
A FLIGHT SIMULATOR FOR ATF2 - A MECHANISM FOR
INTERNATIONAL COLLABORATION IN THE WRITING AND

DEPLOYMENT OF ONLINE BEAM DYNAMICS ALGORITHMS*†

Glen White, LAL, Univ Paris-Sud, CNRS/IN2P3, Orsay, France & SLAC, Menlo Park,
California, Stephen Molloy, Andrei Seryi, SLAC, Menlo Park, California, Daniel Schulte, Rogelio
Tomas, CERN, Geneva, Shigeru Kuroda, KEK, Ibaraki, Philip Bambade, Yves Renier, LAL, Univ
Paris-Sud, CNRS/IN2P3, Orsay, France

Abstract
The goals of ATF2 are to test a novel compact final

focus optics design with local chromaticity correction
intended for use in future linear colliders. The newly
designed extraction line and final focus system will be
used to produce a 37nm vertical waist from an extracted
beam from the ATF ring of ~30nm vertical normalised
emittance, and to stabilise it at the IP-waist to the ~2nm
level. Static and dynamic tolerances on all accelerator
components are very tight; the achievement of the ATF2
goals is reliant on the application of multiple high-level
beam dynamics control algorithms to align and tune the
electron beam in the extraction line and final focus
system. Much algorithmic development work has been
done in Japan and by colleagues in collaborating nations
in North America and Europe. We describe here
development work towards realising a 'flight simulator'
environment for the shared development and
implementation of beam dynamics code. This software
exists as a 'middle-layer' between the lower-level control
systems (EPICS and V-SYSTEM) and the multiple
higher-level beam dynamics modeling tools in use by the
three regions (SAD, Lucretia, PLACET, MAD...).

OVERVIEW OF THE FLIGHT
SIMULATOR PROJECT

The main goals of the flight simulator project can be
summarised as follows:

* Provide a simple to use, beam dynamics oriented,
portable control access framework for ATF2 tuning tasks.

* There should be simple and reversible transition from
beam dynamics simulation to accelerator-ready code.

* Provide the ability for international collaborators to
develop beam tuning tools without the need for expert-
level knowledge of control systems.

* Allow the flight simulator to operate in simulation
mode at an external location in the same way as the
production system deployed at ATF2.

Another key difference between the interface offered by
the flight simulator to that of the standard control system
is that it provides a mechanism to automate multiple beam
tuning tasks.

Through a common interface, it is left to the user to
decide which accelerator code best suits his or her needs.
The flight simulator software thus forms a management
package which allows beam dynamics code written in a
variety of environments to interact.

The main concentration of effort for this project is to
address the tuning tasks of the ATF2 extraction line and
final focus system. However, the extension of the project
to include beam physics tasks in the Damping Ring is also
envisioned for the future.

COMPONENTS OF THE FLIGHT
SIMULATOR

The core functionality of the flight simulator software
is written as a library of Matlab functions which extends
the functionality of the Lucretia accelerator toolbox [1].
Lucretia contains many functions useful for the
simulation of single-pass electron beamlines and has been
used extensively in the modelling of ILC. It was written
to provide the user with an interface very much like one
would use at an operational accelerator installation. As
such it lends itself well to being used in the fashion
described here.

The flight simulator can be described as a 'middle-layer'
between the lower-level control system interface and the
beam dynamics simulations and algorithmic development
performed by physicists. By providing a portable system
that behaves in the same way in 'simulation mode' as the
production version at the accelerator, it is possible to
develop code in an environment that the user is used to
and can be run on the real machine with little or no
alteration. It is also possible to develop a final version of
the beam dynamics code without direct access to the
production control system which has security benefits.

The pre-existing Lucretia data structures are used to
hold the real-time data. The design model values are kept
in the BEAMLINE array, and real-time modifications in
the PS (power supply), GIRDER (movers) and INSTR
(BPMs and other monitors) arrays.

A schematic representation of the flight simulator and
its installation into the ATF control system environment is
shown in figure 1. At the lowest level of the system are
the Input-Output Controllers (IOCs) that read and write
data to the beamline hardware systems. For many of the
new hardware systems these are EPICS-based IOCs
running on a mixture of VME, CAMAC and PC-based
architectures. The re-used and existing IOC systems from
ATF are based on the V-SYSTEM control architecture. An
additional 'soft' EPICS IOC has been written to generate
EPICS Process Variables (PV's) that synchronise to the
control variables in V-SYSTEM. The flight simulator

*work supported in part by Department of Energy Contract DE-AC02-76SF00515
†work supported in part by the Commission of the European Communities , contract number RIDS-011899

SLAC-PUB-13304

July 2008

Contributed to the 11th European Particle Accelerator Conference (EPAC08), 7/23/2008 to 7/27/2008, Genoa, Italy

implements its hardware read-write functions through an
EPICS Channel-Access (CA) client interface.

The flight simulator software itself exists as two
installations. The “trusted” installation has read/write
access to EPICS and runs applications that have been well
tested and as such are integrated into the control system
proper. The other installation is the “test” installation.
This typically runs on a users personal computer. A
server-client relationship thus exists between the trusted
and test installations. The user writes applications in the
test environment, and to gain access to the control system
PV's that it needs to run, it must request access rights
from the server which then handles read/write requests.

“Trusted” Installation Functionality
The core functions of the flight simulator server

software are listed here:
Server-client communications: A tcp socket

implemented in java natively in the Matlab environment
is used for communications between the “trusted” server
and “test” client. The server constantly listens out on a tcp
socket and assigns new ports to inbound requests, thus
allowing the possibility of multiple simultaneous
connections.

Access control to client installations: By default the
“test” client has no write access to any control variable.

Using one of the built-in flight simulator functions, it
must request access for all the PV write-access it needs to
run a given application. Each new request from a client
appears on a window on the computer running the server.
An operator must then grant permission for the PV access.
This way, full control is maintained over which systems
are being used at any time avoiding problems with
multiple simultaneous control requests and providing an
additional layer of security to the control network.

Server-based data services: Where tested applications
exist, they are available through the flight simulator
interface to be called from the server. An example is BPM
averaging- it is possible to call the averaging function
from the client and the server will run the application and
return the averaged readings, with optional quality cuts.

Sync. Control system with Lucretia model: The
server updates it's internal Lucretia model of ATF2 at the
machine rep. rate of 1.56 Hz. It has internal look-up tables
to translate the raw control system values (magnet
currents etc) into the values used by Lucretia.

The server connects to the EPICS databases through
labCA [2]- an EPICS CA client written for Matlab.

Maintain updated AML and Lucretia models: The
two model definition standards supported by the flight
simulator are the native Lucretia model data (binary
matlab .mat files) and AML. Both files are periodically
written to disk, with the intention of making these
available on a public server so a user can obtain the
current state of the machine at any time from any
location. It is also planned to implement an archive
function, such that the running state of the machine at any
given time can be obtained which should prove very
useful for post-mortem diagnostics.

Provide PS setting and magnet move functionality
through native Lucretia functions (PSTrim,
MoverTrim): The way of making changes to the
accelerator (namely, power supply changes and magnet
mover settings) is through the usual native Lucretia
functions, with additional complexity necessary to deal
with access from the server or client hidden from the user.

“Test” Installation Functionality
The client flight simulator, installed on a user's laptop

for example, is effectively the same software environment
as the server. It contains a local version of the ATF2
lattice and settings in it's own Lucretia model. On startup,
it initiates a link to the server through a tcp socket
connection. It initially loads the default lattice, but then
can synchronise it's Lucretia database with that of the
server's automatically or at the users request.

There is a common directory structure between the 2
installations; test applications and certified trusted
applications exist in separate folders. Both are available to
the client, but only the trusted applications are available
to the server which runs on the control system proper.

The client then has the full functionality of the Lucretia
toolbox which can now be operated on with a live version
of the ATF2 machine state. However, access to write to
PS (power supply) and GIRDER (magnet mover)
elements is restricted initially and access must be
specifically granted by an operator through the server
interface.

To enable the use of other accelerator codes within this
same framework, the client also runs an additional tcp
socket server. This is implemented in an identical way to
the other flight simulator server socket. This client-side
server processes ascii commands from a source on the
localhost. In this way, another accelerator code has access
to the full functionality of the flight simulator as long as it
can implement a tcp socket client.

The flight simulator supports the AML deck standard
[3] through the use of Lucretia2AML- code written using
UAP (Universal Accelerator Parser) to synchronise the
Lucretia model with an AML file. This serves as the
entry-point for an external accelerator code package.
Further updates and access/read/write requests are
performed through the flight simulator client socket
server process. Through the use of a shared data structure
on the flight simulator client program, it is possible for
sharing of data and application processing between
Lucretia and other accelerator codes.

Figure 1: Implementation of the Flight Simulator at ATF

Security
Access security for the ATF2 hardware controls

database is enforced in three ways:
All read/write access is channelled through the

“trusted” flight simulator server installation on the local
ATF2 control subnet. A client program that wishes to
connect to the server must also be on the same subnet.

The EPICS IOC's are implemented using the standard
EPICS access security protocols. These are set to only
allow write commands (dbputs) from the user/host that
the flight simulator is installed on.

The ATF2 network infrastructure- the flight simulator
software and EPICS IOC's run on the ATF2 local subnet,
which is firewalled from the main KEK intranet, itself
firewalled from the internet.

SIMULATION MODE FUNCTIONALITY
To enable the offsite preparation and testing of

applications, the flight simulator was written to be able to
run in an environment away from the ATF2 control
system (the personal computer of a user at their home
institute for example). This simulation environment is
kept as similar to the production environment as possible.
The client software operates exactly as it does in
production, as does the server software. However the
default way of running the flight simulator in simulation
mode is to run all required software on the same computer
installation. Also, the server gains additional functionality
in simulation mode. As it no longer is connected to the
ATF2 control system, it simulates the action of the ATF2
beamline by utilising the Lucretia tracking software. The
graphical interface for the server thus has additional
inputs to define how the tracking of the beam is handled,

allows for
the setup
of
different
simulated
error
parameters
etc. To
further
minimise
the
difference
between
the

production and simulation environments, when the server
software is started, the EPICS IOC's are also started in the
same environment. These are the same IOCs that run at
ATF2, but a SIM_MODE record is activated which causes
them to not try and access hardware but instead use a
simulation layer written in the driver code which causes
the IOC's to behave as if they were connected to
hardware. This allows the flight simulator server to
behave in a very similar fashion as in production mode
where it still directs read/write requests through EPICS
CA. An additional benefit to this is that new hardware can
also be developed offsite, an EPICS database written to

communicate with the new hardware, and tested in the
simulated version of the control system environment. This
is done with the knowledge that it will behave in the same
way in the production version at KEK. This can greatly
reduce the time needed to spend onsite at KEK testing
new hardware and controls interfaces.

TESTING THE FLIGHT SIMULATOR
SOFTWARE AT ATF

In May 2008, a test of the flight simulator software and
an example client application was performed (integrated
with the ATF control system).

The 'soft' EPICS IOC that handles communication with
the ATF V-SYSTEM controls was installed on a pc on the
ATF controls subnet. The “trusted” flight simulator
installation (server) was compiled on a control room pc.
Thus, access to the ATF magnet power supplies and BPM
readout system was possible through the flight simulator
and an EPICS IOC as envisioned for ATF2.

A test application was developed using the PLACET
[4] accelerator code which was run through the flight
simulator client server interface as described above. The
test application was to experimentally determine transfer
matrix elements between corrector magnets and BPMs in
the ATF extraction line and use these to perform
automated orbit steering and provide a bump calculation
and application tool. This application was tested offsite at
the users home institute using the simulation mode, then
used at the production installation at ATF. The test was
successful- figure 2 shows a picture of the test in progress
with the client application running on the users laptop and
the server code running on the ATF control system.

PLANS FOR ATF2
With the core flight simulator software written and

tested, the next stage is to start to migrate existing beam
tuning algorithms into this software infrastructure and to
use them to commission and tune ATF2. The existing
plans centre around the extraction line and final focus
system- e.g. Orbit feedback systems; magnet mover based
BBA and steering; IP tuning using orthogonal sextupole-
mover knobs; extraction line coupling and dispersion
correction etc. The project is being documented on the
SLAC ATF2 wiki pages [5].

REFERENCES
[1] P. Tenenbaum, “Lucretia: A Matlab-Based Toolbox

for the Modelling and Simulation of Single-Pass
Electron Beam Transport Systems”, PAC-2005-
FPAT086, Sept 2005.

[2] Till Straumann,
http://www.slac.stanford.edu/comp/unix/package/epi
cs/extensions/labca/manual/

[3] D. Sagan et. al., “The Accelerator Markup Language
and the Universal Accelerator Parser”, EPAC-2006-
WEPCH250, Aug 2006.

[4] D. Schulte et. al. “Recent improvements of
PLACET”, CERN-AB-2006-048, Jun 2006.

[5]https://confluence.slac.stanford.edu/display/ATF/ATF2

Figure 2: A test of the flight simulator at
ATF- client running on user laptop and
server running on ATF control system.

