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Abstract—A new method for projecting discretized electromag-
netic fields on one unstructured grid to another grid is presented
in this paper. Two examples are used for studying the errors of
different projection methods. The analysis shows that the new
method is very effective on balancing both the error of the electric
field and that of the magnetic field (or curl of the electric field).

I. INTRODUCTION

In performing eigen-mode analysis of electromagnetic cav-
ities, the grid-based multi-level method [1], [2] is extremely
useful for solving a highly-indefinite shifted linear system.
In the multi-grid method, there exists multiple meshes gen-
erated with different mesh sizes. discretized vectors have to
be projected from one mesh to another in the processes of
restriction and prolongation. Similarly, in performing time-
domain analysis of the cavities with an eigen-mode as ambient
load, the eigen-mode that is often computed with a different
mesh needs to be projected to the mesh used for time-domain
analysis. The projected eigenvector can also serve as a initial
guess for the eigenvector solution of the dense mesh in
eigenpair refinement.

One way of projecting a discretized vector on one mesh
to another is to use interpolation with basis functions on
the meshes. For electromagnetics, the simple interpolation is
good at controling the error of electric fields but it failed to
control that of the magnetic field (o the curl of the electric
field). In this paper, a new projection method that has better
error control of both electric and magnetic fields is proposed.
The outline the rest of the paper is as follows. First, a brief
introduction of eigen-mode analysis is given. Then the new
projection method is presented and its physical meaning is
discussed. Two examples are given to show the errors of the
new projection method. Finally, a summary of this work is
given.

II. EIGEN-MODE ANALYSIS

In analyzing eigen-modes of electromagnetic cavities, the
governing Maxwell’s equations can be simplified to the fol-
lowing harmonic vector wave equation:

∇×
(

1
µ
∇×

−→
E
)
− εk2−→E = 0 (1)

where ε and µ are the relative electric permittivity and mag-
netic permeability and k the angular wavenumber. With finite-
element discretization using tangentially-continuous Nedelec
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basis functions [3],
−→
E =

∑
i

xi
−→
Ni (2)

the above equation becomes a generalized eigenvalue problem
for a cavity with perfectly conducting cavity wall:

Kx = Mxk2. (3)

where the matrices K and M are

Kij =
(

1
µ
∇×

−→
Ni,∇×

−→
Nj

)
, and (4)

Mij =
(
ε
−→
Ni,

−→
Nj

)
. (5)

Here we denote (
−→
X,
−→
Y) to be an inner product, which is the

integral over the domain
∫
Ω

−→
X ·

−→
Y dΩ. Note that matrix M is

symmetric positive definite and matrix K is symmetric positive
semi-definite with a large null space. Once the eigenvalue
problem is solved, the electric field

−→
E is recovered with Eq(2)

while the magnetic field
−→
B is computed with

−→
B = −jkc

∑
i

xi∇×
−→
Ni (6)

where j is the square root of −1 and c the speed of light.
A shift-and-invert transformation as follows is often applied

to Eq (3) in the process of solving the above eigenvalue
problem since the interior eigenvalues are of the interest in
the accelerator cavity modeling.

1
k2 − σ

x = (K− σM)−1 Mx (7)

where σ is a prescribed shift close to the eigenvalues of
the interest. The above spectral transformation requires a
solution of a highly indefinite linear system in every eigenvalue
iteration, which is notoriously difficult to solve with iterative
methods.

(K− σM)y = Mb (8)

To solve the shifted linear system Eq(8), we often used sparse
direct solvers [4], [5], [6] or Krylov subspace methods with
multi-level preconditioners [1], [2], [7], [8]. Sparse direct
solvers require a large amount of memory to store the factor
of the matrix K − σM thus their usage is limited due to
limited amount of physical memory available on the comput-
ers. For the grid-based multi-level precondtioners [1], [2], [8],
discretized vectors have to be projected from one mesh to
another in the processes of restriction and prolongation. In
addition, in performing time-domain analysis of the cavities
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with an eigen-mode as ambient load, the eigen-mode that is
often computed with a different mesh needs to be projected to
the mesh used for time-domain analysis. Finally, the projected
eigenvector can also serve as a initial guess for the eigenvector
solution of the dense mesh in eigenpair refinement.

One way for projecting a discretized vector xa on mesh a to
mesh b is to interpolate it on the mesh b. This can be viewed
as solving the following linear system.

Mbxb = bb (9)

where bb
j =

(∑
i

xa−→Na
i ,
−→
Nb

j

)b

(10)

If we interpret the discretized vector x as an electric field
representation through Eq (2), we minimize the error of the
electric fields meanwhile we have no control on the error of the
magnetic fields. As matter of fact, the projected magnetic fields
(or the curl of the discretized vector) often have unacceptably
large errors. This will be further illustrated in Sections IV and
V through examples.

III. METHOD AND DISCUSSION

Let us consider the following quantity and its discretization
using Eq (2) on mesh a or mesh b :

−→
F ≡ ε

−→
E + α∇×

„
1

µ
∇×

−→
E

«
=ε
X

i

xi
−→
Ni

+α∇×
 

1

µ
∇×

X
i

xi
−→
Ni

!
(11)

where α is a constant to be specified. With the weighted
residual method [9], we can use a set of weight fucntions −→wj

to minimize the residual,
−→
R ≡

−→
F b−

−→
F a, on mesh b over the

domain through an inner product.(−→wj ,
−→
F b −

−→
F a
)

= 0 (12)

Let us choose
−→
Nb

j to the the weight function −→wj , i.e., use
the Galerkin method. And we expand the above equation with
(11) and get: 

−→
Nb

j , ε
X

i

xb
i

−→
Nb

i + α∇×
 

1

µ
∇×

X
i

xb
i

−→
Nb

i

!!
= 

−→
Nb

j , ε
X

i

xa
i

−→
Na

i + α∇×
 

1

µ
∇×

X
i

xa
i

−→
Na

i

!!
(13)

With integration by parts and appling proper boundary con-
ditions, we get the following linear system:

(M + αK)xb =

(
−→
Nb

j , ε
∑

i

xa
i

−→
Na

i

)

+α

(
∇×

−→
N

b

j ,
1
µ

∑
i

xa
i∇×

−→
N

a

i

)
(14)

As long as α is a non-negative number, the matrix M+αK is
sysmmetric postive definite because M is sysmmetric postive
definite and K is sysmmetric postive semi-definite. Thus, Eq
(14) is much easier to solve than the shifted linear system Eq
(8) from the eigenvalue computation. Eq (14) can be viewed
as a projection of the vector xa on mesh a to mesh b. The

solution of it xb is the discretized repsentation of xa on mesh
b.

The choice of the parameter α is critical. If α is zero, Eq
(14) becomes Eq (9) and both projection methods are the same.
Now let us rearrange terms in the residual

−→
R as follows:

−→
R = ε

−→
E b + α∇×

„
1

µ
∇×

−→
E b

«
− ε
−→
Ea − α∇×

„
1

µ
∇×

−→
Ea

«
= ε(

−→
E b −

−→
Ea) + α

„
∇×

„
1

µ
∇×

−→
E b

«
−∇×

„
1

µ
∇×

−→
Ea

««

Namely, the residual
−→
R have two contributing terms, one

from the ε
−→
E and the other from ∇×

(
1
µ∇×

−→
E
)

. An optimal
choice of the parameter α is to balance those two contributing
terms. Namely,˛̨̨

ε(
−→
E b −

−→
Ea)

˛̨̨
= α

˛̨̨̨
∇×

„
1

µ
∇×

−→
E b

«
−∇×

„
1

µ
∇×

−→
Ea

«˛̨̨̨
If an eigenvector is in the projection, we can use Eq (1) and

take the difference between the two meshes and compare it
with the above equation. It is clear that the optimal value of
the parameter α is equal to 1

k2 . If α is smaller than 1
k2 , the

contribution to the residual from the magnetic fields (or the
curl of the electric fields) is larger than that of the electric
fields. This means the error of magnetic fields can be larger
after the minimization of the residual, and vice versa.

IV. PROJECT ANALYTICAL FIELDS

In this section, we take a rectangular waveguide structure
with a = 0.04m width, b = 0.02m height, and c = 0.08m
length as a modeling domain. We project the following ana-
lytical fields to the two meshes for the rectangular waveguide:

−→
Ex = − β

h2

π

a
cos(

πx

a
)sin(

πy

b
),

−→
E y = − β

h2

π

b
sin(

πx

a
)cos(

πy

b
),

−→
E z = sin(

πx

a
)sin(

πy

b
),

(∇×
−→
E )x =

π

b
sin(

πx

a
)cos(

πy

b
),

(∇×
−→
E )x = −π

a
cos(

πx

a
)sin(

πy

b
),

(∇×
−→
E )z = 0

where h2 ≡ π2

a2
+

π2

b2
and β ≡

√
k2 − h2

One mesh has its size of 0.002m and the other 0.0018m. We
choose the k so that its corresponding frequency is 10GHz. In
order to compare with the two project methods, we calculated
the electric fields and magnetic fields along a line cross the
waveguide (z from 0 to c) at a quarter of width (x = 1

4a) and
height (y = 1

4b).
The subfigures in the first column of Figure IV show the rel-

ative errors of projected electric fields and those in the second
column show the relative errors of projected magnetic fields.
In the first row, the analytical fields are projected onto mesh
1 with the project method described in Eq ( refeq:oldproj).
The error of the magnetic fields is signficantly larger than that
of the electric fields. In the second row, two projection are
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Fig. 1. The relative errors of the projected electric and magnetic fields with different projection methods.

executed, using the method described in Eq(9). The analytical
fields are first projected on the mesh 1. The projected fields are
again projected to mesh 2. As shown in the figures, the error of
electric fields is comparable to that in the first row. However,
the error of magnetic fields is signigicantly larger. In the row
3 and 4, we repeated the experiements as did in the row 1 and
2 except that we uses the projection method described in Eq
(14). It is clear that the errors of the electric fields keep the
comparable as those in the row 1 and 2 while the errors of
the magnetic fields is signficantly better than those in the row
1 and 2. In the row 5 and 6, we repeated the experiements as
did in the row 3 and 4 except that we use the finite-element
order to be 3 instead of 2.

V. PROJECT AN EIGENVECTOR

In this section, we use a cell for the Damped Detune
Structure (DDS) designed at SLAC [10] as an example for
projecting eigenvectors from one mesh to another. Figure 2(a)
shows one-eighth of the geometry of the cell. The rest of
pictures in Figure 2 shows four meshes we used in the
projection.

In this example, we first computed the eigenpair of the
accelerating mode using Omega3P [11] with Mesh 1, 2, and
3, respectively. Then we project the computed eigenvector on

(a) (b) (c) (d) (e)

Fig. 2. (a) the CAD model of a cell for the Damped Detune Structure (DDS)
for eigen-mode analysis. Only one-eighth of the geomery is shown. (b) Mesh
1 with 913 elements. (c) Mesh 2 with 1278 elements. (d) Mesh 3 with 3256
elements. (e) Mesh 4 with 19788 elements.

to Mesh 4 with M or with M + αK where α is equal to 1
k2 .

As a comparison, we also computed the eigenpair using Mesh
4, which is regarded as the most accurate solution since it
is computed from a mesh with considerably more number of
elements. To quantify and compare the errors of two project
methods, we choose a line parallel to beam but offset from
center and plot electric field parallel to the beam axis and
one component of the magnetic fields on the line. Figure 3(a)
plots the electric fields computed with Mesh 1 and 4 and the
ones projected from Mesh 1 to Mesh 4 with the two different
methods. Figure 3(b) plots the magnetic fields computed with
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Fig. 3. (a) The electric fields computed with direct finite-element simulation
using Mesh 1 and 4 and the electric fields projected from Mesh 1 to Mesh
4. (b) The magnetic fields. (c) The errors of the electric fields. (d) The errors
of the magnetic fields.

Mesh 1 and 4 and the ones projected from Mesh 1 to Mesh
4 with the two different methods. Figure 3(c) plots the errors
of the electric fields computed with Mesh 1 and projected
from Mesh 1 to Mesh 4 with the two different methods. Note
that the errors are computed with respect to the electric field
computed with Mesh 4. Similary, Figure 3(d) plots the errors
of the magnetic fields computed with Mesh 1 and projected
from Mesh 1 to Mesh 4 with the two different methods.
Figure 3(b) and 3(d) clearly indicate that the projection with
M yields big erors for magnetic fields even though it gives a
good fit for electric fields. With the projecttion method shown
in Eq (14), the errors of both electric fields and magnetic
fields are well controlled. In addition, the projection does
not degrade the quality of the fields as the errors of the
fields from direct computation and those from the projection
are comparable. Figure 4 and Figure 5, plotting the similiar
electric and magnetic fields and their errors but with different
meshes, show the consistent results.

In solving the eigenvalue problem shown in Eq (3), we
always M-orthogonalize the computed eigenvectors. Namely,
make xT Mx = 1. Therefore, the residualR defined as follows
is a good measure for how accurate an appromixate eigenpair
(k2, x) is. Note that the residual of a numerical eigenpair is
often 10−15 or less. Table I shows the residuals of the projected
eigenpairs with different meshes.

R ≡
∣∣∣∣1− 1

k2
xT Kx

∣∣∣∣ (15)

VI. SUMMARY

We proposed a new method for projecting discretized elec-
tromagnetic fields on one unstructured grid to another grid.
We used two examples for studying the errors of different
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Fig. 4. (a) The electric fields computed with direct finite-element simulation
using Mesh 2 and 4 and the electric fields projected from Mesh 2 to Mesh
4. (b) The magnetic fields. (c) The errors of the electric fields. (d) The errors
of the magnetic fields.
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Fig. 5. (a) The electric fields computed with direct finite-element simulation
using Mesh 3 and 4 and the electric fields projected from Mesh 3 to Mesh
4. (b) The magnetic fields. (c) The errors of the electric fields. (d) The errors
of the magnetic fields.

projection methods. The analysis shows that the new method
is very effective on balancing both the error of the electric
field and that of the magnetic field.
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3 3256 5.5x10−6 0.020
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