussed in Ref. [11], where the corresponding gravitational sector

was studied.

The action for a 6D non-interacting gauge field is given by

SA = −1

4

∫
rcdφ

∫
Rdθ

√−G GAMGBNFABFMN , (2)

where G = det(GMA) and FMN = ∂MAN−∂NAM . As is well-known, with 2 extra dimensions,

in addition to the 4D gauge fields there is also a 4D tower of KK scalars that correspond to

a combination of Aφ and Aθ. For example, in the case of SU(N), this would correspond to

a tower of massive adjoint scalars without a zero-mode. As is also well-known in the case of
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flat extra dimensions, such scalars can lead to their own interesting new physics[14]. Here,

we will concentrate on the 4D vector modes Aμ, μ = 0, 1, 2, 3, and set Aφ = Aθ = 0. With

this choice, the action (2) yields

SA =

∫
rcdφ

∫
Rdθ

{
−1

4
F μνFμν − 1

2

[
1

r2
c

∂φ

(
e−2σ∂φAμ

)
Aμ + e−2σ 1

R2
∂2

θA
μAμ

]}
. (3)

The vector field Aμ(x, φ, θ) can be expanded in KK modes

Aμ(x, φ, θ) =
∑
n,l

A(n, l)
μ (x)

χ(n, l)(φ)√
rc

ϕ(l)(θ)√
R

. (4)

The θ−dependent wavefunction is given by

ϕ(l)(θ) = eilθ/
√

2π (5)

in the case of S1 and

ϕ(l)(θ) =

⎧⎨
⎩ 1/

√
2π, l = 0

cos(lθ)/
√

π, l �= 0
(6)

for the orbifolded S1/Z2 case. The wavefunctions obey the orthonormality conditions∫
dφ χ(m, l)χ(n, l) = δmn (7)

and ∫
dθ ϕ(l)(θ)ϕ(l′)(θ) = δll′ . (8)

Inserting the above KK expansion into the action (3), we find the following eigenvalue

equation for the (n, l) mode of mass mnl

− 1

r2
c

d

dφ

(
e−2σ d

dφ
χ(n, l)(φ)

)
+ e−2σ

(
l

R

)2

χ(n, l)(φ) = m2
nl χ

(n, l)(φ). (9)

The above equation of motion corresponds to that for a 5D vector field of bulk mass l/R,

in the RS background. The solutions are given by [3]

χ(n, l)(φ) =
eσ

Nnl
[Jν(znl) + αnlYν(znl)], (10)

where Jν and Yν denote Bessel functions of order ν where

ν ≡
√

1 +

(
l

kR

)2

, (11)
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with znl(φ) ≡ (mnl/k)eσ. We will define for simplicity the combination

ζν(znl) ≡ Jν(znl) + αnlYν(znl). (12)

We then impose the boundary conditions ∂φχ(n, l)(φ) = 0 at φ = 0, π, which yield

znlζ
′
ν + ζν = 0. (13)

Using Eq. (7) and Eq. (13), we find for the normalization

Nnl =
ekrcπ

xnl

√
krc

√
ζν [z2

nl − (ν2 − 1)] |xnl
εnl , (14)

where xnl = znl(π) and εnl = znl(0).

Eq. (13) evaluated at φ = 0 can be used to determine the coefficients αnl:

αnl = −Jν(εnl) + εnlJ
′
ν(εnl)

Yν(εnl) + εnlY ′
ν(εnl)

. (15)

One can then easily show that αnl ∼ ε2ν
nl . Since addressing the hierarchy implies εnl ∼ 10−16,

for ν > 1, one can safely ignore the part of the wavefunction χ(n, l) that is proportional to

αnl. The masses of the KK modes corresponding to χ(n, l) are given by mnl = xnl k e−krcπ,

where xnl are the roots of the transcendental equation

Jν(xnl) + xnlJ
′
ν(xnl) = 0, (16)

obtained from Eq. (13) at φ = π, ignoring terms proportional to αnl. In this approximation,

we then find

χ(n, l)(φ) � eσ

Nnl
Jν(znl), (17)

where

Nnl � ekrcπ

√
krc

β(xnl, l)Jν(xnl), (18)

and

β(xnl, l) ≡
[
1 −

(
l

kRxnl

)2
]1/2

. (19)

For the purposes of this work, Eqs. (16), (17), and (18) are very good approximations and

will be used in what follows. Note that since β is a real quantity we must have xnl > l/kR

and thus states with l > 0 do not have zero-modes.

One can similarly derive expressions for KK gauge fields from compactification on SN ,

with N > 1. As an example, we display the wavefunctions for the case of S2 in the appendix.

Much of what follows in the next section can then be applied to higher dimensional spherical

compactifications, with rather straightforward modifications.
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III. KK COUPLINGS IN THE MINIMAL RS6 MODEL

Here, we consider a minimal extension where gauge fields are allowed to propagate in all 6

dimensions and the SM fermions reside in the 5D RS subspace, in order to explain the flavor

structure observed at low energies. Later we will discuss typical fermion “geographies” and

their experimental consequences in the context of this minimal RS6 model. For simplicity

we will assume that the SM fermions are localized at θ = 0. To get some sense of the

magnitude of the couplings to SM fermions, we will first consider two extreme cases, with a

fermion localized at either the UV or the IR brane. At the UV brane, φ = 0, and we have

(for l > 0)

χ(n, l)(0) ∼ εν+1
nl , (20)

whereas at the IR brane, φ = π, we have for all l

χ(n, l)(π) �
√

krc/β(xnl, l). (21)

Using the zero mode wavefunction χ(0, 0) = 1/(2π), one can easily derive the relation

g4 =
g6

2π
√

rcR
, (22)

between the 4D and 6D gauge couplings, g4 and g6, respectively. Using Eq. (20), one then

finds that the l �= 0 KK modes exponentially decouple from fermions at the UV brane.

However, the couplings gnl, for l �= 0, to the IR brane fermions are given by

gnl|IR =

⎧⎨
⎩ g4

√
2πkrc/β(xnl, l), S1

g4

√
4πkrc/β(xnl, l), S1/Z2 ,

(23)

where we have used Eq. (21). Given that 1/β(xnl, l) > 1 and krc ∼ 10, we see that gnl � 8g4

at the IR brane is quite large. Note that this coupling is larger by factors of 1/β(xnl, l),

for S1, and
√

2/β(xnl, l), for S1/Z2, than the corresponding coupling in the 5D RS model.

For example, if we take kR = 1, we obtain x10 � 2.45, x11 � 2.87, and 1/β(x11, 1) � 1.07.

Hence, the ratio of the mass of the lightest l �= 0 KK mode to the lightest KK mode is

2.87/2.45 � 1.17 in this case. Fig. 1 shows some of the lowest lying roots obtained from Eq.

16, which determines the gauge KK masses, as a function of the value of l. These will be

important when we study the possible LHC signatures in the next Section.

Having studied the extreme UV/IR brane cases, let us consider the intermediate cases

where the fermions are not confined to either brane, but have 5D profiles. For a zero mode
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FIG. 1: The lowest lying roots, xnl, assuming kR = 1(red), 2(green) or 3(blue) for n = 1(dots),

2(dashes) or 3(solid) as a function of l.

fermion, the bulk profile is given by [4, 5]

f0 =
e−cσ

N0
, (24)

with the normalization

N0 =

[
ekrcπ(1−2c) − 1

krc(1/2 − c)

]1/2

. (25)

Here, c > 1/2 corresponds to UV localization (light fermions) and c < 1/2 corresponds to

IR localization (heavy fermions).

The coupling gnl;c of the (n, l) modes to a 5D zero mode fermion is then given by

gnl;c =
√

2π

∫
dφf 2

0 χ(n, l), (26)

for S1, and the corresponding S1/Z2 value is larger by
√

2 for l �= 0. For example, if we choose

typical values c = 0.6 for light fermions and c = 0.3 for heavy fermions and set kR = 1, we

then find g11;0.6 = 9×10−4g4 and g11;0.3 = 2.1g4, for the S1 compactification. Thus, typically,

we expect the l �= 0 modes to decouple from light fermions, to a good approximation.

However, the coupling of these modes to light fermions has a strong dependence on the exact

fermion localization in 5D. 1 This is in contrast to the original RS model, corresponding to

1 Note that this may lead to additional flavor issues due to the exchanges of these states, but such a
discussion is beyond the scope of the present paper.
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l = 0 here, where gauge KK couplings to light fermions are nearly universal and small, but

not negligible; for example, taking c = 0.6 one obtains instead g10;0.6 = 0.19g4.

IV. LHC PHENOMENOLOGY

Here we address potential signals of the RS6 model at the LHC. Similar considerations

can be applied to higher dimensional spherical compactifications SN , with N > 1, keeping

the SM fermions in the 5D subspace. For the 5D RS model, corresponding to l = 0 modes,

there is very little sensitivity in the gauge KK couplings to the UV localization (c > 1/2)

of light fermions and one can choose a typical value for c � 1/2 and obtain the universal

KK coupling to light fermions of the SM. This allows for a relatively model independent

assessment of the relevant collider phenomenology [15, 16, 17]. However, as we saw before,

the couplings of the l �= 0 gauge KK modes are very sensitive to the 5D localization of the

fermions. Thus, to study possible signatures of the RS6 model we must be more specific

about the localization parameters for the important initial state fermions at colliders. In

what follows we consider the simplest case of S1 compactification.

To make a comparison of our results with some of the existing literature easier, we adopt

a 5D flavor model in which tR is the most IR-localized SM fermion and couples to the

lightest KK mode (l = 0) with the strength g4

√
krcπ. Here, we will concentrate on KK

gluons and hence g4 = gs, where gs is the SU(3) coupling in the SM. This corresponds to

c(tR) = −0.6, in our convention. We choose the localization parameters close to those in

realistic models [18], but we only attempt to capture the essential features of 4D flavor and

not the details. To get the correct top mass, we then require c(Q3
L) = 0.3, where Q3

L denotes

the third family quark doublet and we have assumed that the Higgs is on the IR brane.

This way, the dominant decay mode of the new states is into the channel tRt̄R. However,

in the following, we would like to address resonant production of the l �= 0 modes from qq̄

initial states. For very light quarks we saw above that these couplings were very small and

so, e.g., conventional uū, dd̄ and ss̄ initial state partons lead to small cross sections. Given

that bL is IR localized with our choice of parameters, its coupling to the (11) state is ∼ 2gs

and fairly large. Hence, it makes sense to examine whether one can use the b-content of

the initial states for KK production. Here, we ignore higher order corrections to the flux of

initial state b-quarks, which is a good approximation for our purposes [19].
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FIG. 2: RS6 KK production for kR = 1, where the lightest state is at m10 = 2 TeV. The upper

and lower pairs of histograms correspond to cuts of |η| < 1, 1/2, respectively, on the final state

tops. Both final state top quarks are also required to have pT > 200 GeV. In each pair, the upper

histogram includes RS6 KK contributions up to states which are ∼ 1.54 times more massive than

the lightest KK mode. The lower histogram in the pair represents the usual 5D RS scenario. An

integrated luminosity of L = 1 ab−1 has been assumed.

Ignoring the rest of the quarks, for kR = 1, we found, however, that the small b-content

of the initial state protons does not yield a significant signal for the l �= 0 modes, with an

integrated luminosity L = 1 ab−1. However, we have determined that the inclusion of the

charm content, together with that of bottoms, of the proton plays an important role here.

Choosing c(cR) = 0.52 for the singlet charm quark cR, we find that its coupling to the lightest

l �= 0 states is roughly 0.07gs. Even though this is not very large, it turns out that the much

larger charm content of the proton compensates for it with the enhanced top quark coupling

in the final state. In Fig. (2), we have presented the result for the case kR = 1, choosing the

lightest state (10) to be at 2 TeV, and including the effects of coupling to cR in the proton;

here and for the rest of this discussion L = 1 ab−1 is assumed. Given the couplings above,

very roughly, all of the KK states have width-to-mass ratios of � 1/6. Note in addition

that for the S1 compactification there are two degenerate states at each l �= 0 which is a

significant source of cross section enhancement. The upper pair of curves correspond to the

pseudo-rapidity cut |η| < 1 and the lower one corresponds to |η| < 1/2 on the top quarks
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in the final state. In each pair, the upper histogram includes the contributions of l �= 0

resonances, up to a state that is 3.78/2.45 � 1.54 times heavier than the (10) KK mode.

The lower histogram in the pair does not include any contribution from l �= 0 modes and

corresponds to the usual 5D RS result. We see from the figure that when kR = 1 there is

no obviously clear signal for RS6 versus the usual RS. Note that we have not included here

the effects of boosted top jets, branching fractions, efficiencies and detector resolutions that

go into the actual extraction of the signal from the data. As these effects will make it only

more difficult to distinguish the two cases, we conclude that the signal in this case is at best

only very marginal.

FIG. 3: Same as the previous figure but now with kR = 2.

One of the factors that made the signal in the previous case, with kR = 1, difficult to

observe was that only the additional resonances for l = 1, 2 were included in the mass range

above the (10) state. Going to the case kR = 2, still a modest value and a reasonable

choice, will increase the number of contributing resonances in our mass window and will

significantly boost the signal. For this values of kR, the modes included in the mass range

2.0 − 3.1 TeV, considered in Fig. (2), correspond to l = 1, . . . , 4. The expected signal in

this case is presented in Fig. (3), using the same cuts as before. We see that the signal is

now much more pronounced and corresponds to a noticeably different line shape above the

(10) resonance; this is due to the overlap of the contributions of multiple resonances which

are each rather wide. Given the statistics inferred from the plot, we would expect a clear
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signal for RS6 in this case even when efficiencies etc are included. Fig. (4) is the same as

Fig. (3), but now for the case kR = 3. As expected, the RS6 signal is now significantly

distinct from the RS case, since all states corresponding to l =, 1, . . . , 6 now contribute in

the above mentioned mass interval. Clearly as kR increases further the deviation from the

classic RS signature will only increase. Now that we see the pattern of change induced by

the l �= 0 states as we vary kR, it is clear that for values of kR < 1 the new gauge KK states

will be essentially invisible in the tt̄ channel.

FIG. 4: Same as the previous figure but now with kR = 3.

Here we note that if RS-type models are to emerge at the TeV-scale, precision data

strongly suggest that new symmetries need to be imposed on these models [20, 21]. Even

then, the mass m10 = 2 TeV of the lightest gluon KK state chosen for the above plots may not

be consistent with current bounds on the RS model from precision data [22, 23, 24, 25, 26].

Hence, in Fig. (5), we present the kR = 3 case with m10 = 3 TeV, for which the model

is in better agreement with the electroweak precision data (agreement with the flavor data

[27] typically requires further model building [28, 29]). Here, again, the plot suggests that

the signal will be quite prominent and distinct from the usual RS expectation even after

efficiencies etc are included. Note that in this case the peaking structure found in the 5D

RS case is lost.

At this point we would like to discuss some future directions for going beyond the present

work. In terms of collider signatures, a potentially interesting production channel may be
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FIG. 5: Same as the previous figure with kR = 3 and m10 = 3 TeV.

radiation of the l �= 0 gauge KK states off a final state top quark, as the new KK modes

couple to IR localized fields strongly. Also, within the setup studied here, for each 6D gauge

group, there is a tower of scalar states in the adjoint representation. A suitable framework

for 6D gauge-fixing in the RS6 model can allow one to identify the combination of the gauge

field polarizations that correspond to this tower of physical scalars. We did not address this

analysis here, and confined the scope of our project to the vector modes.

A possible extension of the RS6 model involves the inclusion of the fermions in all 6

dimensions. We did not consider this possibility within our minimal model, where 5D

fermions are sufficient to address flavor physics. However, inclusion of the fermions in the

6D field content will require elimination of unwanted zero modes from the 4D effective theory,

since 6D fermions come with ± chiralities, each of which can be decomposed into both left-

and right-handed 4D fermions [30].

Much of what we studied for the new vector KK modes in this work will go through with

straightforward modifications for compactification on higher dimensional spheres. We have

provided the relevant formalism in the case of S2, in the appendix. We note that spheres do

not allow for massless fermion zero modes [31, 32] and hence the appearance of 5D masses is

expected to be a general consequence of compactification on these manifolds. We speculate

that it may be possible to employ this feature in building warped models of flavor that use

5D masses for localization of fermions.
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V. CONCLUSIONS

In this work, we considered extending the RS geometry to RS6 which includes an extra

dimension compactified on S1 or S1/Z2. This is motivated by a UV completion of the

RS model within string theory, where additional dimensions are present. We focused on

a minimal model with a 6D gauge sector and 5D fermions, localized to explain SM flavor.

We found the spectrum and wavefunctions of the new gauge KK modes, corresponding

to excitations along the circle. These new modes have couplings that are more strongly

sensitive to the 5D fermion geography than do the usual RS gauge KK modes. For values

of the S1 radius that are somewhat large compared to the curvature of the slice of AdS5,

there are many new KK modes that are tightly spaced above the lightest RS KK mode.

We discussed the potential for observation of these modes at the LHC and concluded that

for reasonable choice of parameters, the usual RS resonance line shapes will be sufficiently

modified to distinguish RS6 from the conventional 5D scenario. Future directions including

other production channels, KK scalar phenomenology, inclusion of fermions in RS6, and

higher dimensional compactifications were discussed briefly in the previous section.
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APPENDIX A: GAUGE KK WAVEFUNCTIONS FOR RS7 WITH S2

We parameterize the metric as

ds2 = e−2σημνdxμdxν − r2
c dφ2 − R2(dθ2 + sin2 θ dω2), (A1)

where we now have θ ∈ [0, π] and ω ∈ [0, 2π].

Given the spherical symmetry of the compactification manifold, we choose the following

KK expansion for the gauge field

Aμ(x, φ, θ, ω) =
∑
n,l,m

A(n, l, m)
μ (x)

χ(n, l)(φ)√
rc

Y m
l (θ, ω)

R
, (A2)
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where the Y m
l (θ, ω) are the spherical harmonics. We now have

ν ≡
√

1 +
l(l + 1)

(kR)2
. (A3)

With this change the gauge KK masses as are given in the text above.

By spherical symmetry we may choose any point on the sphere to place the 5D fields. A

particularly convenient choice is θ = 0, for which we have

Y m
l (0, ω) =

√
2l + 1

4π
δm,0 . (A4)

This coupling is independent of ω and that for any l only allows m = 0 states to couple. For

the case when the 5D fields are localized at θ = π, there will be an overall factor (−1)l.
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