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Abstract

In conventional models of gauge-mediated supersymmetry breaking, the lightest supersymmetric

particle (LSP) is invariably the gravitino. However, if the supersymmetry breaking sector is strongly

coupled, conformal sequestering may raise the mass of the gravitino relative to the remaining soft

supersymmetry-breaking masses. In this letter, we demonstrate that such conformal dynamics in

gauge-mediated theories may give rise to satisfactory neutralino dark matter while simultaneously

solving the flavor and µ/Bµ problems.
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I. INTRODUCTION

In supersymmetric model building, there is often a tension between the experimental

constraints of flavor physics and dark matter. A cold relic with the observed relic abundance

of ΩDM ' 0.25 [1, 2] naturally suggests a cross section consistent with a weakly interacting

particle of mass m ' 100−1000 GeV. For such a particle to be a good dark matter candidate,

it should be stable. It is often assumed that this can be accomplished in supersymmetry

(SUSY) by imposing R-parity.

However, it is often the case that solving the flavor problem in the MSSM implies a

gravitino LSP. The gravitino mass arises from gravity-mediated effects, which in general are

flavor violating. Experimental constraints on flavor violation require that gravity-mediated

contributions to the soft SUSY-breaking masses are small; if additional physics is responsible

for generating the remaining soft masses, one might expect the gravitino to be much lighter

than the other superpartners.

From this point of view, the most natural means of communicating SUSY-breaking to

the MSSM would seem to be gauge mediation [3, 4, 5, 6, 7]. In gauge mediation, the

MSSM soft masses are generated through gauge interactions and are therefore flavor blind.

One can then easily arrange for the scale of supersymmetry breaking to be low enough to

render gravity-mediated contributions negligible. Consequently, the gravitino is generally

quite light, and thus it is often stated that a gravitino LSP is one of the firm predictions of

gauge mediation [8, 9]. Unfortunately, gravitino dark matter is somewhat untenable, both

in terms of cosmology and direct detection. There has been much ongoing work to engineer

satisfactory dark matter candidates within gauge mediation [10, 11, 12, 13, 14, 15]. With

many direct detection searches looking for a massive particle recoil [16, 17], it is unfortunate

that most of these models do not predict this classic observable signature.

In models with strongly coupled hidden sectors, the näıve scale of the gravity mediated

contribution to soft masses is known to be inaccurate. Indeed, in models of anomaly media-

tion, it is necessary to suppress gravity-mediated contributions when SUSY breaking occurs

at a high scale [18, 19]. Such suppression is generally accomplished by “sequestering.” In

models with extra dimensions, sequestering is obtained by separating the SUSY breaking

from the Standard Model by a large distance. There is also a purely four-dimensional

picture known as conformal sequestering [20, 21], in which gravity-mediated operators are
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suppressed by large anomalous dimensions.

For the most part, sequestering has been considered strictly in the context anomaly

mediation. However, it was recently observed [22, 23] that by incorporating sequestering in

models with gauge mediation, the µ/Bµ problem may be solved.

In this letter, we will discuss the implications of sequestered gauge mediation for dark

matter. In particular, we will show that the combination of sequestering and gauge media-

tion can simultaneously solve the flavor problem and the µ/Bµ problem while furnishing a

neutralino dark matter candidate with the right relic abundance.

The organization of this paper is as follows: In Sec. II we review sequestering and

its application to gauge mediated supersymmetry breaking, while in Sec. III we consider

a general class of conformally-sequestered theories suitable to solving µ/Bµ in which the

gravitino is no longer the LSP. Such theories lead to a characteristic spectrum of soft masses

at the scale of conformal symmetry-breaking. Finally, in Sec. IV, we discuss the resultant

weak-scale sparticle spectrum and explore the range of parameters for viable neutralino dark

matter.

II. SEQUESTERED GAUGE MEDIATION

In both gravity and gauge meditation, the objects of interest are operators that mix

the Standard model and SUSY-breaking fields. Such operators give rise to supersymmetry-

breaking soft masses in the MSSM, and obtain the general form

cφ

∫
d4θ

SyS

M2
φyφ cW

∫
d2θ

S

M
WαW

α (1)

where S is a gauge singlet that develops a SUSY-breaking F-term. Here φ is an MSSM chiral

superfield representing any squark or slepton, while Wα are superfields of the MSSM gauge

multiplets. By integrating out the supersymmetry-breaking F -term FS, these operators

generate SUSY-breaking soft masses for the squarks, sleptons and gauginos. In gravity

mediation, the mediation scale is taken to be M = MPl, and there is no reason to suppose

the coefficients cφ respect the flavor symmetries of the MSSM. Such flavor-violating terms

are quite dangerous, and frequently give rise to flavor-changing neutral currents (FCNCs) in

violation of experimental bounds. In the case of gauge mediation, however, the scale M is

the messenger mass and the coefficients of (1) are flavor blind due to the family invariance
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of gauge interactions. Such flavor-blindness is among the most compelling features of gauge-

mediated supersymmetry breaking.

A priori, one would typically expect the coefficients of (1) to be O(1). However, seques-

tering in the hidden sector may lead to significant suppression of the coefficients cφ, cW .

Broadly speaking, sequestering can be characterized as a dynamical mechanism that forces

all the coefficients c� 1. Such sequestration has been shown to arise in the context of extra

dimensions [18] and strongly coupled field theories [20, 21]. In higher-dimensional theories,

the suppression of mixing coefficients occurs by separating the SUSY breaking from the

MSSM by large distances. In such theories, the physical separation leads to small couplings

between spatially localized fields, although this can be difficult to obtain in unwarped models

[24].

However, these extra-dimensional constructions are often analogous to a strictly four-

dimensional picture, in which the suppression of coefficients is due to large wavefunction

renormalization from strictly four-dimensional dynamics. Here we will focus on the purely

four dimensional version known as conformal sequestering [20, 21], which can be explicitly

dual to an extra-dimensional description where the effects are calculable [24]. Conformal

sequestering may arise in theories where the SUSY breaking sector is strongly coupled. In

these cases, the operators S and SyS may acquire large anomalous dimensions. 1 For

sufficiently large anomalous dimensions and range of energies in which the dynamics are

approximately conformal, the operators in (1) may be significantly suppressed. For this

mechanism to work, the approximately conformal sector cannot have protected operators of

canonical dimension that produce physical soft masses [25]. Conventionally, conformal se-

questering has been employed in the context of anomaly-mediated supersymmetry breaking

[18, 19] to suppress additional flavor violation from gravity mediation.

However, conformal sequestering may play a similar role in gauge mediated supersym-

metry breaking by lowering the scale of the soft masses. For simplicity, consider a gauge-

mediated theory involving a single set of messengers that couples the SUSY breaking sector

to the MSSM. The messengers carry gauge charges that can be embedded in representations

of SU(5) and have a mass M �MPl. Below the scale M , the messengers may be integrated

1 Strictly speaking, S is a chiral operator, so its conformal dimension is protected. However, at a strongly
coupled fixed point its conformal dimension may differ from one. Therefore, our ‘anomalous’ dimension
is the difference of conformal dimension from the canonical value.
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out, producing operators of the form (1). If the hidden sector is approximately conformal

below the scale M, such operators are suppressed by the dynamics of the hidden sector. At

the supersymmetry-breaking scale Λ, conformal sequestering ends and MSSM soft masses

are generated by integrating out the SUSY-breaking F term FS. Below this scale, the con-

tributions to renormalization from the hidden sector are negligible, and running of the soft

masses may be well approximated by the MSSM RG flow.

At the scale M , the coefficients c take the form of the ordinary gauge mediated spectrum.

The gaugino terms cW are generated at one loop, while the soft masses cφ are generated at

two loops. We will also assume, for simplicity, that the operators that give rise to Bµ and

µ operators are generated from Yukawa couplings at one loop:

cBµ

∫
d4θ

SyS

M2
HuHd cµ

∫
d4θ

Sy

M
HuHd. (2)

Finally, the operators that generate the A-terms arise at two loops and obtain the form

cA
∫
d4θ S

M
φyφ. This pattern of mediation yields the following hierarchy at the scale M :

cBµ � |cµ|2 ' |cW |2 ' cφ � |cA|2. (3)

In the absence of strong dynamics, this spectrum gives rise to the µ/Bµ problem of gauge

mediation [26] (from this point forward we will refer to this as simply the µ problem). Since

the physics that generates µ at one loop tends to generate Bµ at one loop as well, the natural

prediction is Bµ ' 16π2µ2. However, satisfactory electroweak symmetry breaking requires

Bµ ' µ2. In [22, 23] it was shown that conformal sequestering offers a simple solution to

this problem.

Given a sequestering hidden sector, S and SyS may have large anomalous dimensions 2

γS and γS†S. At the scale where the conformal dynamics end (taken, for simplicity, to be

the SUSY-breaking scale Λ), the coefficients are given by

cφ,Bµ(Λ) = (
Λ

M
)γS†Scφ,Bµ(M) cW,µ,A(Λ) = (

Λ

M
)γScW,µ,A(M). (4)

The MSSM soft masses then arise as cW,µ,A(Λ)Λ2

M
or cφ,Bµ(Λ) Λ4

M2 , using FS = Λ2.

2 For the sake of clarity, we are ignoring operator mixing; more accurately, the anomalous dimension properly
refer to the smallest eigenvalue of a matrix of anomalous dimensions. Alternately, one could consider a
holomorphic basis where µ is not renormalized [22]. In such a basis, the gravitino mass is increased by
sequestering. See [22, 23] for details.
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There are several features worth highlighting. The first, and most important for our

purposes, is that all the MSSM parameters are power law suppressed compared to the näıve

mass scale of Λ2

M
. Significantly, such suppression occurs relative to the gravitino mass, en-

abling the gravitino mass to be raised while keeping the rest of the spectrum fixed. Secondly,

provided ( Λ
M

)2γS ≤ 16π2( Λ
M

)γS†S , the result is Bµ ≤ µ2. In other words, if the conformal

dimension of SyS is more than twice that of S, the µ problem may be solved via sequestering.

III. NEUTRALINO LSP IN GAUGE MEDIATION

The suppression of SUSY-breaking soft masses relative to the gravitino mass raises the

tantalizing possibility of obtaining a neutralino LSP from gauge mediation. In this section,

we will examine the prospects for neutralino dark matter in the context of a conformally-

sequestered solution to the µ problem. The pattern of mixing coefficients arising from this

solution to the µ problem leads to distinctive boundary conditions at the scale of super-

symmetry breaking. At the weak scale, this results in a characteristic sparticle spectrum

admitting neutralino dark matter with satisfactory relic abundance.

In order to obtain a non-gravitino LSP, it must be the case that the gravitino mass is

larger than the other soft masses at the weak scale. Given m 3
2
∼ Λ2M�1

Pl , this suggests a high

gauge-mediated supersymmetry-breaking scale Λ >∼ 1010�11 GeV. Since there is a gravity

mediation contribution to Bµ proportional to µm 3
2
, preserving the sequestered solution to

the µ problem likewise indicates Λ ∼ 1010�11 GeV.

In a particular conformal sector, the anomalous dimensions are strictly determined. In

the interest of generality, however, we will refrain from specifying the exact conformal dy-

namics, and instead consider a reasonably generic range of parameters. We will assume that

γS ∼ O(1) and γS†S − 2γS ∼ O(1) > 0. This is often the case in strongly coupled theories

with known gravity duals [27, 28]. These assumptions are made to ensure that seques-

tering produces an adequate hierarchy of scales and that higher dimensions operators are

unimportant. Given these assumptions, we can relate the messenger scale to the anomalous

dimension by requiring that the soft masses are at the weak scale ∼ 100 GeV. Specifically,

we require that

g2

16π2
Λ(

Λ

M
)1+γS ∼ mZ , (5)
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FIG. 1: Scales and dynamics for conformally-sequestered gauge mediation with neutralino LSP.

Here M ' 1013−14 GeV and Λ ' 1010−11 GeV.

where the factor of g2

16π2 comes from the origin of the coefficient cW via a one-loop diagram.

For γS > 1 we obtain M < 1013−14 GeV. Under this assumption, the gravity-mediated

contributions to the soft masses are suppressed by M
MPl

< 10−5. Therefore, with reasonable

anomalous dimensions, the gravitino may be made heavier than the bino without reintro-

ducing the flavor problem. The corresponding hierarchy of scales is illustrated in Fig. 1.

If we retain a solution to the µ problem, the quadratic operators involving SyS must

be suppressed by at least (16π2)−1 relative to the operators linear in S. At the mes-

senger scale M , ordinary gauge mediation predicts that the scalar and gaugino masses

will be approximately equal. Therefore, at the SUSY-breaking scale Λ, we should have

m2
gaugino(Λ) ≥ 16π2m2

scalar(Λ).

Below the scale Λ, the running of soft masses may be well approximated by the MSSM

renormalization group. In light of our previous discussion, the gaugino masses (Mi), µ and

Bµ are near the weak scale. For simplicity, we take the gaugino masses to satisfy the usual

GUT relations, Miα
−1
i = Mjα

−1
j . The squark and slepton masses will be suppressed relative

to the gaugino masses by at least of factor of 4π. In the case where we obtain Bµ � µ2,

then it is consistent to take m̃squark ' m̃slepton ' 0. There are additional contributions

to the scalar masses from cA, but these arise at two loops. Therefore we will ignore these

contributions, as they do not significantly change our results.

There is a subtlety that arises with the Higgs soft masses m2
Hu

and m2
Hd

. As explained
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in [22], the operator that generates µ in (2) also contributes to the running of couplings cHu

and cHd
during sequestering. This produces an additional contribution to the beta function

proportional to |cµ|2. We expect that this will also depend on a factor coming from the CFT

operator product expansion

Sy(x)S(y) ∼ C|x− y|(γS†S�2γS)SyS(y) (6)

Therefore, the beta function for cH takes the form β(cHu,d
) ∼ γS†ScHu,d

+ C|cµ|2. Thus at

the scale Λ we have |m2
Hu,d
| ∼ |µ2|, although the precise relation will depend on details of

the conformal dynamics. 3

Combining the above constraints, we obtain the following high scale boundary conditions:

Mi = g2
iM0 m̃q ∼ m̃L ∼ 0 m2

Hu
∼ m2

Hd
∼ µ2 ∼ Bµgravity ∼Mi � Bµgauge, A

2, (7)

where Mi are the gaugino masses (i = 1, 2, 3 refers to the U(1), SU(2) or SU(3) gauge group)

and m̃q and m̃L are the (universal) squark and slepton masses, respectively. Bµgauge is the

contribution to Bµ from the operator in (2) and Bµgravity = m 3
2
µ is the (unsequestered)

contribution to Bµ from gravity/anomaly mediation. This spectrum bears a close resem-

blance to that of gaugino mediation [31, 32]. In the case where we arrange just enough

sequestering to have Bµgauge ' µ2 then we would have m̃2
q,L(Λ) = (16π2)�1m̃2

q,L(M). M0

and the parameters of the Higgs sector are variables that will be determined by requiring

satisfactory electroweak symmetry breaking and a neutralino LSP.

Given these conditions at the scale Λ, we run them to the low scale MS =√
mt̃1(MS)mt̃2(MS) (at which point the scale dependence of electroweak breaking condi-

tions is smallest) using SoftSUSY [33]. The basic features of flow are easy to understand.

The gaugino masses unify at the GUT scale and run with their couplings. Therefore, the

lightest gaugino will be the bino (M1) because it is associated with the U(1) of the MSSM.

The squarks and sleptons will run positive due to the contribution from gaugino masses. The

right-handed sleptons are only charged under the U(1), and thus they will run more slowly

than the squarks and other sleptons. Of these, the stau is the often the lightest because it has

the largest Yukawa, which enters the beta function with opposite sign. Although the sneu-

trino accumulates a larger soft term at the low scale, Standard Model D-term contributions

3 Here we disagree with the claims of [23], in which it is argued that m2
Hu,d

= −µ2. For more discussion of
the hidden sector contribution to the running see [22, 29, 30].
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to the physical sneutrino mass make it competitive with the stau. Therefore, depending on

the choice of high-scale parameters, the LSP tends to be a mostly-bino neutralino, stau, or

sneutrino.

The stau is charged, and hence is not a good dark matter candidate. In the MSSM, the

left-handed sneutrino is likewise a poor DM candidate; rapid annihilations via Z-mediated

s-channel diagrams yield insufficient relic abundance, and attempts to suppress annihilation

rates with low or high sneutrino mass have been ruled out by precision electroweak and direct

detection experiments, respectively. The bino, however (which becomes a component of the

lightest neutralino after electroweak symmetry breaking), may be an excellent candidate for

cold dark matter. We are interested in the range of parameters where the bino is the lightest.

As the stau, sneutrino, and bino masses are all roughly degenerate at the low scale, the LSP

in this scenario depends rather sensitively on high scale parameters. In the next section,

we will consider the details of the weak-scale spectrum and parameter space for neutralino

dark matter.

IV. PARAMETER SPACE FOR NEUTRALINO DARK MATTER

In the previous section, we have examined the high scale boundary conditions arising

from sequestered gauge mediation with an eye towards non-gravitino LSP. For this LSP to

be a satisfactory dark matter candidate, it must be stable; this is easily accomplished using

R-parity, which we will assume is a good symmetry. For a cold relic, the relic abundance

can be calculated in general and is given by Ω ∝ 〈σv〉�1. Given a dimensionless coupling g

and a mass m, the cross section is roughly 〈σv〉 ∼ g4m�2. For a weakly interacting particle

with a mass of 100 GeV to 1 TeV, this gives about the right relic abundance, leading to

the common observation that dark matter independently predicts new physics at the weak

scale.

A weakly interacting particle in this mass range is no guarantee that the relic abundance

will be consistent with observation; in the case of neutralinos, the details may be difficult

to arrange. Specifically, the annihilation amplitude is helicity suppressed, making the cross

section smaller by a factor of eight. There are many ways of getting around this problem

in different regions of parameter space. One well-known regime where the relic abundance

works out correctly is when the mass of the relic is taken to be near or below 100 GeV, simply
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because the lower mass increases the cross section to an acceptable level. It is a complete

coincidence that our model naturally suggests this low mass range for dark matter.

In addition to these general constraints for acceptable dark matter, there arise specific

experimental constraints from direct detection and collider experiments that strongly con-

strain the parameter space of our model. Although flavor invariance of SUSY-breaking

soft terms is one of the principal theoretical successes of gauge mediation, constraints from

FCNCs may still arise from processes sensitive to new particle exchange, such as the inclu-

sive B-meson decay B → Xsγ. For moderate values of tan β such as those considered here,

the dominant contribution arises from top quark and charged Higgs loops; these processes

interfere constructively with Standard Model contributions. The 95% CL upper limit on

BR(B → Xsγ) from CLEO [34] leads to the limit mH± > 340 GeV [35].

The characteristic spectrum of light sleptons arising from conformally-sequestered gauge

mediation suggests that experimental bounds from LEP2 may play a significant role in

constraining the dark matter parameter space. Although precise bounds are quite model-

dependent, we require the low energy spectrum to satisfy the general sparticle limits from

non-observation at LEP2 [36, 37].

Although realistic electroweak symmetry breaking is not our principal concern, we are

likewise interested in satisfying rudimentary constraints on the stability of the Higgs scalar

potential. Requiring that the Higgs scalar potential possesses nontrivial extrema (i.e.,

〈h0
u〉, 〈h0

d〉 6= 0) entails (Bµ)2 > (m2
Hu

+ µ2)(m2
Hd

+ µ2), while ensuring that the scalar

potential possesses a stable minimum leads to m2
Hu

+m2
Hd

+ 2µ2 > 2|Bµ|. For a given value

of µ, choosing the electroweak parameter tan β and selecting the value of mA to satisfy the

abovementioned FCNC constraints fixes B via m2
A = Bµ(cot β + tan β). High-scale values

of the soft Higgs masses m2
Hu
,m2

Hd
are then chosen to satisfy EWSB constraints and yield

the specified value of tan β, consistent with high-scale boundary conditions (7).

We have used the software package MicrOMEGAs [38, 39, 40, 41] to compute the dark

matter relic abundance and detection rates from the low-scale soft parameters. Naturally,

the high-scale boundary conditions (7) admit a multidimensional parameter space. For

clarity and simplicity, we fix the mass of the pseudoscalar Higgs boson at mA = 340 GeV in

order to satisfy FCNC constraints and choose the electroweak parameter tan β ≡ vu

vd
at the

low scale. Large values of tan β raise the τ yukawa coupling, further lowering slepton masses

at the weak scale; this leads us to favor small values of tan β consistent with LEP bounds.

10



FIG. 2: Lightest supersymmetric particle as a function of µ and gaugino mass parameter M0 for

the case of maximal sequestering (m̃q(Λ) = m̃L(Λ) = 0). Here tanβ = 2, mA = 340 GeV, Λ =

1011 GeV. Regions excluded by LEP2 data are shown in green.

We then examine dark matter candidates as a function of µ and the universal gaugino mass

M0. The choices of µ,mA, and tan β fix the high-scale values of m2
Hu
,m2

Hd
, and B in order

to satisfy the conditions for electroweak symmetry-breaking.

The high-scale boundary conditions (7) yield a highly degenerate parameter space in

which the stau, sneutrinos, and lightest neutralino obtain physical masses of order ∼ 100

GeV. In order to fully elucidate the parameter space of dark matter candidates, we consider

two cases of conformal sequestering. The first case is maximal suppression of the gauge-

mediated contributions to Bµ, in which Bµgauge ∼ 0 at the supersymmetry-breaking scale

Λ; this leads to complete suppression of high-scale squark and slepton masses, m̃q ∼ m̃L ' 0.

The resultant low-scale parameters favor a light stau and sneutrinos, which tends to produce

unacceptable dark matter candidates for wide regions of µ and M0. As illustrated in Fig. 2,

although the bino is light, the LSP is stau or sneutrino for the entire range of µ and M0;

maximal sequestration seems maximally unsuited for neutralino dark matter.

The second case is minimal suppression of the gauge-mediated contributions to Bµ, in

which we assume only enough conformal sequestering to solve the µ problem and yield
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FIG. 3: Lightest supersymmetric particle as a function of µ and gaugino mass parameter M0 for the

case of minimal sequestering (m̃q(Λ) = m̃L(Λ) = M0/4π). Here tanβ = 2, mA = 340 GeV, Λ =

1011 GeV. Regions excluded by LEP2 data are shown in green.

Bµgauge ' µ2. This, in turn, leads to small but nonzero squark and slepton masses at the

high scale, m̃2
q(Λ) ∼ m̃2

L(Λ) 'M2
0/16π2. The degeneracy of stau, sneutrino, and bino masses

is such that even this small contribution to slepton masses at the high scale significantly

expands the range of neutralino LSP and satisfactory relic abundance, as seen in Fig. 3.

For a wide range of µ and M0, the LSP is a mostly-bino neutralino with relic abundance

Ω = 0.1− 0.25.

These two cases are simply intended to be illustrative; there naturally exists a continuum

of spectra interpolating between minimal and maximal conformal sequestering, with corre-

spondingly varying regions of parameter space exhibiting neutralino LSP and suitable relic

abundance. Due to the near-degeneracy of bino, stau, and sneutrino, the region of param-

eter space with neutralino LSP decreases with increasing amounts of conformal sequester-

ing. Nonetheless, neutralino LSP in conformally-sequestered gauge mediation appears to be

generic for a wide range parameters.

One should keep in mind that the specific mass spectra resulting from this model arise

under many unnecessary made strictly for the sake of clarity. Specifically, we have used
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sequestering to solve the µ problem, which forces the rest of the masses into a fairly limited

region of parameter space. Furthermore, we have assumed a spectrum at the scale M

consistent with a single-messenger model. Model building in the messenger sector and

the SUSY breaking sector can easily change the spectrum without reintroducing the µ

problem. For example, additional D-term contributions can be used to increase the mass of

the scalars, while relaxing GUT-scale gaugino mass unification would allow for a relatively

lighter bino. Alternatively, models with R-symmetry breaking at a low scale could also

balance the hierarchy between the gaugino and scalar masses. Allowing these additional

effects or using the messenger sector to solve the µ problem, one could then construct many

models with neutralino LSP/dark matter where the parameter space is larger and the mass

is much higher than we have discussed here. The expanded parameter space admitted by

more general models will be discussed in a subsequent publication [30].

V. CONCLUSION

In this letter, we have demonstrated that neutralino dark matter is possible in gauge

mediation. Specifically, the µ problem and flavor problem may be simultaneously solved

in a simple model of gauge mediation with conformal sequestering, in which a bino-like

neutralino is the lightest supersymmetric particle. Moreover, the relic abundance of this

neutralino dark matter may be consistent with cosmological observations.

In the coming years, the LHC will give us a better picture of physics beyond the Standard

Model. Likewise, dark matter direct detection experiments will increasingly probe some of

the most interesting ranges of parameter space. Here we provide an example of a very

general class of theories producing satisfactory signatures in both theaters: dark matter

within range of direct detection experiments and a characteristic sparticle spectrum that is

both consistent with current collider bounds and within reach of future experiments.

While this work was being completed, [42] appeared which uses a similar mechanism to

obtain neutralino dark matter in gauge mediation. Their model employs both a separate

solution to the µ problem and sequestering above the messenger scale to solve the flavor

problem.
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