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Abstract

Using the method of maximal cuts, we obtain a form of the three-loop four-point scattering

amplitude of N = 8 supergravity in which all ultraviolet cancellations are made manifest. The

Feynman loop integrals that appear have a graphical representation with only cubic vertices, and

numerator factors that are quadratic in the loop momenta, rather than quartic as in the previous

form. This quadratic behavior reflects cancellations beyond those required for finiteness, and

matches the quadratic behavior of the three-loop four-point scattering amplitude in N = 4 super-

Yang-Mills theory. By direct integration we confirm that no additional cancellations remain in

the N = 8 supergravity amplitude, thus demonstrating that the critical dimension in which the

first ultraviolet divergence occurs at three loops is Dc = 6. We also give the values of the three-

loop divergences in D = 7, 9, 11. In addition, we present the explicitly color-dressed three-loop

four-point amplitude of N = 4 super-Yang-Mills theory.

PACS numbers: 04.65.+e, 11.15.Bt, 11.30.Pb, 11.55.Bq
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I. INTRODUCTION

Recently, the widely held belief that it is impossible to construct a consistent four-

dimensional point-like theory of quantum gravity has been called into question for maxi-

mally supersymmetric [1] N = 8 supergravity. In particular, an integral representation of

the three-loop four-point amplitude [2] in this theory has been obtained explicitly, which

exhibits cancellations beyond those needed for ultraviolet finiteness. Moreover, for a class of

terms accessible by isolating one-loop subdiagrams via generalized unitarity [3], the one-loop

“no-triangle” property [4–8] – recently proven in refs. [9, 10] – shows that at least a subset of

these cancellations persist to all loop orders [11]. Interestingly, M theory and string theory

have also been used to argue either for the finiteness of N = 8 supergravity [12], or that

divergences are delayed through at least nine loops [13, 14], though issues with decoupling

towers of massive states [15] may alter these conclusions. If a perturbatively ultraviolet-finite

point-like theory of quantum gravity could be constructed, the underlying mechanism re-

sponsible for the required cancellations would have a profound impact on our understanding

of gravity.

Over the years supersymmetry has been studied extensively as a mechanism for delaying

the onset of divergences in gravity theories (see e.g. refs. [16, 17]). In particular, the

existence, or conjectured existence, of various off-shell superspace formalisms restricts the

form and dimensions of potential counterterms, leading to bounds on the first permissible

loop order at which an ultraviolet divergence might appear in N = 8 supergravity. The

precise bound depends on the detailed set of assumptions. For example, if an off-shell

superspace with N = 6 supersymmetries manifest were to exist, potential D = 4 divergences

would be delayed to at least five loops [17], while the existence of a superspace with N = 7

supersymmetries manifest would delay the first potential divergence to at least six loops [17].

Similarly, if one were to assume the existence of a fully covariant off-shell superspace with

N = 8 supersymmetries manifest, then the first potential divergence would be pushed to the

seven loop order [18]. Full superspace invariants, which could act as potential counterterms,

have been constructed at eight loops, suggesting that a divergence might appear at this

loop order, if it does not appear earlier [19]. This first potential divergence can even be

pushed to the nine loop order, with an additional speculative assumption that all fields

respect ten-dimensional general coordinate invariance [20]. This bound coincides with the
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one argued [14] from the type II string theory non-renormalization theorem of Berkovits [13].

Beyond this order, no purely supersymmetric mechanism has been suggested for preventing

the onset of divergences. In fact, on dimensional grounds one can argue that, for any

supergravity theory to be ultraviolet finite to all loop orders, novel cancellations beyond the

known supersymmetric ones must exist.

Surprisingly, cancellations beyond those implied by naive loop-momentum power-

counting appear to be generic in gravity theories, as suggested by the one-loop study of

ref. [21]. This reference demonstrated that these novel one-loop cancellations are directly

connected to the remarkably good high-energy behavior of gravity tree amplitudes under

the complex deformations used to prove on-shell recursion relations in gravity [10, 22–26].

Recently [27, 28], these tree-level properties have been understood in terms of a space-like

gauge similar to light-cone gauge [29], where an enhanced Lorentz symmetry was shown to

exist under large complex deformations.

For non-supersymmetric theories, these cancellations are insufficient to render the theory

ultraviolet finite. Indeed, it is a classical result that gravity coupled to matter generically

diverges at one loop [30–32]. Pure Einstein gravity does not possess a viable counterterm

at one loop, delaying the divergence to two loops [30, 33, 34]. The presence of a two-

loop divergence in pure Einstein gravity was established by Goroff and Sagnotti and by

van de Ven, through direct computation [35, 36].

Supersymmetric cancellations can often act on top of any generic cancellations. In par-

ticular, in the case of N = 8 supergravity at one loop, such cancellations combine to cause

the vanishing of the coefficients of all scalar bubble and triangle integrals [4–8], proofs of

which have been given recently [9, 10]. The one-loop amplitudes can be expressed solely in

terms of box integrals, multiplied by rational coefficients, exactly as is the case for N = 4

super-Yang-Mills theory [37]. This one-loop no-triangle property can be used, via unitarity,

to understand a class of higher-loop cancellations [11]. However, it does not account for all

of them, because regions where two or more overlapping loop momenta become large are not

covered directly by the one-loop analysis. More generally, the picture that emerges at higher

loops is that the excellent ultraviolet behavior found in explicit calculations [2, 38] is due to

a combination of generic cancellations with supersymmetric ones [11, 21]. Interestingly, the

absence of bubble integrals in theories with N ≥ 5 supersymmetry at one loop might lead

one to speculate that such theories may also be finite, if N = 8 supergravity is finite [21].
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To establish the critical dimension where divergences first occur at a given loop order,

we evaluate amplitudes directly. A general strategy for obtaining loop amplitudes in gravity

theories was first given in ref. [38], following earlier work in N = 4 super-Yang-Mills theory

at one loop [37] and higher loops [39]. Using generalized unitarity, at any loop order we

can evaluate scattering amplitudes from products of on-shell tree amplitudes [3]. In gravity

theories we can then exploit the Kawai-Lewellen-Tye (KLT) relations [40], which express

gravity tree amplitudes directly in terms of gauge theory tree amplitudes. (Subsequent gen-

eralizations and other approaches to these relations may be found in refs. [41–44].) The net

effect is that we can map complicated gravity calculations into substantially simpler gauge

theory calculations. This simplification is especially important when evaluating generalized

unitarity cuts in D dimensions.

In ref. [2] this strategy was used to obtain the complete three-loop four-point amplitude

of N = 8 supergravity. The result of this calculation explicitly demonstrated hidden can-

cellations beyond those identified in the earlier partial calculation of ref. [38]. However, the

cancellations took place between different terms of the integral representation of ref. [2].

Each of the nine contributing “parent” integrals had a graphical representation with only

cubic vertices, and numerator factors that were quartic in the loop momenta. (In general, a

parent integral refers to an integral with the maximal number of propagators allowed in a

given amplitude. The graphs for such integrals have only cubic vertices.) One of the main

purposes of the present paper is to provide an improved form of the amplitude in which the

true ultraviolet behavior is manifest. The new form can be written in terms of the same

nine parent integrals, but terms have been shuffled between the different integrals, so that

each numerator factor is now quadratic in the loop momenta. In this way, no term in the

amplitude has a worse ultraviolet behavior than does the sum over all terms.

The new representation of the three-loop four-point amplitude is constructed using the

technique of maximal cuts, developed in ref. [45]. This technique uses generalized unitar-

ity [3], starting with the maximum number of cut propagators and systematically reducing

the number of cut propagators, in order to construct the complete amplitude. As observed

by Britto, Cachazo and Feng [46], on-shell massless three-point amplitudes can be defined by

analytically continuing momenta to complex values [35, 47]. Maximal cuts involve products

of three-point tree amplitudes alone, and are the simplest cuts to evaluate. Near-maximal

cuts, in which one or two of the maximal-cut propagators have been allowed to go off-shell,
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are the next simplest to consider, and so on. We use the near maximal cuts to fix contact

terms that may have been missed by the purely maximal ones. The maximal-cut technique,

by removing cut conditions one by one from the various maximal cuts, allows us to focus at

each stage on a small subset of contributions to an ansatz for the amplitude. In this way, we

can efficiently find compact representations of amplitudes with the desired properties. The

related “leading-singularity” technique [48] is also based on cutting the maximal number of

propagators. In this technique, additional hidden singularities are used. This technique has

been used to compute two- and three-loop planar N = 4 super-Yang-Mills amplitudes [49]

with more than four external states. An interesting recent conjecture is that the leading

singularities may be sufficient to determine multi-loop amplitudes in maximally supersym-

metric gauge theory and gravity, and that this property may be linked to the improved

ultraviolet behavior of the theories [10].

On-shell gravity and gauge theory amplitudes in four dimensions possess infrared diver-

gences. In order to regulate these divergences, and any potential ultraviolet ones, we work

in dimensional regularization (more specifically, the four-dimensional helicity scheme [50]

related to dimensional reduction [51]) with D = 4− 2ǫ. We keep the external states in four

dimensions; however, in the unitarity cuts, the cut loop momenta should be D dimensional.

On the other hand, the maximal-cut method is simplest to implement initially using four-

dimensional instead of D-dimensional momenta. In principle, terms depending solely on the

(−2ǫ) dimensional components of momenta may be lost.1 To confirm that no such terms

are missed, we verify that the results obtained from the maximal-cut method are valid in D

dimensions, using the same set of cuts used in ref. [2].

Recently Nair’s on-shell super-space formalism [52] for N = 4 super-Yang-Mills MHV

amplitudes in four dimensions has been extended to apply to all amplitudes [10, 26, 28, 43,

53–55]. Here we do not use these recent developments to evaluate the supermultiplet sums

appearing in the cuts. Instead, when evaluating cuts in four dimensions for N = 4 super-

Yang-Mills amplitudes, we make use of the observation [45] that four-point amplitudes are

fully determined by considering kinematic choices that force all or nearly all intermediate

1 In practice, such terms appear in theories with less than the maximal amount of supersymmetry, and

in maximally supersymmetric amplitudes with more than four external states. However, they have not

been found to occur for four-point amplitudes in N = 4 super-Yang-Mills theory or N = 8 supergravity,

although the reason for their absence is still unclear.
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states to contain gluons. In this way we avoid having to perform any non-trivial sums over

super-partners in the initial construction of an ansatz for the amplitude. In the course of

verifying the ansatz, we need to evaluate the cuts in D dimensions. Here we rely on the

equivalence of N = 4 super-Yang-Mills theory to N = 1 super-Yang-Mills in ten dimensions,

dimensionally reduced to four dimensions. In ten dimensions the theory consists of only a

gluon and a gluino, greatly simplifying the supersymmetry bookkeeping. For the case of

N = 8 supergravity, we do not need to carry out any explicit sums over the supermultiplet:

the KLT relations allow us to automatically incorporate all supermultiplet sums directly

from the corresponding super-Yang-Mills results.

Ref. [2] demonstrated that the three-loop four-point amplitude of N = 8 supergravity

is ultraviolet finite for D < 6. However, this left unanswered the question of whether

there are any further hidden cancellations which could increase the critical dimension even

further. Here we address this question by computing the divergence in D = 6, using our

new representation for the amplitude. We find that the coefficient of the (logarithmic)

divergence is non-zero, implying that no further cancellations exist. This result establishes

a nonvanishing coefficient for a “D6R4” counterterm for the D = 6 version of maximal

supergravity, whose purely gravitational piece has six derivatives acting on a particular

combination of four Riemann tensors. We shall also give values for the divergences in

dimensional regularization in D = 7, 9, 11, which are of some interest in studies of M theory

dualities [56].

In this article, we also present the complete three-loop four-point amplitude of N = 4

super-Yang-Mills theory, in terms of a set of integrals dressed by color factors involving non-

abelian structure constants. (The integrals themselves have already appeared in ref. [2].)

This amplitude has strong infrared divergences in D = 4 − 2ǫ as ǫ → 0, which begin at

order 1/ǫ6. The infrared properties of N = 4 super-Yang-Mills amplitudes are of some in-

terest, both in their own right and because of their structural similarity to those of other

gauge theories such as QCD. Although much of the infrared behavior of gauge theory ampli-

tudes is well understood through the factorization and exponentiation of soft and collinear

divergences [57], the color-nontrivial soft anomalous dimension matrix [58] has only been

computed explicitly through two loops [59]. At this order the matrix was found to be propor-

tional to the one-loop matrix, with a proportionality constant given by the cusp anomalous

dimension [60]. It is natural to conjecture that the same property should hold at higher
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orders.

The three-loop soft anomalous dimension matrix is the only unknown quantity entering

the infrared divergences of the three-loop four-point amplitude in N = 4 super-Yang-Mills

theory. It does not appear in the leading-color amplitude [61]. Thus the ǫ-expansion of

the subleading-color terms in the complete amplitude would provide a crisp test of the

proportionality of the matrix at three loops. Because soft properties are fairly insensitive

to the matter content of a theory (the states with spin < 1), if the proportionality holds

for N = 4 super-Yang-Mills theory, it is very likely to hold for a general gauge theory. The

ǫ-expansion of the subleading-color terms in the amplitude requires a knowledge of the seven

non-planar integrals that appear. The two planar integrals are known analytically through

the finite, O(ǫ0), terms [61, 62]. However, the non-planar integrals pose a more difficult

challenge and are as yet uncalculated.

Another application for the ǫ-expansion of the non-planar integrals would be in the search

for potential iterative structures in subleading-color terms, analogous to those previously

found in the planar amplitudes [49, 61, 63, 64].

The infrared divergences of one-loop graviton amplitudes were studied in a classic paper

by Weinberg [65]. The one-loop divergences can be exponentiated to give the leading poles

in ǫ at L loops, ∼ 1/ǫL. The infrared behavior is less singular than in gauge theory because

collinear divergences are suppressed, and simpler because no color matrices appear. However,

there are still open questions about how subleading poles in ǫ behave. At two loops, there has

been progress recently in showing how these poles can be iterated for the four-point N = 8

supergravity amplitude [66]. Explicit expressions for the nonplanar three-loop integrals

would help check how this iteration of singular terms continues to higher order. It could

also be used to search for any potential pattern of iteration for the finite terms [66].

It is well known that N = 8 supergravity contains a non-compact E7(7) duality symme-

try [1, 67]. Its explicit action on fields in both light-cone gauge and covariant versions of

the Lagrangian has been studied recently [68]. The non-trivial constraints it imposes on the

emission of soft scalars at tree level have also been explored [10]. However, there is probably

still more to learn about how E7(7) constrains multi-loop amplitudes. Some insight might

be provided by the new form of the three-loop amplitude that we give here.

This paper is organized as follows. In section II we review the results previously obtained

at two and three loops in both N = 4 super-Yang-Mills and N = 8 supergravity [2]. In
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(a) (b)
(e) (f) (h)

(
) (d)

(k)(j)(i)
(g)

FIG. 1: A sufficient set of generalized cuts for determining any massless three-loop four-point

amplitude. Each blob represents a tree amplitude. Cuts (a)–(f) are iterated two-particle cuts.

section III we give the full color-dressed N = 4 amplitude. Then in section IV we present a

form of the N = 8 supergravity amplitude in which each term exhibits the same ultraviolet

behavior as the full amplitude. In section V we show that the three-loop four-point amplitude

diverges logarithmically in D = 6, so there there are no further hidden cancellations. In this

section we also present the three-loop divergences in D = 7, 9, 11. We give our conclusions

in section VI.

II. GENERAL STRATEGY AND PREVIOUS THREE-LOOP RESULTS

In ref. [38] the two-loop four-point N = 8 supergravity amplitude was evaluated. It was

also shown that certain classes of higher-loop contributions could be evaluated to all loop

orders. These so-called “iterated two-particle cut contributions” can be reduced to trees

through successive two-particle cuts. The same sewing algebra appears in each two-particle

cut, in essentially the same way as in N = 4 super-Yang-Mills theory [39]. In the case of

this theory, examining the powers of loop momenta in the numerator of the generic iterated

two-particle cut contribution suggested the finiteness bound [38],

D <
6

L
+ 4 (L > 1) , (2.1)
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where D is the dimension of space-time and L the loop order. (The case of one loop,

L = 1, is special; the amplitudes are ultraviolet finite for D < 8, not D < 10.) The

bound (2.1) differs somewhat from earlier superspace power counting [69], although all

bounds confirm the ultraviolet (UV) finiteness of N = 4 super-Yang-Mills theory in D = 4.

This bound (2.1) has since been confirmed to all loop orders [17] using N = 3 harmonic

superspace [70]. Explicit computations demonstrate that this bound is saturated through

at least four loops [11, 38, 39, 63].

In ref. [38] the iterated two-particle cuts of N = 8 supergravity amplitudes were analyzed,

leading to the proposal that the four-point N = 8 supergravity amplitude should be UV finite

for

D <
10

L
+ 2 (L > 1) . (2.2)

(Just as for N = 4 super-Yang-Mills theory, the one-loop case is special; N = 8 supergrav-

ity amplitudes are UV finite for D < 8, not D < 12 [9].) The formula (2.2) implies that

in D = 4 the first potential divergence can appear at five loops. This result was sup-

ported by studying cuts with an arbitrary number of intermediate states, but restricted to

maximally-helicity-violating (MHV) amplitudes on either side of the cut. The formula is

also consistent with bounds obtained by Howe and Stelle [17], assuming the existence of

an N = 6 harmonic superspace [70]. However, as mentioned in the introduction, explicit

three-loop computations [2] have found cancellations beyond this bound.

At three loops, the generalized cuts shown in fig. 1 are sufficient for constructing four-

point amplitudes in any massless theory, starting from tree amplitudes. Of the cuts in fig. 1,

the iterated two-particle cuts (a) to (f) were originally evaluated in refs. [38, 39] in N = 4

super-Yang-Mills and N = 8 supergravity theories. The remaining ones, (g) through (k),

were evaluated in ref. [2] for both theories, determining the complete amplitudes. In general,

to determine a three-loop four-point amplitude we must evaluate the cuts with distinct

labels of external legs. For gravity or color-dressed gauge theory amplitudes, the various

permutations of legs of the tree amplitudes composing the cuts are automatically included.

However, color-ordered gauge theory tree-level partial amplitudes must be explicitly sewn

in non-planar fashion to construct higher-loop non-planar subleading-color amplitudes.

The generalized-cut method for finding the amplitude is algorithmic: one first constructs

an initial ansatz that reproduces one cut. Then, subsequent cuts of the amplitude are

compared against the corresponding cuts of the current ansatz. If any discrepancy is found
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in a later cut, it is eliminated by adding to the ansatz terms that vanish when all the earlier

cut conditions are imposed. At the end of this procedure, an integral representation of the

loop amplitude is obtained with the correct cuts in all channels. This result is the complete

on-shell amplitude.

In carrying out this construction, tadpole integrals and bubble contributions on external

legs are dropped. Such contributions have no cuts on shell, and their integrals vanish

in dimensionally-regularized amplitudes for massless particles. One might be concerned

about potential UV contributions from bubble integrals on external legs, as k2
i → 0. Such

terms can appear in gauge theory, and cancel collinear infrared singularities according to

1/ǫUV + 1/ǫIR = 0. However, in N = 8 supergravity amplitudes they can be neglected,

because they are suppressed by additional powers of k2
i → 0 compared to gauge theory, and

also by supersymmetric cancellations.

At one loop, through the level of finite terms, massless supersymmetric amplitudes in the

N = 4 theory are determined completely by their four-dimensional cuts [37]. Unfortunately,

no such theorem has been demonstrated at higher loops. Because we wish to identify the

smallest dimension D for which an ultraviolet divergence occurs, we must ensure that all

results are valid in D dimensions. Evaluating the cuts in D dimensions [71] makes the calcu-

lation significantly more difficult, because powerful four-dimensional spinor methods [72] can

no longer be used. Some of this additional complexity is avoided by performing internal-state

sums in terms of the (simpler) on-shell gauge supermultiplet of D = 10, N = 1 super-Yang-

Mills theory instead of the D = 4, N = 4 multiplet. By using the KLT relations [40], which

are valid in any number of dimensions for the field content of maximal supergravity, the

D-dimensional cuts of N = 4 super-Yang-Mills theory can then be reassembled into those

of N = 8 supergravity [38].

In general, the KLT relations give us a rather efficient means of evaluating gravity cuts,

since gauge theory amplitudes are generally simpler to evaluate than gravity amplitudes. As

an example, consider the cut in fig. 1(j) for N = 8 supergravity,

C
(j)
N=8 =

∑

N=8 states

M tree
5 (1, 2, l3, l2, l1) × M tree

4 (−l2,−l3, l4, l5) × M tree
5 (3, 4,−l1,−l5,−l4) ,

(2.3)

where the sum runs over all physical states that cross any cut line. The KLT relations [40–42]
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1
2

l1l2l3 l4l5
3
41 l3

l2 3 4l4
l5

l1
2

2
l1l2l3 l4l5

3
41

FIG. 2: The KLT relations allow us to map the gravity cuts into sums over pairs of gauge theory

cuts. Here we display a pair of gauge theory cuts needed to evaluate the gravity cut shown in

fig. 1(j). The remaining pairs are obtained by permuting the external legs 1 ↔ 2 and 3 ↔ 4.

for these tree amplitudes are,

M tree
4 (−l2,−l3, , l4, l5) = −i (l4 + l5)

2 Atree
4 (−l2,−l3, l4, l5) Atree

4 (−l2,−l3, l5, l4) ,

M tree
5 (1, 2, l3, l2, l1) = i (l1 + k1)

2(l3 + k2)
2 Atree

5 (1, 2, l3, l2, l1) Atree
5 (1, l1, l3, 2, l2) + {1 ↔ 2} ,

M tree
5 (3, 4,−l1,−l5,−l4) = i (l4 − k3)

2(l1 − k4)
2

× Atree
5 (3, 4,−l1,−l5,−l4)A

tree
5 (3,−l4,−l1, 4,−l5) + {3 ↔ 4} ,

(2.4)

where we follow the notation of ref. [42]. The Atree
n are color-ordered gauge-theory tree

amplitudes, while the M tree
n are supergravity tree amplitudes, with an overall factor of the

coupling (κ/2)n−2 removed. Inserting the KLT relations into the cut (2.3), we obtain,

C
(j)
N=8 = i (l4 + l5)

2(l1 + k1)
2(l3 + k2)

2(l4 − k3)
2(l1 − k4)

2

×
∑

N=4 states

Atree
5 (1, 2, l3, l2, l1) Atree

4 (−l2,−l3, l4, l5) Atree
5 (3, 4,−l1,−l5,−l4)

×
∑

N=4 states

Atree
5 (1, l1, l3, 2, l2) Atree

4 (−l2,−l3, l5, l4) Atree
5 (3,−l4,−l1, 4,−l5)

+ {1 ↔ 2} + {3 ↔ 4} + {1 ↔ 2, 3 ↔ 4} . (2.5)

This equation gives the N = 8 supergravity cut directly in terms of products of two N = 4

super-Yang-Mills cuts. The relation is depicted in fig. 2, for one of the four terms in the sum
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4
2 3

(a)1 1 (
)
2

4
3

(d)1 4
2 3

2 3
(b)1 4

(h)1
96 108
4

2 3
7

11 12
14 135 (i)1 4

2 3
5

67
(g)

5
6 4

32
1

(e)6
5

4
32

1 (f)6
5

4
32

1

FIG. 3: The different parent integrals in terms of which four-point three-loop amplitudes may be

expressed.

TABLE I: The numerator factors N (x) for the integrals I(x) in fig. 3 for N = 4 super-Yang-Mills

theory. The first column labels the integral, the second column the relative numerator factor. An

overall factor of s12s14A
tree
4 has been removed. The invariants sij and τij are defined in eq. (2.6).

Integral I(x) N (x) for N = 4 Super-Yang-Mills

(a)–(d) s2
12

(e)–(g) s12 s46

(h) s12(τ26 + τ36) + s14(τ15 + τ25) + s12s14

(i) s12s45 − s14s46 − 1
3(s12 − s14)l

2
7

over external-leg permutations. One of the gauge-theory cuts is planar, while the second is

nonplanar. 2

An important feature of this construction is that, once the sums over all super-partners

are performed in the N = 4 super-Yang-Mills cuts, the corresponding super-partner sum

2 It is possible to use the total S3 permutation symmetry of s12s14A
tree

4 (1, 2, 3, 4) to partially “untwist” the

four-point amplitude in the second Yang-Mills cut, so as to make manifest its reflection symmetry under

{1 ↔ 4, 2 ↔ 3}.
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TABLE II: The numerator factors N (x) for the integrals I(x) in fig. 3 for N = 8 supergravity,

as determined in ref. [2]. The first column labels the integral, the second column the relative

numerator factor. In this form of the amplitude, individual terms behave worse in the ultraviolet

than does the sum over all contributions.

Integral I(x) N (x) for N = 8 Supergravity

(a)–(d) [s2
12]

2

(e)–(g) [s12 s46]
2

(h) (s12s89 + s14s11,14 − s12s14)
2 − s2

12(2(s89 − s14) + l26)l
2
6 − s2

14(2(s11,14 − s12) + l25)l
2
5

− s2
12(2l

2
8l

2
10 + 2l27l

2
9 + l28l

2
7 + l29l

2
10) − s2

14(2l
2
11l

2
13 + 2l212l

2
14 + l211l

2
12 + l213l

2
14) + 2s12s14l

2
5l

2
6

(i) (s12s45 − s14s46)
2 − (s2

12s45 + s2
14s46 + 1

3s12s13s14)l
2
7

in N = 8 supergravity follows simply from the KLT relations. In fact, any simplifications

performed on the gauge theory cuts can be immediately carried over to gravity cuts.

In the calculation of ref. [2], cut (i) in fig. 1 was used as the starting point. In fact, this cut

detects all terms in the complete three-loop four-point amplitude for N = 4 super-Yang-Mills

theory, and almost all terms for the case of N = 8 supergravity. The result of matching cut

(i) with an ansatz for the N = 4 super-Yang-Mills amplitude, and then checking the result

on the other cuts in fig. 1, is that the amplitude can be expressed as a linear combination of

the parent integrals shown in fig. 3, with numerator factors N (x) given in table I. Similarly,

the three-loop four-point amplitude of N = 8 supergravity can be expressed in terms of

the same parent integrals, but with different numerators. The numerators for this case, as

determined in ref. [2], are shown in table II. In fig. 3 the (outgoing) momenta of the external

legs are denoted by ki with i = 1, 2, 3, 4, while the momenta of the internal legs are denoted

by li with i ≥ 5. For convenience we define

sij = (ki + kj)
2 , τij = 2ki · kj , (i, j ≤ 4)

sij = (ki + lj)
2 , τij = 2ki · lj , (i ≤ 4, j ≥ 5)

sij = (li + lj)
2 , τij = 2li · lj . (i, j ≥ 5) (2.6)

We have altered the labeling compared to ref. [2], as a notational convenience, which will al-

low us to write somewhat more compactly the new representation of the N = 8 supergravity

13



amplitude constructed here.

By definition, the integrals composing the amplitudes are of the form

I(x) = (−i)3

∫ [
3∏

i=1

dDqi

(2π)D

]
N (x)

∏14
j=5 l2j

, (2.7)

where the qi’s are three independent loop momenta, the li’s are the momenta of the propa-

gators of the diagrams, and the N (x) are the numerator factors appearing in tables I and II.

For example, the contribution of diagram (e) of fig. 3 to the N = 8 supergravity amplitude

is found by combining its propagators with the numerator N (e) = [s12s46]
2 ≡ [s12(k4 + l6)

2]2

given in table II; the result is the integral

I(e) = (−i)3

∫
dDl6
(2π)D

∫
dDl7

(2π)D

∫
dDl8
(2π)D

[s12(k4 + l6)
2]2

l26l
2
7l

2
8(l6 − k1)2(l6 − k1 − k2)2(l7 − k4)2(l8 − k3)2

× 1

(l6 + l7)2(k1 + k2 − l6 + l8)2(k1 + k2 + l7 + l8)2
. (2.8)

The complete supergravity amplitude is given in terms of the integrals in fig. 3

M
(3)
4 =

(κ

2

)8

s12s13s14M
tree
4

∑

S3

[
I(a) + I(b) + 1

2
I(c) + 1

4
I(d)

+ 2I(e) + 2I(f) + 4I(g) + 1
2
I(h) + 2I(i)

]
. (2.9)

where the numerators of each integral are given in table II, κ is the gravitational coupling,

and M tree
4 is the supergravity tree amplitude. In each term, S3 denotes the set of six permu-

tations of three external legs, say {2, 3, 4}, which lead from (s12, s23) to the six independent

ordered pairs of Mandelstam invariants s12, s13, s14, serving as arguments of the integral.

The numerical coefficients in front of each integral in eq. (2.9) are symmetry factors. They

equal 4/S, where S is the number of elements in the discrete symmetry group of the dia-

gram. Due to supersymmetry Ward identities, the expression (2.9) is valid for any of the

2564 combinations of four particles from the 256-dimensional N = 8 multiplet. A remarkable

property of the result is that the dimension D appears explicitly only in the loop integration

measure; in theories with less than maximal supersymmetry we have no reason to believe

that this property will continue to hold.

In this presentation of the amplitude, the UV behavior of the integrals (e)–(i) is worse than

that of the full amplitude. In particular, the numerator factors for these integrals are quartic

in the loop momenta. However, as discussed in ref. [2], non-trivial cancellations between

diagrams cause the overall degree of divergence to be milder, in line with the behavior of
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the corresponding amplitude of N = 4 super-Yang-Mills theory. In that amplitude, table I

shows that each term is quadratic in the loop momenta. In the case of a quartic behavior for

N (x), the condition for an integral I(x) in eq. (2.7) to be finite in D dimensions is 3D+4 < 20,

or D < 16/3. This inequality corresponds to the N = 8 finiteness bound (2.2) proposed in

ref. [38]. In the case of a quadratic N (x), the finiteness condition for I(x) is improved to

3D + 2 < 20, or D < 6.

In ref. [2] a cancellation between integrals (e)–(i) in fig. 3 was found using table II, and

working in the “vacuum approximation” in which external momenta were neglected. This

approximation was adequate for demonstrating finiteness for D < 6, but not for determining

the coefficient of the D = 6 (potential) divergence. Below, in section IV, we will present a

non-trivial rearrangement of the results in table II, so that each N (x) is quadratic in the loop

momenta, and hence each contribution satisfies the bound (2.1) with L = 3. In section V

we will then integrate each contribution near D = 6, in order to compute the logarithmic

divergence.

III. COLOR DRESSING N = 4 SUPER-YANG-MILLS AMPLITUDES

Before turning to the case of N = 8 supergravity, we first present the complete color-

dressed amplitude of N = 4 super-Yang-Mills theory. Although the contributing integrals

were presented in ref. [2] for use as input into the supergravity calculation, they were not

explicitly assembled into the complete color-dressed amplitude. Here we present the explicit

color dressing in terms of Lie algebra structure constants, fabc. This type of dressing is

natural3 for Feynman diagrams with particles in the adjoint representation. It has been

used to color-decompose tree and one-loop amplitudes [73], and to prove the Kleiss-Kuijf

relations between tree-level color-ordered partial amplitudes [74]. It has also played an

important role in the recent discovery of additional non-trivial tree-level identities [44].

Color dressing in terms of structure constant factors is very simple for non-contact con-

tributions. Such terms, in which no propagator is canceled by a numerator factor, are those

in the numerator factors N (x) in table I that do not contain a factor of l2i . (The only ex-

plicit factor of l2i appears in N (i); there are also implicit factors of l2i in expressions such

3 One may, alternatively, use a color dressing in terms of group generators in the fundamental representation;

such dressings maintain a close relation with the double-line notation.
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as τ26 = s26 − l26 in integral (h).) The non-contact contributions are detectable from the

maximal cuts, which have only three-point amplitudes. In N = 4 super-Yang-Mills theory,

all such amplitudes are proportional to a factor of fabc. Thus the appropriate color factor

for a non-contact term in a numerator N (x) is found simply by dressing each three-point

vertex in the corresponding parent graph (x) in fig. 3 with an fabc.

The color factors for contact-term contributions with a canceled propagator are some-

what less obvious, because they are determined from cuts containing four- or higher-point

amplitudes. Such amplitudes are not proportional to a single product of fabc’s, but contain

multiple terms. The color factors can always be expressed as sums of products of fabc’s,

but it is conceivable that not all such products would be of the same form as one of the

(nonvanishing) non-contact terms. However, for the three-loop four-point amplitude, we

find that they are all of the same form, so that the contact terms in each N (x) can be con-

sistently dressed with the same graphical color factor as the non-contact terms. We have

confirmed the consistency of this assignment by evaluating all the generalized cuts in fig. 1

using tree amplitudes dressed with full color factors as the building blocks. The evaluation

of these cuts is a complete check of the color dressing. The check requires use of color Jacobi

identity rearrangements of the type described in ref. [73]. For general amplitudes, we expect

the same property to hold: Once the contact terms are assigned to parent integrals in a way

consistent with unitarity cuts that use color-ordered amplitudes, then the full color-dressed

amplitudes should be obtained simply by dressing the parent integrals with an fabc at each

three vertex.

In summary, the fully color-dressed three-loop four-point N = 4 super-Yang-Mills ampli-

tude is given by,

A(3)
4 = −1

4
g8 s12s14A

tree
4

∑

S4

[
C(a)I(a) + C(b)I(b) + 1

2
C(c)I(c) + 1

4
C(d)I(d)

+ 2C(e)I(e) + 2C(f)I(f) + 4C(g)I(g) + 1
2
C(h)I(h) + 2C(i)I(i)

]
, (3.1)

where g is the gauge coupling, C(x) are the color factors, and I(x)(s, t) are D-dimensional

loop integrals corresponding to the nine diagrams in fig. 3. The sum runs over the 24

independent permutations of legs {1, 2, 3, 4}, denoted by S4. The permutations in S4 act on

both kinematic and color labels. In the case of the gravity amplitude (2.9) the S4 sum could

be collapsed to an S3 sum, holding leg 1 fixed, because the summand exhibits an additional

symmetry due to the kinematic identities s12 = s34, s13 = s24, and s14 = s23. In the Yang-
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˜fabc

FIG. 4: Color factors for the super-Yang-Mills amplitude are obtained simply by dressing the

diagrams in fig. 3 with an f̃abc at each three vertex. All contact terms pick up the same color

factor as the parent (non-contact) diagrams with which they are associated.

Mills case, the presence of color factors with no such manifest symmetry prevents us from

collapsing the sum. Other than this minor difference, note the similarity of the gravity

(2.9) and gauge theory amplitudes (3.1), including the symmetry factors of each integral.

In eq. (3.1), Atree
4 is the color-ordered tree amplitude Atree

4 (1, 2, 3, 4). With the factor of

s12s14, it has the required overall crossing and Bose symmetry of color-dressed gauge theory

amplitudes.

As illustrated in fig. 4, the color factors C(x) are given by dressing each three-vertex of

the parent diagrams in fig. 3 with modified structure constants,

f̃abc = i
√

2fabc = Tr([T a, T b]T c) , (3.2)

where fabc are the standard structure constants, and the hermitian generators are normalized

via Tr[T aT b] = δab. The f̃abc should follow the clockwise ordering of the parent diagram

vertices, respecting the ordering of each vertex in fig. 3. The color factor associated with

each integral is then easy to write down. For example, for diagrams (a) and (i) we have,

C(a) = f̃a1,a5,a6 f̃a2,a9,a5 f̃a3,a13,a14 f̃a4,a11,a13 f̃a6,a7,a8 f̃a7,a9,a12 f̃a8,a10,a11 f̃a10,a12,a14 ,

C(i) = f̃a1,a8,a5 f̃a2,a10,a7 f̃a3,a6,a9 f̃a4,a13,a12 f̃a5,a11,a13 f̃a6,a12,a14 f̃a7,a14,a11 f̃a8,a10,a9 . (3.3)

The other factors work similarly. The factors for the different permutations in eq. (3.1) are

obtained by permuting the external labels {1, 2, 3, 4}.
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FIG. 5: The nine maximal cuts used to determine the integrands, up to contact terms. All

propagator lines are taken to be cut, with the momenta satisfying on-shell conditions. The vertices

represent on-shell three-point amplitudes.

IV. N = 8 SUPERGRAVITY AMPLITUDE WITH MANIFEST ULTRAVIOLET

BEHAVIOR

The three-loop four-point N = 8 amplitude presented in ref. [2] has better UV behavior

than each integral taken separately. It is therefore natural to try to find a representation

in which each integral exhibits the behavior of the complete amplitude. One may attempt

to manipulate the numerator factors in table II, by moving terms between different integral

contributions until the leading two powers of loop momenta cancel. This procedure turns

out to be significantly more difficult than simply reconstructing the amplitude from scratch

using the method of maximal cuts [45], as we do here. By isolating in any one cut a small

number of terms in the amplitude, it becomes much simpler to find ansätze for new compact

forms of the amplitude, and to arrange the amplitude so that no term has a worse behavior

than the complete amplitude.

We start with an ansatz for the amplitude in terms of Feynman integrals with numerator

polynomials containing arbitrary parameters. We require that each numerator polynomial

18



is at most quadratic in the loop momenta,

N (x) =
∑

a
(x)
ij li · lj +

∑
b
(x)
i,j,m,n li · kj lm · kn +

∑
c
(x)
i,j li · kj + d(x) , (4.1)

where a
(x)
ij , b

(x)
i,j,m,n, c

(x)
i,j and d(x) are polynomials in the external momenta containing free

parameters. In the sums we include only those terms not simply related to the others

via momenta conservation. To determine the parameters we replace the numerators in

eq. (2.9) with the numerators (4.1), and compare the cut of the ansatz against the cut of

the amplitude,
∑

states

Atree
(1) Atree

(2) Atree
(3) · · ·Atree

(m) , (4.2)

using kinematics that place all cut lines on-shell, l2i = 0. Although the comparison can be

done analytically, it is generally simplest to generate kinematic solutions numerically [45].

If no solution to the cut conditions are found, then we enlarge the ansatz until one is

found. For the N = 8 supergravity three-loop four-point amplitude, the quadratic numerator

ansatz (4.1) is sufficient.

We start by analyzing cuts with the maximum number of cut propagators. The nine

distinct—up to relabellings of external legs—maximal cuts for the three-loop four-point am-

plitude are displayed in fig. 5. As discussed in ref. [45], by choosing appropriate D = 4

kinematics, we can force all cut lines to be gluons in the super-Yang-Mills case. Similarly,

in the supergravity case, the same kinematics will force all cut lines to be gravitons. Re-

markably, these “singlet cuts” turn out to be sufficient to determine the non-contact terms

in four point amplitudes in N = 4 super-Yang-Mills theory and in N = 8 supergravity, in

all known cases.

Contact terms, containing numerator factors of l2i , cannot be determined from maximal

cuts, because the l2i are all set to zero in these kinematics. To determine the contact

terms, we systematically reduce the number of cut lines, until all potential contact terms

are identified. In fig. 6, we show some near-maximal cuts that are particularly helpful for

determining all the contact terms in the three-loop four-point amplitudes. In this figure

every line represents a cut propagator (i.e., with the momenta taken on shell). In these

cases, again by appropriate choices of kinematics [45], we can force almost all lines to be

gluons or gravitons.

By carrying out this procedure in D dimensions, we can apply the maximal cut method to

any theory, including QCD. However, to take advantage of four-dimensional spinor simplifi-
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FIG. 6: Nine near-maximal cuts that are especially helpful for obtaining the contact terms for

the new form of the supergravity amplitude. All propagator lines are taken to be cut, with the

momenta satisfying on-shell conditions. The darker vertices represent on-shell four- and five-point

amplitudes; the lighter ones depict three-point amplitudes.

cations and singlet cuts, we restrict the momenta to be four-dimensional, which potentially

can drop contributions. For maximally supersymmetric four-point amplitudes, it turns out

that the four-dimensional cuts appear to be sufficient for determining all contributions. (As

mentioned in the introduction, in non-maximally supersymmetric theories, and in maximally

supersymmetric amplitudes with more than four external states, amplitudes typically con-

tain extra terms proportional to the (−2ǫ) dimensional components of the loop momenta.)

We can also take advantage of a variety of pictorial rules [39, 44, 45, 48] for obtaining more

complicated contributions from simpler ones.

To find compact forms of the N = 8 amplitude we evaluated 98 possible maximal and

near-maximal cut topologies that contain up to two contact terms. The nine maximal cuts

are depicted in fig. 5. The set of maximal cuts begins with all graphs with only cubic vertices.

For the applications to four-point amplitudes in maximally supersymmetric theories, we can
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(b)(a) (c) (d)

FIG. 7: A contact term can be assigned to parent diagrams by inserting a propagator multiplied

by a numerator factor which cancels it. A contact term (a) can be distributed amongst the three

propagator diagrams (b), (c) and (d), by including appropriate numerator factors to cancel the

propagators.

discard the subset of graphs which contain triangle subgraphs or those which are one-particle

reducible. We can also discard graphs containing a two-particle cut that exposes such graphs

at two loops. Such cuts will lead to vanishing contributions. The surviving nine maximal

cuts are in one-to-one correspondence with the nine parent integrals depicted in fig. 3. Then

27 distinct single contact term diagrams are obtained from the nine maximal cut topologies

by systematically collapsing one propagator, removing ones related by symmetry. Similarly

62 double contact terms are obtained by collapsing two propagators, again removing ones

related by symmetry. The 18 cuts illustrated in figs. 5 and 6 turn out to be sufficient for

finding a representation of the amplitude which exhibits quadratic dependence on the loop

momenta in the numerators, and thus manifestly obeys the bound (2.1) for L = 3. Of

course, these cuts by themselves do not rule out other potential contributions, including

those with three or more collapsed propagators. For this we rely on the generalized cuts in

fig. 1, evaluated in D dimensions.

In general there is a large freedom in assigning numerator factors containing loop momenta

to parent integrals, especially when no color factors are present to distinguish different

integrals, as in the supergravity case. For example, scalar products of loop momenta with

external momenta can often be rearranged using the observation that such products can be

expressed as differences of inverse propagators, e.g., 2ki · lj = (ki + lj)
2 − l2j . As another

particularly simple example, note that when assigning contact terms to parent diagrams,

as illustrated in fig. 7, any four-point contact term (a) can be expressed as a combination

of propagator diagrams (b)–(d) with appropriate numerator factors. The precise form is
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TABLE III: A form for the N = 8 supergravity numerator factors N (x) for the integrals I(x) in

fig. 3 appearing in eq. (2.9), in which all terms are at most quadratic in the loop momenta. The

first column labels the integral, the second column the relative numerator factor.

Integral I(x) N (x) for N = 8 Supergravity

(a)–(d) [s2
12]

2

(e)–(g) s2
12 τ35 τ46

(h) (s12(τ26 + τ36) + s14(τ15 + τ25) + s12s14)
2

+ (s2
12(τ26 + τ36) − s2

14(τ15 + τ25))(τ17 + τ28 + τ39 + τ4,10)

+ s2
12(τ17 τ28 + τ39 τ4,10) + s2

14(τ28 τ39 + τ17 τ4,10) + s2
13(τ17 τ39 + τ28 τ4,10)

(i) (s12 τ45 − s14 τ46)
2 − τ27(s

2
12 τ45 + s2

14 τ46) − τ15(s
2
12 τ47 + s2

13 τ46)

− τ36(s
2
14 τ47 + s2

13 τ45) + l25 s2
12 s14 + l26 s12 s2

14 − 1
3 l27 s12 s13 s14

subject only to the constraint that the contributions add up to the contact term. Moreover,

by using momentum conservation (and on-shell conditions on any cut legs) we can move

contributions around within a larger diagram.

A particularly compact form for the supergravity amplitude is shown in table III. The

complete amplitude is given by eq. (2.9), in which the numerators N (x) in table II are replaced

by those in table III. Each numerator respects the symmetry of its corresponding diagram.

Because the new form matches the D-dimensional cuts displayed in fig. 1, it is completely

equivalent to the earlier form. The two forms are, however, rather non-trivially related. In

particular, the form in table II has numerator terms which are quartic in loop momenta,

while the form in fig. III is merely quadratic. The form in table III is by no means unique.

The large freedom, mentioned previously, in assigning numerator factors to a parent graph

implies that there are continuous families of numerators with the same quadratic behavior

that satisfy all cut conditions. As a check, we have evaluated the logarithmic divergence of

the various forms at D = 6, and we find that it is independent of each of the free parameters,

as expected.
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V. DIVERGENCES IN HIGHER DIMENSIONS

As demonstrated in ref. [38], the two-loop four-graviton N = 8 supergravity amplitude

saturates the finiteness bound (2.1), having a critical dimension Dc = 7. The values of the

two-loop divergence in dimensions between D = 7 and D = 11 were also calculated in that

reference, in dimensional regularization. In this section we carry out a similar analysis at

three loops, using the new representations of the amplitudes given in table III. We prove

that in N = 8 supergravity the bound (2.1) is saturated at L = 3; that is, a logarithmic

UV divergence is present in D = 6. We also give the explicit values of the dimensionally-

regulated power-law divergences in D = 7, 9, 11. Other than the critical dimension Dc = 6,

odd dimensions are also interesting because of the connection to M theory dualities [56] in

dimensions D = 9, 11. From a technical standpoint, it is easier to compute the three-loop

divergences in odd dimensions than it is in even dimensions. In odd dimensions the only

divergences that arise in dimensional regularization are from two-loop subdivergences.

A. Divergence in the critical dimension D = 6.

We already know that for N = 4 super-Yang-Mills theory the finiteness bound is saturated

through at least four loops [11]. Is the bound (2.1) saturated for N = 8 supergravity as

well? It would of course be rather surprising if N = 8 supergravity were better behaved

in the UV than N = 4 super-Yang-Mills theory — but surprises have happened before. It

is nevertheless important to confirm that no further “hidden” cancellations exist. Because

we now have a compact analytic expression for the amplitude, without additional spurious

divergences that cancel between integrals, we can settle the issue simply by evaluating the

integrals near D = 6 and assembling the amplitude in this dimension. If the amplitude

diverges in D = 6, then no further cancellations exist at three loops, beyond those found in

ref. [2], and exhibited manifestly by the numerator factors in table III.

In its critical dimension, where an integral first develops a divergence, the divergence

is logarithmic. This implies that the residue of the 1/ǫ pole is constant, after all factors

of external momentum in the numerator are taken out of the integral. To evaluate this

constant we may choose the external momenta and invariants in any convenient way. In

particular, we may expand the integrand for small external momenta and keep the leading
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FIG. 8: Vacuum-like diagrams describing the leading behavior. The labels 1,2 indicate whether

the corresponding propagator appears to the first or second power.

term. A key advantage of the new representation of the amplitude in table III, compared to

the original one in table II, is that no integral has a critical dimension below the expected

critical dimension of the amplitude. This simplifies the evaluation of the divergence because

it receives contributions only from the leading term in the small-momentum expansion.

In addition we can drop all integrals with a critical dimension larger than six. Inspecting

table III, fig. 3, and eq. (2.7), we see that integrals (a)–(d) are all finite in D = 6, so we need

only evaluate the integrals (e)–(i). These integrals have numerators quadratic in the loop

momenta. We expand at small external momenta, keeping only the UV-divergent integrals

which are independent of the external momenta, apart from the explicit factors of external

momenta appearing in the numerator. Lorentz invariance implies that we can replace
∫

dDq1d
Dq2d

Dq3 qµ
i qν

j f(q1, q2, q3) →
ηµν

D

∫
dDq1d

Dq2d
Dq3 qi · qjf(q1, q2, q3) , (5.1)

because ηµν is the only available tensor that can have a divergent coefficient. Contracting

both sides with ηµν shows that the prefactor on the right-hand side is indeed 1/D. For

the purpose of computing the leading UV singularity in the critical dimension, this iden-

tity allows us to replace any two-tensor integral with simpler scalar integrals, obtained by

rewriting qi · qj as a linear combination of inverse propagators.

Keeping only the leading terms at small external momenta and using eq. (5.1), we replace

the diagrams in fig. 3 with the simpler vacuum diagrams shown in fig. 8. We have,

I(a) → 0 , I(b) → 0 , I(c) → 0 , I(d) → 0 ,

I(e) → −s3
12

3
V (A) , I(f) → −s3

12

3
V (B) , I(g) → −s3

12

3
V (B) ,

I(h) → 2

3
(2s3

13 − 3s12s13s14)V
(B) + (−s3

13 + s12s13s14)V
(C) ,

I(i) → 1

6
(2s3

13 − 5s12s13s14)V
(A) − 1

3
(s3

13 + 3s12s13s14)V
(B) , (5.2)
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FIG. 9: Reduction of three-loop propagator diagrams appearing in the D = 6− 2ǫ UV divergences

of N = 8 supergravity. The numbers near each propagator indicates the power or index to which

it is raised.

where we used

s3
12 + s3

13 + s3
14 = 3s12s13s14 (5.3)

to simplify the expressions, and we set D = 6 in the coefficients. Multiplying the above

expressions by their numerical prefactors in eq. (2.9) and summing over the permutations,

it is not hard to find that the leading UV divergence in D = 6 is

M
(3),D=6−2ǫ
4

∣∣∣
pole

= −
(κ

2

)8

(s12s13s14)
2M tree

4

[
10(V (A) + 3V (B))

]
. (5.4)

The coefficient of the vacuum-like diagram, V (C), which arises only from I(h), vanishes after

the permutation sum. These features are a consequence of the specific representation of the

numerators given in table III.

To determine whether the leading 1/ǫ pole in eq. (2.9) cancels, we must evaluate the UV

behavior of the vacuum integrals (A) and (B) in fig. 8. A convenient means for doing so is

to restore some momentum dependence in order to regulate the infrared divergences. We

can re-interpret the calculation as that of a typical propagator integral, simply by injecting

some arbitrary external momentum at appropriately-chosen vertices, and applying standard

techniques developed for this problem. (See for example the review by Grozin [75].) Because

the divergence is logarithmic in the critical dimension, the injected momentum does not

appear in the leading UV pole in dimensional regularization; thus it has no effect on the

result. We therefore promote the vacuum-like diagrams (A) and (B) in fig. 8 to propagator

25



diagrams, while leaving all internal lines massless, as shown in fig. 9. Then we can use

dimensional analysis to simplify each three-loop propagator diagram down to a product of

a two-loop propagator diagram and a one-loop bubble diagram. (Although we do not need

it here, diagram (C) in fig. 8 can be evaluated in a similar fashion.)

As shown in fig. 9, to evaluate the integrals, we factor out a two-loop propagator diagram

formed from the two upper loops on the left side of diagrams (A) and (B). By dimensional

analysis, the two-loop propagator subintegrals are given by

P
(A)
2-loop =

K
(A)
2-loop

(4π)D

1

(l2)7−D
, P

(B)
2-loop =

K
(B)
2-loop

(4π)D

1

(l2)7−D
, (5.5)

where l is the momentum flowing through the two-loop propagator diagram and K
(A)
2-loop

and K
(B)
2-loop are constants to be determined by explicit integration. The factor of 1/(l2)7−D

effectively results in a remaining one-loop bubble integral with a propagator raised to the

power (7 − D). The two-loop propagator integrals in each case are finite in D = 6. We

evaluated them using integration by parts [76], with the result,

K
(A)
2-loop = 1 , K

(B)
2-loop = ζ3 −

1

3
. (5.6)

The remaining one-loop bubble integrals are also straightforward to evaluate; for arbitrary

exponents n1 and n2 of the two propagators, they are given by [75]

Ibubble(n1, n2) ≡ −i

∫
dDp

(2π)D

1(
(p + k)2

)n1

(p2)n2

=
(−1)n1+n2

(4π)D/2
G(n1, n2)(−k2)−(n1+n2−D/2) ,

(5.7)

where

G(n1, n2) =
Γ(−D/2 + n1 + n2)Γ(D/2 − n1)Γ(D/2 − n2)

Γ(n1)Γ(n2)Γ(D − n1 − n2)
. (5.8)

In D = 6 − 2ǫ, for the two cases in fig. 9 we have n1 = 1 + 2ǫ and n2 = 2. The bubble

integral in both cases provides the UV divergence in D = 6 − 2ǫ,

G(1 + 2ǫ, 2) =
Γ(3ǫ)Γ(2 − 3ǫ)Γ(1 − ǫ)

Γ(1 + 2ǫ)Γ(2)Γ(3 − 4ǫ)
=

1

6ǫ
+ O(1) . (5.9)

Recalling the normalization of the integrals I(x) defined in eq. (2.7), and collecting factors

from eqs. (5.6) and (5.7), we obtain the UV singularity of the vacuum-like diagrams (A) and

(B),

V (A) = − 1

(4π)9

[
1

6ǫ
+ O(1)

]
, (5.10)

V (B) = − 1

(4π)9

[
1

6ǫ

(
ζ3 −

1

3

)
+ O(1)

]
. (5.11)
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We have confirmed these results by direct numerical integration of the vacuum-like diagrams,

using a mass regulator to define the integrals. Using eq. (5.4), we obtain

M
(3),D=6−2ǫ
4

∣∣∣
pole

=
1

ǫ

5ζ3

(4π)9

(κ

2

)8

(s12s13s14)
2M tree

4 . (5.12)

Note that the simple functional dependence of eq. (5.12) on the kinematic variables s12, s13

and s14 is fixed by dimensional analysis and Bose symmetry, given that it should contain a

factor of s12s13s14M
tree
4 . The identity (5.3) can be used to help establish this fact.

Notice also the cancellation of the rational parts of K
(A)
2-loop and K

(B)
2-loop, in the combina-

tion V (A) + 3V (B) appearing in eq. (5.4). Thanks to this cancellation, the logarithmic UV

divergence (5.12) possesses a uniform degree of transcendentality (in which ζn is assigned

degree n, and rational numbers degree zero). This property is common to infrared-regulated

amplitudes, near D = 4, in N = 4 super-Yang-Mills theory and N = 8 supergravity; here

we see it persists to the level of the three-loop UV singularity at D = 6.

As mentioned earlier, the fact that eq. (5.12) is nonzero establishes that, in comparison

with N = 4 super-Yang-Mills theory, N = 8 supergravity is no better behaved (as well as

no worse behaved) in the ultraviolet through three loops.

B. UV divergences in odd dimensions

Next we turn to the computation of three-loop divergences in dimensions above six. To

simplify the analysis, we restrict our attention to the behavior near odd values of D, namely

D = 7, 9, 11.

According to the convergence theorem, a Feynman integral is convergent if the degree of

divergence of all one-particle-irreducible subintegrals is negative. Together with the BPHZ

subtraction it also implies that, after subtracting all subdivergences, the remaining overall

divergence (arising when all loop momenta are scaled to infinity at the same rate) has a local

(polynomial) dependence on external momentum invariants. In dimensional regularization it

is easy to see that, in odd dimensions and at an odd loop order, no such overall divergences

may exist. Indeed, the dimension of any such loop integral is odd, and so the result of

the integration depends on a half-integer power of momentum invariants. However, such a

dependence would be nonlocal. Hence its coefficient must be finite after the subtraction of

all subdivergences. Thus, after subtracting the subdivergences, all three-loop integrals must
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FIG. 10: The two-loop subdivergence contributions to the three-loop local divergence. The black

vertex represents a two-loop local divergence. In dimensional regularization, near a dimension

greater than four, contributions (b) and (c) vanish because they are proportional to a positive power

of a vanishing invariant. The complete contribution is given by summing over the inequivalent

permutations of external legs.

be finite in odd dimensions. For the same reason, no subtraction is necessary for one-loop

subintegrals in odd dimensions. Therefore, the first divergent subintegrals have two loops,

and they completely determine the leading UV divergence of the three-loop integrals to

which they belong.

The above arguments hold for general off-shell integrals. Our case is somewhat simpler

due to the masslessness of the external momenta. Consider the potential two-loop subdiver-

gences shown in fig. 10. In principle, there can be contributions from two-loop four-, five-

and six-point subdivergences. (There is no three-point subdivergence in any supergravity

theory.) However, from dimensional analysis in D > 4 dimensions we can easily show that

both diagrams (b) and (c) vanish, because they are proportional to vanishing invariants. For

example, inserting a five-point two-loop divergence into the third loop, as shown in figure

10(b), amounts to computing

∫
dDq

(2π)D

P (q, k1, k2)

q2 (q + k4)2
∼ (k2

4)
D−4+nq/2 . (5.13)

Here P (q, k1, k2) is a polynomial depending on the loop and external momenta, and nq

counts the power of q in the numerator of a given term. Even for terms with no powers of

q in the numerator, for D ≥ 6 the integral is proportional to a positive power of k2
4 = 0

and therefore vanishes. With additional powers of loop momenta q in the numerator, the

vanishing is even stronger.

Similarly, integral (c) in fig. 10 must vanish, because no external invariant appears. It is

interesting to note that the three-loop integrals (d), (h) and (i) in fig. 3 do not have two-loop

four-point subintegrals. (This property is tied to the fact that integrals (h) and (i) cannot
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be detected via two-particle cuts. Integral (d) can be detected in this way, but only by a

cut that splits it into a product of two one-loop integrals.) Thus, only the integrals (a), (b),

(c), (e), (f) and (g) in fig. 3 contribute to the divergence in odd dimensions. The first odd

dimension in which a divergence appears in the three-loop amplitude is D = 7, because this

is the dimension where the first two-loop subdivergence appears [38].

To evaluate the contribution of the two-loop subdivergence, in principle we need the

divergent parts of the two-loop planar and nonplanar double-box integrals with two off-

shell external legs. However, a simple observation allows us to obtain the desired result

using only double-box integrals with all massless legs. Indeed, at the level of the singular

terms in D ≥ 7, the difference between the massive (off-shell) and massless integrals are

terms proportional to the square of the massive momenta. When these additional terms are

inserted in the triangle graph shown in fig. 10, they cancel at least one of the propagators

of the triangle integral, leaving behind a bubble integral with a massless momentum flowing

through it. As explained above, such integrals vanish in dimensional regularization.

Using this observation, an efficient strategy is to combine the divergences of the subinte-

grals into divergences of on-shell subamplitudes. This is done simply by grouping together

the remaining one-loop integrals with the same remaining propagators, which is effectively

done in fig. 10. With this reorganization we directly evaluate the divergence in fig. 10(a),

with the two internal legs, 5 and 6, placed on shell. All other contributions vanish. The

contact term vertex represents the divergence of the on-shell two-loop four-point amplitude.

These divergences have been computed in ref. [38] and are given by,

M2-loop, D=7−2ǫ
4 |pole =

1

2ǫ (4π)7

π

3
(s2

12 + s2
13 + s2

14) ×
(κ

2

)6

× s12s13s14 M tree
4 ,

M2-loop, D=9−2ǫ
4 |pole =

1

4ǫ (4π)9

−13π

9072
(s2

12 + s2
13 + s2

14)
2 ×

(κ

2

)6

× s12s13s14 M tree
4 ,

M2-loop, D=11−2ǫ
4 |pole =

1

48ǫ (4π)11

π

5791500

(
438(s6

12 + s6
13 + s6

14) − 53s2
12s

2
13s

2
14

)

×
(κ

2

)6

× s12s13s14 M tree
4 , (5.14)

for external legs labeled 1, 2, 3, 4. The factor s12s13s14 cancels all kinematic poles in the tree

amplitudes M tree
4 , making these divergences local. (In fact, the product s12s13s14M

tree
4 in the

case of four gravitons may be represented as the matrix element on four-particle states of

a particular contraction of four Riemann tensors, often denoted simply by “R4”.) We have

also obtained the same result (5.14) by evaluating the two-loop subdivergences integral by
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integral, using the results of ref. [38].

To evaluate the remaining one-loop integrals, we again make use of the observation that

if a numerator factor collapses either of the propagators in fig. 10(a), labeled by 5 and 6,

then the integral vanishes because it depends only on a massless external momentum, either

k2
3 = 0 or k2

4 = 0, as in fig. 10(b). Therefore we may set l25 = 0 and l26 = 0 in the numerators

of the integrals. We may use the on-shell two-loop divergence (5.14) and tree amplitude

directly in the integration, giving us

M3-loop,D
4

∣∣∣
pole

=
1

2

∑

perms

∑

N=8 states

∫
dDl5
(2π)D

(5.15)

×
[
M2-loop,D

4 (−l5, 1, 2, l6)
∣∣∣
pole

] i

l26
M tree

4 (−l6, 3, 4, l5)
i

l25
,

where the factor of 1/2 accounts for identical particles crossing the cut, and the sum over

permutations runs over the six distinct labellings of fig. 10(a). To evaluate this integral we

note that the two-loop divergences (5.14) are proportional to the tree-level four-graviton am-

plitude. Thus, we may use the two-particle cut sewing relation for tree-level amplitudes [38],

∑

N=8 states

M tree
4 (−l5, 1, 2, l6) × M tree

4 (−l6, 3, 4, l5) (5.16)

= i s12s13s14 M tree
4 (1, 2, 3, 4)

[
1

(l5 − k1)2
+

1

(l5 − k2)2

][
1

(l6 − k3)2
+

1

(l6 − k4)2

]
.

In the sewing (5.15), the additional factor s12s13s14 appearing in the two-loop divergences

(5.14) should be relabeled as,

s12s13s14 7→ s12(l5 − k1)
2(l5 − k2)

2 . (5.17)

With this additional factor the first term in the bracket in eq. (5.16) simplifies as,

s12(l5 − k1)
2(l5 − k2)

2

[
1

(l5 − k1)2
+

1

(l5 − k2)2

]
= s12[(l5 − k2)

2 + (l5 − k1)
2]

= −s2
12 , (5.18)

where we used the on-shell conditions on l5 and l6. Because a propagator cancels, we are

left with the expected triangle integrals in eq. (5.15).

The masslessness of the external legs leads to further simplifications in handling ten-

sor triangle integrals, which arise from additional factors of s13 and s14 in the two-

loop divergences (5.14). If in these factors we let s13 7→ (l5 − k1)
2 = −2l5 · k1 and
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s14 7→ (l6 + k1)
2 = 2l6 · k1, then all contractions lµi lνj → ηµν vanish, because they are

proportional to k2
1 = 0. Hence we just need the Feynman parameter polynomials obtained

by shifting the loop momentum in the usual way. Evaluating the integrals over the Feynman

parameters in the appropriate odd integer dimension, and combining the pieces, we obtain

the following three-loop divergences:

M
(3)
4

∣∣∣
D=7−2ǫ

pole
= − π5/2

ǫ (4π)21/2

(κ

2

)8 [
s12s13s14M

tree
4

]∑

Z3

(−s12)
5/2

1440

(
65 s2

12 − 8 s13s14

)
,

M
(3)
4

∣∣∣
D=9−2ǫ

pole
= − π5/2

ǫ (4π)27/2

(κ

2

)8 [
s12s13s14M

tree
4

]∑

Z3

13 (−s12)
7/2

11705057280

×
(

10143 s4
12 − 1296 s2

12s13s14 + 128 s2
13s

2
14

)
,

M
(3)
4

∣∣∣
D=11−2ǫ

pole
= − π5/2

ǫ (4π)33/2

(κ

2

)8 [
s12s13s14M

tree
4

]∑

Z3

(−s12)
9/2

2461954796421120000

×
(

3180433113 s6
12 − 247667992 s4

12s13s14

+ 70002816 s2
12s

2
13s

2
14 − 3363840 s3

13s
3
14

)
, (5.19)

where Z3 refers to cyclic permutations of legs 2, 3 and 4. These divergences are really due

to two-loop subdivergences in the bare theory. If we renormalize the theory at two loops

in D = 7, 9 or 11, in order to cancel the divergences in eq. (5.14), then the corresponding

three-loop divergence in the renormalized theory will also be cancelled.

VI. CONCLUSIONS

Maximally supersymmetric N = 8 supergravity theory is potentially a perturbatively

ultraviolet-finite point-like quantum field theory of gravity. In ref. [2] a loop-integral repre-

sentation of the three-loop four-point amplitude of N = 8 supergravity was presented, which

exhibited cancellations beyond those needed for finiteness. In this paper, using the method

of maximal cuts [45], we constructed an alternate representation of this amplitude with all

ultraviolet cancellations manifest. By explicitly evaluating the integrals, we demonstrated

that N = 8 supergravity [1] diverges in D = 6, matching the ultraviolet behavior of N = 4

super-Yang-Mills theory. Hence no further hidden cancellations are present at three loops.

We found that the divergence has a uniform degree of transcendentality, and is proportional

to ζ3. We also evaluated the divergence of the three-loop four-graviton amplitude in 7, 9

and 11 dimensions; the latter results may be of interest in studies of M theory dualities [56].
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While explicit calculations in N = 8 supergravity reveal cancellations beyond those

needed for finiteness, their origin remains to be fully unraveled. For a subset of contribu-

tions, all-loop cancellations [11] follow from the “no-triangle” property at one-loop [4–10]. In

ref. [21] one-loop cancellations in generic theories of gravity were linked to unexpectedly soft

behavior of tree-level gravity amplitudes under large complex shifts of their momenta [24–

28]. This mechanism was also proposed as a source of all-loop cancellations, which may be

sufficiently strong to render the N = 8 theory finite, when combined with supersymmetric

cancellations. This line of reasoning has been pursued further in ref. [10]. Improved ultra-

violet properties in N = 8 supergravity have also been linked to M theory dualities [12, 15]

and to string theory non-renormalization theorems [13, 14].

We also presented the fully color-dressed N = 4 super-Yang-Mills three-loop four-point

amplitude. In our color decomposition the contact terms are given the same color factor as

the parent diagram to which they are assigned. The parent diagrams contain only three-

vertices, each of which carries an fabc color factor. The freedom to assign contact terms to

different parent diagrams, and thereby to different color factors, cancels in the full amplitude.

To confirm our color dressing for the three-loop four-point amplitudes, we evaluated the cuts

using color-dressed tree amplitudes as input. We expect that, in general, any amplitude in

any gauge theory can be color dressed by first assigning contact terms to parent diagrams,

in a way that is consistent with all color-ordered unitarity cuts. Then one dresses the

three-point vertices of the parent diagrams with the appropriate fabc color factors.

Representations of amplitudes manifestly exhibiting all ultraviolet cancellations, such as

the one presented in this paper, should be helpful for studying their properties and for

tracking the origin of the cancellations, at both three and higher loop orders.
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